Centre de Physique Théorique

Agenda

Wednesday 31 March 2021

14h00 – 15h00, online-for link write to Annalisa Panati

Dynamiques sauvages holomorphes

Sébastien Sbiebler (IMJ-PRG, Sorbonne Université)

Le phénomène de Newhouse est un des grands mystères des systèmes
dynamiques différentiables. Dans les années 60, Smale désirait décrire
le comportement d’un système dynamique typique. Pour ce faire, il
conjectura la densité des difféomorphismes uniformément hyperboliques
dans l’espace des C^r-difféomorphismes f d’une variété compacte M. Dans
les années 70, un phénomène découvert par l’étudiant de Smale, Newhouse,
se révéla être une obstruction à cette conjecture trop optimiste. Pour
tout 2 ≤ r ≤ ∞, il a montré l’existence d’un ouvert U de l’espace des
C^r-difféomorphismes d’une surface M, tel que tout f dans un
sous-ensemble topologiquement générique de U possède une infinité de
points périodiques attractifs. Aussi la mesure de probabilité invariante
de chaque orbite attractive est très différente de celles des autres, et
le comportement statistique de tels systèmes ne peut donc pas être
décrit de façon satisfaisante avec un nombre fini de mesures.

Dans cet exposé, je definirai précisément le phénomène de Newhouse et je
montrerai comment il peut être étendu au cas de dynamiques holomorphes
de C^2. Je présenterai ensuite un résultat récent en commun avec Pierre
Berger (CNRS, Sorbonne Université, IMJ-PRG) dont la preuve est basée sur
le phénomène de Newhouse. Nous montrons qu’il existe des automorphismes
polynomiaux de C^2 ayant une composante de Fatou errante. L’ensemble de
Fatou est l’ouvert maximal où la dynamique est localement équicontinue.
Une composante de Fatou en est une composante connexe, et elle est dite
errante lorsqu’elle n’est pas prépériodique. Ceci contraste avec un
important théorème prouvé par Sullivan dans les années 80 montrant qu’il
n’y a pas de telles composantes errantes pour des dynamiques
rationnelles en une variable complexe. Nous étudions aussi le
comportement statistique des orbites des points dans la composante
errante et nous montrons que celui-ci est très compliqué à décrire, plus
précisément historique avec une émergence élevée.

15h30 – 16h30, online-for link write to Annalisa Panati

Le problème inverse de la DFT en mécanique quantique statique

Luis Garrigue (CERAMICS, Ecole des Ponts ParisTech)

La DFT (density functional theory) est la méthode la plus efficace pour modéliser la matière à l’échelle microscopique, elle est extensivement utilisée en physique et chimie quantique à N corps. Elle peut s’exprimer en termes de problème inverse, reliant les potentiels électriques aux densités à un corps réagissant à ces potentiels. Nous introduirons les objets mathématiques principaux de la mécanique quantique à N corps et de la DFT, présenterons le théorème d’unicité associé au problème, et montrerons comment ’inverser’ l’application en jeu, théoriquement et numériquement, pour les états fondamentaux et les états excités. Les articles correspondants sont https://arxiv.org/abs/2012.04054 et https://arxiv.org/abs/2101.01127

Calendar