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We study the dynamics of a quantum particle moving in a plane under the influence
of a constant magnetic field and driven by a slowly time-dependent singular flux
tube through a puncture. The known standard adiabatic results do not cover directly
these models as the Hamiltonian has time-dependent domain. We give a meaning to
the propagator and prove an adiabatic theorem. To this end we introduce and
develop the new notion of a propagator weakly associated to a time-dependent
Hamiltonian. ©2005 American Institute of Physics.fDOI: 10.1063/1.1895865g

I. INTRODUCTION

The model under consideration originates from Laughlin’s12 and Halperin’s9 discussion of the
integer quantum Hall effect. In the mathematical physics literature Bellissardet al.5 and Avron
et al.3 used an adiabatic limit of the modelswith additional randomnessd to introduce indices. The
indices explain the quantization of charge transport observed in the experiments.14

In this paper we discuss some mathematical aspects of the existence of the propagator and the
validity of the adiabatic approximation and propose how to overcome the difficulties originating
from the strong singularity of the external field.

Let us specify the model, summarize our results and introduce the notation. The configuration
space isR2\ hs0,0dj and the model is considered in polar coordinatessr ,ud. The vector potentialA
is the sum of a part for the homogeneous magnetic field of strengthB.0,

B

2
sx1 dx2 − x2 dx1d =

Br2

2
du,

plus a part describing the fluxF which varies in time,

F

2p

1

uxWu2
sx1 dx2 − x2 dx1d =

F

2p
du;

the real-valued functionF is assumed to be monotonous andC2. With the metric coefficients
g11=1, g22=r2, g12=0, the differential expression of the Hamiltonian acting inL2sR+

3 f0,2pf ,r dr dud is

1
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Our purpose is to study the response of the system if flux quantahc/e are added adiabatically, i.e.,
the flux function is of the formt°Fst /td with the timet varying in f0,tg for somet@1.
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In a first step we analyze the case whenF is linear. Furthermore, we fix an angular momen-
tum sector defined by −i]ue

imu=meimu sm[Zd, and use a slow times, i.e., the substitution
s=−m+e/ shcdFst /td. Also we are not interested here in keeping track of the behavior in the
physical parameterse, ", c, 2m, so we set them all equal to one. This is our motivation to consider
the operator

Hssd = −
1

r
]rr]r +

1

r2Ss+
Br2

2
D2

in L2sR+,r drd. s1d

In a second step we shall then show that our analysis generalizes to Hamiltonians of the form
Hszssdd wherez[C2 is a monotone function.

Hssd is essentially self-adjoint onC0
`sg0,`fd iff s2ù1.13 For 0,s2,1 we impose the regular

boundary condition asr →0+ fi.e., a wave function belongs to the domain if it has no part
proportional to thessquare integrabled singularity r−usug. This is in fact the most common choice,
see Ref. 8 for a detailed discussion. The cases=0 is particular since the singularity in question is
logarithmic but otherwise the situation is similar, see Ref. 1. The HamiltonianHssd is unambigu-
ously determined by specifying a complete set of eigenfunctions with corresponding eigenvalues,
see below.

The dynamics of the model should be defined by

i]sUtss,s0dc = tHssdUtss,s0dc, Utss0,s0dc = c, s2d

whereUt is unitary andc is an arbitrary initial condition from the domain ofHss0d. The existence
of a propagator in this sense is, however, uncertain. The problem arises from the fact that the

domain ofHssd is not constant ins, respectively, thatḢssd is not relatively bounded with respect
to Hssd. Thus the usual theorems which assure the existence of the propagator13 and the validity of
the adiabatic approximation4,2 are not directly applicable.

A convenient way to see this is to consider the eigenfunctions. The operatorHssd has a simple
discrete spectrum; the eigenvalues are

lnssd = Bss+ usu + 2n + 1d, n [ h0,1,2,…j, s3d

with the corresponding normalized eigenfunctions

wnss;rd = cnssdr usuLn
susudSBr2

2
DexpS−

Br2

4
D ,

where

cnssd = SB

2
Dsusu+1d/2S 2n!

Gsn + usu + 1dD
1/2

are the normalization constants andLn
susud are the generalized Laguerre polynomialsssee, for ex-

ample, Ref. 8d.
The derivative ofHssd equals

Ḣssd =
2s

r2 + B.

Notice that ifusuø1 thenwnssd cannot belong to the domain DomḢssd sinceḢssdwnssd, r−2+usu for

r →0+. This means thatḢssd is not relatively bounded with respect toHssd.
Remark that, on the other hand, the quadratic expression
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E
0

`

wmss;rdḢssdwnss;rdr dr

makes good sense. In order to avoid a complicated notation we shall denote it by the symbol

kwmssd ,Ḣssdwnssdl even though the symbol cannot be taken literally and is therefore somewhat
misleading. Furthermore, the derivative of the eigenfunction,ẇnssd, belongs toL2sR+,r drd. Since
the eigenfunctions are chosen to be real valued it holds true that

kwnssd,ẇnssdl = 0.

Let us also note that, similarly, ifusuø1 and s2Þs82 then the eigenfunctionwnssd cannot
belong to DomHss8d. It is so becausesas formal expressionsd Hss8d−Hssd=ss82−s2d / r2+Bss8
−sd andHss8dwnss; rd has a nonintegrable singularity atr =0. Hence DomHssd depends ons.

It turns out that, following the strategy of Born and Fock,6 the problems of existence and
adiabatic approximation can both be handled.

Denote the eigenprojector ontoCwnssd by Pnssd; it is differentiable as a bounded operator. The
hard part of our work consists in showing that

io
k=0

`

ṖkssdPkssd

is a bounded operator. This is stated in Lemma 6. It requires work because its matrix elements
have bad off-diagonal decay, see Lemma 4swhich is formulated for the unitarily equivalent
operatorQd.

Now

HADssdªHssd +
i

t
o
n=0

`

ṖnssdPnssd

has a propagator which is well defined in the usual way, i.e.,

i]sUADss,s0dc = tHADssdUADss,s0dc, UADss0,s0dc = c, s4d

for c[DomsHADss0dd. To see this notice thatUAD can be computed by its action on the eigenba-
sis,

UADss,s0dwnss0d = e−ites0

s lnsudduwnssd.

Furthermore,lnssd−lns0d is bounded inn and so

UADss,s0dDomHADss0d = DomHADssd.

Since Hssd−HADssd is bounded the domains ofHssd and HADssd are identical. By time-
dependent transformation a natural candidate for the propagator ofHssd is

Utss,s0dªUADss,0dCss,s0dUADs0,s0d, s5d

whereCss,s0d is defined by

i]sCss,s0d = − QtssdCss,s0d, Css0,s0d = I, s6d

with

QtssdªUADs0,sdSio
k=0

`

ṖkssdPkssdDUADss,0d. s7d

SinceiQtssdi is locally bounded the propagatorCss,s0d is well defined by the Dyson formula.
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The adiabatic approximation problem is settled in Proposition 11 where it is shown that

iUtss,0d − UADss,0di = OS1

t
D .

It remains unclear, however, whetherCss,s0d preserves the domain ofHs0d and therefore
whether the propagatorUtss,s0d is actually related to the HamiltonianHssd in the usual sense. To
handle this problem we develop the general concept of weak association of a propagator and a
time-dependent Hamiltonian. We can show thatUt is weakly associated toHssd and that the
Schrödinger equations2d is fulfilled in the sense of distributions.

We shall use the following notation. The symbolVssd stands for the unitary operator which
sends all eigenstates at time 0 to the corresponding eigenstates at times, i.e.,

Vssdwns0d = wnssd ∀ n [ Z+ s8d

shere and everywhere in what followsZ+ stands for the set of non-negative integersd. Further set

Wssd = Vssd−1HssdVssd = o
n=0

`

lnssdPns0d s9d

and

Vssd = o
n=0

`

vnssdPns0d, s10d

where

vnssd =E
0

s

lnsuddu.

Remark that the adiabatic propagator decomposes as

UADss,s0d = Vssde−itsVssd−Vss0ddVss0d−1.

The paper is organized as follows. In Secs. II and III we do the analysis necessary to prove the
boundedness result stated in Lemma 6. Section IV is devoted to the existence problem for the
propagator. In Sec. V we prove the adiabatic theorem in Proposition 11. The result is then ex-
tended to a more general time dependence in Sec. VI.

A rather independent part of the paper is the Appendix where we propose the notion of a
propagator weakly associated to a time-dependent Hamiltonian. We indicate cases where the weak
association can be verified while the usual relationship between a propagator and a Hamiltonian is
unclear or even is not valid. In particular, this concept was inspired by the situation we encoun-
tered in the present model. We believe, however, that this idea need not be restricted to this case
only and that it might turn out to be useful in resolving this type of difficulties in other models as
well.

II. AUXILIARY ESTIMATES OF MATRIX OPERATORS

Here we derive some auxiliary estimates that will be useful later when verifying assumptions
of the adiabatic theorem.

Lemma 1:Let Assd be an operator in l2sNd depending on a parametersù0 whose matrix
entries in the standard basis equal
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Assdmn= 50 for m= n,

− i
nsm

n ds for m, n,
i
ms n

mds for m. n.

Then Assd is bounded, uniformly ins, and its norm satisfies the estimate

iAssdi ø 24.

Proof: The proof will be done in several steps.
sid Let Kssd be an integral operator acting inL2sR+,dxd with the integral kernel

Kssx,yd =H− i
ys x

yds for x , y,
i
xs y

xds for x . y.

Let us show that

iKssdi =
2

2s + 1
.

First we apply the unitary transform

U:L2sR+,dxd → L2sR,dyd, Ucsyd = ey/2cseyd. s11d

The inverse transform readsU−1ĉsxd=x−1/2ĉsln xd. Set

K̃ssd = UKssdU−1.

One finds thatK̃ssd is again an integral operator with the integral kernel

K̃ssy,zd = i sgnsy − zde−ss+1/2duy−zu.

HenceK̃ssd is a convolution operator and it is therefore diagonalizable with the aid of the Fourier
transformF on R. This means that

sFK̃ssdF−1cdszd = q̂szdcszd,

where

q̂szd =E
R

eizy sgnsyde−ss+1/2duyu dy =
2iz

ss + 1
2d2 + z2

.

It follows that

iKssdi = iFK̃ssdF−1i = iq̂i` =
1

s + 1
2

. s12d

sii d Suppose thathcjn=1
` is an orthogonal system inL2sR+,dxd such that

∀m,n [ N, kcm,Kssdcnl = Assdmn

and

∀n [ N, icni2 = k . 0.

Let P+ be the orthogonal projector onto spanhcnjn=1
` in L2sR+,dxd. Then one can identify

P+KssdP+ with k−1Assd. Hence
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iAssdi = kiP+KssdP+i ø kiKssdi. s13d

siii d We shall construct an orthogonal systemhcnjn=1
` described in the preceding point as

follows. Consider the natural embeddingL2sfn,n+1g ,dxd,L2sR+,dxd, n[N. We seek
cn[L2sfn,n+1g ,dxd in the form

cn = anun + bnvn + fn,

wherean, bn[R, un, vn, fn[L2sfn,n+1g ,dxd,

unsxd = xs, vnsxd = x−s−1 for x [ fn,n + 1g,

and fn'un, fn'vn. Suppose for definiteness thatm,n. Then

kcm,Kssdcnl =E
m

m+1

dxE
n

n+1

dy Kssx,ydcmsxdcnsyd = − ikum,cmlkvn,cnl.

Furthermore,

kcn,Kssdcnl =E
n

n+1E
n

n+1

Kssx,ydcnsxdcnsyddx dy = 0

sinceKssx,yd is antisymmetric,Kssy,xd=−Kssx,yd. Consequently, it suffices to choose the real
coefficientsan, bn so that

∀n [ N,kun,cnl = ns, kvn,cnl = n−s−1.

This system has a unique solutionsan,bnd. The functionfn can be arbitrary. Its only purpose is to
adjust the norms of the functionscn so that they are all equal. Set

Nnssd = ianun + bnvni2 =E
n

n+1

sanx
s + bnx

−s−1d2 dx

and

kssd = sup
n[N

Nnssd.

One can choose the orthogonal systemhcnjn=1
` so thaticni2=kssd for all n. According tos12d and

s13d we have

iAssdi ø
2kssd
2s + 1

. s14d

sivd It remains to find an upper bound onkssd. Set

jn = ns, hn = n−s−1.

Simple algebraic manipulations yield

Nnssd =
kvn,vnljn

2 − 2kun,vnljnhn + kun,unlhn
2

kun,unlkvn,vnl − kun,vnl2 .

Here

kun,vnl = lnS1 +
1

n
D ,
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kun,unl =
1

2s + 1
ssn + 1d2s+1 − n2s+1d,

kvn,vnl =
1

2s + 1
sn−2s−1 − sn + 1d−2s−1d.

Set

w = Ss +
1

2
DlnS1 +

1

n
D .

One can rewrite the expression forNnssd as follows:

Nnssd =
2s + 1

n

sinhswdcoshswd − w

sinh2swd − w2 .

Using an elementary analysis one can show that

sinhswdcoshswd − w

sinh2swd − w2 ø
sinhswdcoshswd − w

sinhswdssinhswd − wd
ø 4 cotghswd.

Hence

Nnssd ø
4s2s + 1d

n

S1 +
1

n
D2s+1

+ 1

S1 +
1

n
D2s+1

− 1

ø 12s2s + 1d.

Consequently,

kssd ø 12s2s + 1d. s15d

From s14d and s15d it follows that iAssdiø24. h

Lemma 2:Let Assd be an operator in l2sNd whose matrix entries in the standard basis equal

Assdmn= 50 for m= n,

− i
n fssm

n d for m, n,
i
mfss n

md for m. n,

where

fssud =
1 − us

1 − u
, fu [ g0,1f,

and s[ f0,1g is a parameter. Then Assd is bounded and its norm satisfies the estimate

iAssdi ø SÎ2

3
+ 4Dp2s.

Proof: The proof will be done in several steps.
sid Let Kssd be an integral operator acting inL2sR+,dxd with the integral kernel

Kssx,yd =H− i
y fss x

yd for x , y,
i
x fss y

xd for x . y.

Let us show that
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iKssdi ø p2s. s16d

This step is quite analogous to the proof of pointsid in Lemma 1. First we apply the unitary
transformU defined ins11d. Set

K̃ssd = UKssdU−1.

One finds thatK̃ssd is again an integral operator with the integral kernel,

K̃ssy,zd = i sgnsy − zdfsse−uy−zude−uy−zu/2.

ThusK̃ssd is a convolution operator which is diagonalizable with the aid of the Fourier transform

F on R. This means thatsFK̃ssdF−1cdszd= q̂szdcszd where

q̂szd =E
R

eizy sgnsydfsse−uyude−uyu/2 dy.

A standard estimate yields

uq̂szdu ø 2E
0

` 1 − e−sy

1 − e−y e−y/2 dy ø sE
0

` y

sinhsy/2d
dy = p2s.

It follows that

iKssdi = iFK̃ssdF−1i = iq̂i` ø p2s.

sii d Let xnsxd be the characteristic function of the intervalgn,n+1f. The linear mapping

J:l2sNd → L2sR+,dxd:hjnj ° o
n=1

`

jnxn

is an isometry. The adjoint mapping reads

J* :L2sR+,dxd → l2sNd:c ° hkxn,cljn=1
` .

Set

Lssd = JAssdJ* .

Lssd is an integral operator with the kernel

Lssx,yd = o
m=1

`

o
n=1

`

Assdmnxmsxdxnsyd.

This can be rewritten as

Lssx,yd = 5− i
fyg fss fxg

fyg d if 0 , fxg , fyg,

i
fxg fss fyg

fxg d if 0 , fyg , fxg,

0 otherwise.

Here fxg denotes the integer part ofx. Notice thatJ*J is the identity onl2sNd and soLssdJ
=JAssd. Consequently,

iAssdi = iJAssdi = iLssdJi ø iLssdi. s17d

siii d Denote byP̃n, n[Z+, the orthogonal projector ontoCxn in L2sR+,dxd. Set
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Koffssd = Kssd − P̃0Kssd − KssdP̃0 + P̃0KssdP̃0 − o
n=1

`

P̃nKssdP̃n.

In other words, we subtract fromKssd the diagonal as well as the first row and the first column
si.e., with index 0d with respect to the orthogonal systemhxnjn=0

` . We can say also that the integral
kernelKs

offsx,yd vanishes iffxg=fyg or fxg=0 or fyg=0 and otherwise it coincides withKssx,yd.
Since

IP̃0KssdP̃0 − o
n=1

`

P̃nKssdP̃nI = sup
n[Z+

iP̃nKssdP̃ni ø iKssdi,

we have

iKoffssdi ø 4iKssdi. s18d

sivd It remains to estimate the norm of the differenceLssd−Koffssd. This is a Hermitian
integral operator whose kernel does not vanish only if 0, fxg, fyg or 0, fyg, fxg. Suppose for
definiteness that 0, fxg, fyg. Then the kernel equals, up to the multiplier −i,

1

fyg
fsS fxg

fyg
D −

1

y
fsSx

y
D = S 1

fygs −
1

ysD fygs − fxgs

fyg − fxg
+

1

ysS fygs − fxgs

fyg − fxg
−

ys − xs

y − x
D .

Let us show that

0 ø
1

fyg
fsS fxg

fyg
D −

1

y
fsSx

y
D ø

2s

fxgsfyg − fxgd
. s19d

First notice that

0 ø
1

fygs −
1

ys = − sE
y

fyg

z−s−1 dzø
ssy − fygd

fygs+1

and so

0 ø S 1

fygs −
1

ysD fygs − fxgs

fyg − fxg
ø

s

fygsfyg − fxgd
. s20d

Further set temporarily

D =
fygs − fxgs

fyg − fxg
−

ys − xs

y − x
= sE

0

1

ssfxgs1 − td + fygtds−1 − sxs1 − td + ytds−1ddt.

The integrand in the last integral equals

ss1 − sdjt
s−2ssx − fxgds1 − td + sy − fygdtd,

wherejt is a real number lying betweenfxgs1−td+fygt andxs1−td+yt. Notice that

0 ø sx − fxgds1 − td + sy − fygdt ø 1.

We assume that 0øsø1. Therefore

0 ø D ø ss1 − sdE
0

1

sfxgs1 − td + fygtds−2 dt = − s
fygs−1 − fxgs−1

fyg − fxg

and so
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0 ø
1

ysD ø
sfxgs−1

yssfyg − fxgd
ø

s

fxgsfyg − fxgd
. s21d

Inequalitiess20d and s21d jointly imply s19d.
svd From estimates19d one can deduce thatLssd−Koffssd is a Hilbert–Schmidt operator and

iLssd − KoffssdiHS ø
Î2p2

3
s. s22d

Actually,

iLssd − KoffssdiHS
2 = 2E

1

`

dxE
fxg+1

`

dyuLssx,yd − Ks
offsx,ydu2 ø 8s2E

1

`

dx
1

fxg2E
fxg+1

`

dy
1

sfyg − fxgd2

= 8s2So
k=1

`
1

k2D2

.

svid Inequalitiess17d, s18d, s16d, ands22d imply that

iAssdi ø iLssdi ø iKoffssdi + iLssd − Koffssdi ø 4p2s +
Î2p2

3
s.

This shows the lemma. h

Lemma 3:Let Assd be an operator in l2sNd with the matrix entries in the standard basis

Assdmn= H0 for m= n,
i

n−mminhsm
n ds,s n

mdsj for mÞ n.

Then Assd is bounded for all0øs and its norm satisfies the estimate

iAssdi ø p + SÎ2

3
+ 4Dp2s.

Proof: Let us first show that

iAs0di ø p.

For s=0 we get

As0dmn=
i

n − m
if mÞ n.

Considering the natural embeddingl2sNd, l2sZd let us denote byP+ the orthogonal projector onto
l2sNd in l2sZd. Let B be an operator inl2sZd with the matrix

Bmn= qsn − md whereqsnd = H0 for n = 0,
i
n for n Þ 0.

One can identifyAs0d with P+BP+. B is a convolution operator and therefore it is diagonalizable
by the Fourier transformF : l2sZd→L2sf0,2pg ,dud. In more detail,

sFBF−1cdsud = q̂sudcsud whereq̂sud = o
n[Z

qsndeinu.

One finds thatq̂sud=−p+u. Consequently,
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iAs0di = iP+BP+i ø iBi = iFBF−1i = max
0[f0,2pg

uq̂sudu = p.

Suppose now that 0,m,n. Notice that

sAss + 1d − Assddmn= −
i

n
Sm

n
Ds

and

sAssd − As0ddmn= −
i

n
fsSm

n
D .

Using Lemma 1 and Lemma 2 one can estimate

iAssdi ø iAs0di + iAss − fsgd − As0di + iAss − fsg + 1d − Ass − fsgdi + ¯ + iAssd − Ass − 1di

ø p + SÎ2

3
+ 4Dp2ss − fsgd + 24fsg ø p + SÎ2

3
+ 4Dp2s.

This proves the lemma. h

III. BOUNDEDNESS OF THE OPERATOR iok=0
` Ṗk„s…Pk„s…

We consideriok=0
` ṖkssdPkssd in the time independent frame, i.e., the operatorQssd defined by

Qssd = iVssd*o
k=0

`

ṖkssdPkssdVssd = − iV̇ssd*Vssd = iVssd*V̇ssd. s23d

The operatorVssd is defined ins8d. Qssd is symmetric and its matrix entries in the basishwns0dj are

kwms0d,Qssdwns0dl = ikwmssd,ẇnssdl.

Sincewnssd depends ons only through the absolute value it holds true thatQs−sd=−Qssd for s
Þ0. Fors=0 the operator-valued functionQssd has a discontinuity. The goal of this section is to
show that the operatorQssd is in fact bounded.

To compute the matrix entries one can use the identity

kwmssd,ẇnssdl =
kwmssd,Ḣssdwnssdl

lnssd − lmssd
. s24d

Let us emphasize once more that the scalar product on the right-hand side should be interpreted as

a quadratic form since, in general,wnssd¹Dom Ḣssd. The derivation goes through basically as
usual even though one cannot use the scalar product directly. Differentiating the equation on
eigenvalues one arrives at the equality

Hssdẇnss;rd + Ḣssdwnss;rd = l̇nssdwnss;rd + lnssdẇnss;rd,

valid for any r .0, in which one should substitute forHssd and Ḣssd the corresponding formal
differential operators. Next one multiplies the equality byrwmss; rd and integrates the both sides
from « to infinity for some«.0. In the integral

−E
«

`

wmss;rd]rr]rẇnss;rddr

occurring on the left-hand side one integrates twice by parts. Checking the asymptotic behavior of
the eigenfunctions near the origin,
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wnss;rd , SB

2
Dsusu+1d/2S 2n!

Gsn + usu + 1dD
1/2

r usus1 + Osr2dd for r → 0 + , s25d

one finds that

lim
r→0+

rwmss;rd]rẇnss;rd = lim
r→0+

rs]rwmss;rddẇnss;rd = 0.

Hence sending« to 0 actually leads to equalitys24d.
Lemma 4:The matrix entries of the operator Qssd for sÞ0 are given by the formulas

kwms0d,Qssdwns0dl = 0 for m= n,

and

kwms0d,Qssdwns0dl =
i sgnssd
2sn − md

minHgmssd
gnssd

,
gnssd
gmssdJ for mÞ n,

where

gnssd = SGsn + usu + 1d
n!

D1/2

. s26d

Proof: Assume thatm,n and s.0. Using the explicit expression for the generalized La-
guerre polynomials,

Ln
sadsxd = o

k=0

n

s− 1dkSn + a

n − k
D 1

k!
xk,

one finds that

kwmssd,Ḣssdwnssdl = 2scmssdcnssdE
0

`

r2s−1Lm
ssdSBr2

2
DLn

ssdSBr2

2
DexpS−

Br2

2
Ddr

= scmssdcnssdS 2

B
Ds

Sm,n,

where

Sm,n = o
k=0

m

o
,=0

n

s− 1dk+,Gsm+ s+ 1dGsn + s+ 1dGsk + , + sd
Gsk + s+ 1dGs, + s+ 1dm!n!

Sm

k
DSn

,
D .

In this expression only the summand withk=0 does not vanish since

o
,=0

n

s− 1d,Sn

,
D, j = 0 for j = 0,1,…,n − 1.

Hence

Sm,n =
Gsm+ s+ 1dGsn + s+ 1d

Gss+ 1dm!n! o
,=0

n

s− 1d, Gs, + sd
Gs, + s+ 1d

Sn

,
D =

Gsm+ s+ 1dGsn + s+ 1d
Gss+ 1dm!n!

Bss,n + 1d

=
Gsm+ s+ 1d

sm!
.

Furthermore,lnssd−lmssd=2Bsn−md and so
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kwms0d,Qssdwns0dl = iS 2

B
Dscmssdcnssd

2Bsn − md
Gsm+ s+ 1d

m!
.

Now it suffices to plug in the explicit expressions for the normalization constantscmssd and
cnssd. h

Using the Stirling formula one can check the asymptotic behavior of the matrix entries of the
operatorQssd for m and n large. It turns out that the operatorQssd is in some sense close to a
Hermitian operatorAssd in L2sR+,r drd with the matrix entries

kwms0d,Assdwns0dl = 0 for m= n, s27d

and

kwms0d,Assdwns0dl =
i sgnssd
2sn − md

minHSm+ 1

n + 1
Dusu/2

,S n + 1

m+ 1
Dusu/2Jfor mÞ n. s28d

Note thatAs0+d=Qs0+d. We shall also writeQssdmn instead ofkwms0d ,Qssdwns0dl, and similarly
for Assd.

Lemma 5: Let Assd be the Hermitian operator in L2sR+,r drd defined by relationss27d and
s28d. Then Qssd−Assd is a Hilbert–Schmidt operator and it holds true that

iQssd − AssdiHS ø
1
2usus1 + usuds3+usud/2.

Proof: Let us suppose for definiteness thats.0 andm,n. For xù1 set

gssxd =
Gsx + sd
xsGsxd

.

One can express

uQssdmn− Assdmnu =
1

2sn − md
ugssm+ 1d1/2 − gssn + 1d1/2uSm+ 1

n + 1
Ds/2

gssn + 1d−1/2

ø
1

4
gssn + 1d−1/2E

0

1

gssm+ 1 + sn − mdtd−1/2ugs8sm+ 1 + sn − mdtdudt.

Notice that

gs8sxd
gssxd

=
G8sx + sd
Gsx + sd

−
G8sxd
Gsxd

−
s

x
.

Using the well-known formula for the logarithmic derivative of the gamma function,

−
G8szd
Gszd

=
1

z
+ g + o

n=1

` S 1

n + z
−

1

n
D , s29d

one finds that

gs8sxd
gssxd

= sSo
n=0

`
1

sn + xdsn + x + sd
−

1

x
D ø sSo

n=0

`
1

sn + xd2 −
1

x
D ø sS 1

x2 +E
x

` dy

y2 −
1

xD =
s

x2 .

Similarly,

gs8sxd
gssxd

ù sSE
x

` dy

ysy + sd
−

1

xD = lnS1 +
s

x
D −

s

x
ù −

s2

2x2 .

In particular,
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ugs8sxdu ø
sss+ 1d

x2 gssxd.

From here one derives the estimates, fort[ f0,1g,

gssm+ 1 + sn − mdtd
gssn + 1d

= expS−E
m+1+sn−mdt

n+1 gs8syd
gssyd

dyD ø expSE
m+1

n+1 S s

y
− lnSy + s

y
DDdyD

= expSsm+ 1 +sdlnS1 +
s

m+ 1
D − sn + 1 +sdlnS1 +

s

n + 1
DD ø s1 + sd1+s

and

uQssdmn− Assdmnu ø
sss+ 1d

4gssn + 1d1/2E
0

1 gssm+ 1 + sn − mdtd1/2

sm+ 1 + sn − mdtd2 dt

ø
1

4
ss1 + sds3+sd/2E

0

1 dt

sm+ 1 + sn − mdtd2 .

Let Fstd be a Hermitian operator inL2sR+,r drd with the following matrix entries in the basis
hwns0dj:

Fstdmn= 0 for m= n

and

Fstdmn= sm+ 1 + sn − mdtd−2 for m, n.

ThenFstd is a Hilbert–Schmidt operator and

iFstdiHS
2 = 2o

m=0

`

o
n=m+1

`

sm+ 1 + sn − mdtd−4 ø 2o
m=0

` E
0

` dy

sm+ 1 + tyd4 =
2

3t
o
m=0

`
1

sm+ 1d3 ø
1

t
.

Hence

iQssd − AssdiHS ø
1

4
ss1 + sds3+sd/2E

0

1

iFstdiHS dt ø
1

2
ss1 + sds3+sd/2.

This proves the lemma. h

Combining Lemma 3 and Lemma 5 we deduce that the operatorQssd is actually bounded.
Lemma 6:The operator Qssd is bounded and its norm satisfies the estimate

iQssdi ø
p

2
+ 12usu +

1

2
usus1 + usuds3+usud/2.

Proof: Let Assd be the Hermitian operator inL2sR+,r drd defined by relationss27d and s28d.
According to Lemma 3 it holds true that

iAssdi ø
1

2
Sp + SÎ2

3
+ 4Dp2usu

2
D .

Lemma 5 leads to the estimate

iQssdi ø iAssdi + iQssd − Assdi ø
1

2Sp + S 1

3Î2
+ 2Dp2usu + usus1 + usuds3+usud/2D .

Sinces1+1/s6Î2ddp2,12 the lemma follows. h
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IV. THE MEANING OF THE PROPAGATOR Ut„s ,s0…

As already discussed in the Introduction the natural propagatorUtss,s0d defined ins5d is not
related in the standard way to the HamiltoniantHssd defined ins1d. In particular it is not clear if
Utss,s0d maps the domain DomHss0d into DomHssd. This is why we propose in the Appendix the
notion of a propagator weakly associated to a Hamiltonian, see Definition A.3. We should like to
emphasize that this relationship is unique, i.e., at most one propagator can be weakly associated to
a Hamiltonian.

In this section we show thatUt is weakly associated totH and thatss,rd°Utss,s0dc0srd
satisfies the Schrödinger equation as a distribution for allc0[L2sR+,r dr dwd.

Proposition 7:The propagator Utss,s0d is weakly associated totHssd.
Proof: Relations5d means that

Utss,s0d = Vssde−itVssdCss,s0deitVss0dVss0d−1.

So starting fromCss,s0d one can reachUtss,s0d by two consecutive unitary transformations. The
propagatorCss,s0d was defined ins6d. It corresponds to the Hamiltonian −Qtssd defined ins7d.
According to Lemma 6 the functioniQtssdi=iQssdi is locally bounded and thusCss,s0d is given
by the Dyson formula, see relations31d in Sec. V.

First we apply Proposition A.4 in which we set

Astd = − Qtstd, D = DomHs0d, Tstd = exps− itVstdd,

and

Xstd = is]te
−itVstddeitVstd = tWstd.

We conclude that the propagatore−itVssdCss,s0deitVss0d is weakly associated to

tWssd − e−itVssdQtssdeitVssd = tWssd − Qssd.

Next we apply Proposition A.6 in which we setH̃std=tWstd−Qstd and Ũst ,sd
=e−itVstdCst ,sdeitVssd. Recall further thatVstd was defined in Eq.s8d. We conclude thatUtss,s0d
=VssdŨss,s0dVss0d−1 is weakly associated to

tVssdWssdVssd−1 − VssdQssdVssd−1 + iV̇ssdVssd−1 = tHssd.

The proposition is proven. h

In the studied modelH=L2sR+,r drd and so

K = L2sR,H,dsd = L2sR 3 R+,r dsdrd.

Let H=eR
%Hssdds be the direct integral of the family of self-adjoint operatorsHssd which is

nothing but a multiplication operator inK. Let Kt be the quasienergy operator associated to the
propagatorUtss,s0d ssee Appendixd. According to Proposition 7 it holds true that

Kt = − i]s + tH. s30d

To an initial conditionc0[H we relate the functioncss,rd=sUtss,0dc0dsrd which is a locally
square integrable function in the variabless and r. We now show thatcss,rd fulfills the
Schrödinger equation in the space of distributionsD8sR3 g0,`fd. Let us note that for the proof it
suffices to know that −i]s+tH,Kt, the stronger property Eq.s30d is not necessary.

Proposition 8: For every c0[H, the function css,rd=sUtss,0dc0dsrd satisfies the
Schrödinger equation in the sense of distributions.

Proof: Let j[C0
`sR3 g0, +`fd be an arbitrary real-valued test function. Setgss,rd

=jss,rd / r. Clearly, g[Doms−i]s+tHd,DomKt. Let fa,bg3 fc,dg be a rectangle containing
suppj and chooseh[C0

`sRd so thath;1 on a neighborhood of the intervalfa,bg. From Propo-
sition A.2 we know thatKtshssdcss,rdd=−ih8ssdcss,rd. From the choice ofh it follows that
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0 = − ikg,h8clK = kg,KtshcdlK = ks− i]s + tHdg,hclK.

The last term equals

E
R3R+

Si]s
1

r
jss,rd + tHssd

1

r
jss,rdDhssdcss,rdr dsdr

=E
R3R+

Si]sjss,rd + tS− ]rr]r
1

r
+

1

r2Ss+
Br2

2
D2Djss,rdDcss,rddsdr .

This means that

− i]scss,rd + tS−
1

r
]rr]r +

1

r2Ss+
Br2

2
D2Dcss,rd = 0

in the domainR3 g0, +`f in the sense of distributions. h

V. PROOF OF THE ADIABATIC THEOREM

We follow the strategy explained in the Introduction. The adiabatic propagatorUAD fsees4dg
and the propagatorUt defined ins5d differ by C defined bys6d. SinceQtssd=eitVssdQssde−itVssd,
defined ins7d, is unitarily equivalent toQssd it is bounded, uniformly ins on every bounded
interval f0,Sg. HenceCss,s0d exists and is given by the Dyson formula

Css,s0d = I + o
n=1

`

inE
s0

s

ds1E
s0

s1

ds2¯E
s0

sn−1

dsn Qtss1dQtss2d¯Qtssnd. s31d

The task is to estimate the norm of the integral ofQt. This will be done by the integration by
parts technique developed in the following two lemmas.

The first step is to find a bounded differentiable solutionXssd of the commutation equation

Qssd = ifWssd,Xssdg.

The operatorWssd was defined ins9d. The off-diagonal entries of theXssd are determined unam-
biguously,

kwms0d,Xssdwns0dl = − i
kwms0d,Qssdwns0dl

lmssd − lnssd

=−
sgnssd

4Bsn − md2minHgmssd
gnssd

,
gnssd
gmssdJ for mÞ n,

s32d

with gnssd defined ins26d. We set

kwms0d,Xssdwns0dl = 0 for m= n, s33d

and write againXssdmn instead ofkwms0d ,Xssdwns0dl.
Lemma 9: The operator Xssd defined by relations (33) and (32) is bounded and its norm

satisfies the estimate

iXssdi ø
p2

12B
.

The derivative X˙ ssd exists in the operator norm and satisfies the estimate
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iẊssdi ø
s1 +Î2dp2

48B
.

Proof: The operator norm ofXssd is bounded from above by the Shur–Holmgren norm,

iXssdi ø iXssdiSH = sup
m[Z+

o
n=0

`

uXssdmnu ø
1

2B
o
k=1

`
1

k2 =
p2

12B
.

Suppose thats.0 andm,n. Let us estimate the derivative ofXssdmn. Using s29d one finds
that

Sgmssd
gnssd

D8
=

gmssd
2gnssdSG8sm+ s+ 1d

Gsm+ s+ 1d
−

G8sn + s+ 1d
Gsn + s+ 1d D

=
gmssd
2gnssdok=0

`
n − m

sk + m+ s+ 1dsk + n + s+ 1d
.

Hence

U d

ds
XssdmnU ø

1

8Bsn − mdS 1

sm+ 1dsn + 1d
+E

1

` dy

sy + mdsy + ndD =
1

8Bsn − mdS 1

sm+ 1dsn + 1d

+
1

n − m
lnS n + 1

m+ 1
DD .

Thus we get, formÞn,

U d

ds
XssdmnU ø

1

8B
S 1

sm+ 1dsn + 1d
+

1

un − muminhm+ 1,n + 1jD . s34d

Let Ẋssd be a Hermitian operator inL2sR+,r drd with the matrix entries dXssdmn/ds. From the

estimates34d we deduce thatẊssd is a Hilbert–Schmidt operator and

iẊssdiHS ø
1

8B
So

m=0

`
1

sm+ 1d2o
n=0

`
1

sn + 1d2D1/2

+
1

8B
S2o

m=0

`
1

sm+ 1d2 o
n=m+1

`
1

sn − md2D1/2

=
s1 +Î2dp2

48B
.

Furthermore, since estimates34d is uniform in s one can apply the Lebesgue dominated conver-
gence theorem to conclude that

lim
«→0

I1

«
sXss+ «d − Xssdd − ẊssdI

HS
= 0.

Hence the derivative of the operator-valued functionXssd exists in the operator norm and equals

Ẋssd. h

The matrix entries of the operatorQtssd defined ins7d equal

kwms0d,Qtssdwns0dl = ieitsvmssd−vnssddkwmssd,ẇnssdl.

Notice that the both operatorsVssd andWssd=V8ssd are diagonal in the basishwns0dj and there-
fore they commute.

Lemma 10:It holds true that
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IE
0

s

QtsudduI ø S1 +
1 +Î2

8
usuD p2

6Bt
.

Proof: Suppose thats.0. The integral can be rewritten as follows:

E
0

s

Qtsuddu = iE
0

s

eitVsudfWsud,Xsudge−itVsud du

=
1

t
E

0

s

sseitVsudd8Xsude−itVsud + eitVsudXsudse−itVsudd8ddu

=
1

t
E

0

s

sseitVsudXsude−itVsudd8 − eitVsudẊsude−itVsudddu.

Consequently,

E
0

s

Qtsuddu =
1

tSeitVssdXssde−itVssd − Xs0d −E
0

s

eitVsudẊsude−itVsud duD .

More precisely, the derivation of this equality was rather formal but it becomes rigorous when
sandwiching the both sides with the scalar productkwms0d , ·wns0dl. This is to say that the both
sides have the same matrix entries in the basishwns0dj. But since the equality concerns bounded
operators it holds true.

Using Lemma 9 one arrives at the estimate

IE
0

s

QtsudduI ø
1

tSiXssdi + iXs0di +E
0

s

iẊsudiduD ø
p2

Bt
S1

6
+

1 +Î2

48
sD .

The lemma is proven. h

We can now show that the adiabatic propagatorUADss,0d fsees4dg is close to the propagator
Utss,0d=UADss,0dCss,0d defined ins5d provided the adiabatic parametert is large.

Proposition 11:It holds true that

iUtss,0d − UADss,0di ø MssdeusuMssd p

3Bt
,

where

Mssd =
p

2
+ 12usu +

1

2
usus1 + usuds3+usud/2. s35d

Proof: According to Lemma 6,iQssdiøMssd, and from Lemma 10 one easily deduces that

IE
0

s

QtsudduI ø
p

3Bt
Mssd.

Using formulas5d one can estimate

iUtss,0d − UADss,0di = iCss,0d − Ii ø o
n=1

` E
0

usu

ds1¯E
0

sn−2

dsn−1iQtss1di¯iQtssn−1di

3 IE
0

sn−1

dsn QtssndI ø
p

3Bt
o
n=1

`

MssdnE
0

usu

ds1¯E
0

sn−2

dsn−1
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=
p

3Bt
o
n=1

`

Mssdn usun−1

sn − 1d!
.

The proposition is proven. h

VI. THE GENERAL DEPENDENCE ON TIME

Here we show that the adiabatic theorem extends to Hamiltonians of the form

Hzssd = Hszssdd

where Hssd is defined ins1d and z[C2sRd is a real-valued function. In order to simplify the
discussion and to avoid considering discontinuitiesfrecall thatQssd is discontinuous ats=0g we
shall further assume thatz8ssd.0 andzs0d=0.

Set

Vzssd = Vszssdd, Wzssd = Wszssdd, Vzssd =E
0

s

Wzsuddu.

Let Czss,s0d be the propagator related via the Dyson formula to the Hamiltonian −Qt
zssd, where

Qt
zssd = expsitVzssddQzssdexps− itVzssdd, Qzssd = z8ssdQszssdd.

Exactly in the same way as in the proof of Proposition 7 one can show that the propagator

Ut
zss,s0d = Vzssdexps− itVzssddCzss,s0dexpsitVzss0ddVzss0d−1

is weakly associated to the HamiltonianHzssd. The adiabatic propagator now reads

UAD
z ss,s0d = Vzssdexps− itsVzssd − Vzss0dddVzss0d−1.

Proposition 12: Assume thatz[C2sRd, z8ssd.0 and zs0d=0. Then there exists a locally
bounded function mzssd such that

∀s[ R, iUt
zss,0d − UAD

z ss,0di ø
mzssd
Bt

.

Proof: Suppose for definiteness thats.0. Recall thatiQssd i øMssd whereMssd was defined
in s35d. The operator-valued function

Xzssd = z8ssdXszssdd,

with Xssd being defined ins32d and s33d, satisfies the commutation equation

Qzssd = ifWzssd,Xzssdg.

Quite analogously as in the proof of Lemma 10 one derives the estimate

IE
0

s

Qt
zsudduI ø

1

tSiXzssdi + iXzs0di +E
0

s

iẊzsudiduD .

In virtue of Lemma 9 we have

iXzssdi ø
p2

12B
z8ssd

and
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E
0

s

iẊzsudidu ø
p2

12B
E

0

s

uz9sududu +
s1 +Î2dp2

48B
E

0

s

z8sud2 du.

Hence

IE
0

s

Qt
zsudduI ø

qzssd
Bt

,

where

qzssd =
p2

12Sz8s0d + sup
0øuøs

z8sud +E
0

s

uz9sududu +
1 +Î2

4
E

0

s

z8sud2 duD .

Finally one can proceed similarly as in the proof of Proposition 11 to derive the estimate

iUt
zss,0d − UAD

z ss,0di = iCzss,0d − Ii ø expSE
0

zssd

MsvddvDqzssd
Bt

.

This completes the proof.
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APPENDIX: PROPAGATOR WEAKLY ASSOCIATED TO A HAMILTONIAN

By a propagatorUst ,sd we mean a family of unitary operators in a separable Hilbert spaceH
depending ont, s[R which satisfies the following conditions:

sid Ust ,sd is strongly continuous jointly int, s,
sii d the Chapman–Kolmogorov equality is satisfied, i.e.,

∀t,s,r [ R, Ust,rdUsr,sd = Ust,sd.

Let Hstd, t[R, be a family of self-adjoint operators inH. The domain may depend ont. The
standard way how one relates a propagatorUst ,sd to Hstd is based on the following two require-
ments:

sid ∀t ,s[R , Ust ,sdsDomHssdd=DomHstd,
sii d ∀c[DomHssd , ∀ t[R , i]tUst ,sdc=HstdUst ,sdc.

Clearly, if a propagator exists then it is unique. In some situations, however, these require-
ments may turn out to be unnecessarily strong. In particular this is true for the model studied in the
current paper. The heart of the problem is illustrated on the following example.

Let Astd be a family of bounded Hermitian operators inH which is uniformly bounded. Then
the propagator exits and is given by the Dyson formula. Let us call itCst ,sd. Let D,H be a dense
linear subspace, and letTstd be a strongly continuous family of unitary operators such thatD is
invariant with respect toTstd and for everyc[D there exists the derivative]tTstdc. Furthermore,

suppose thatXstd= iṪstdTstd−1, with DomXstd=D, is a self-adjoint operator for allt sthe dot
designates the derivatived. A formal computation gives
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Tstds− i]t + AstddTstd−1 = − i]t + Xstd + TstdAstdTstd−1.

If Cst ,sd preserved the domainD then the propagatorTstdCst ,sdTssd−1 would solve the
Schrödinger equation forXstd+TstdAstdTstd−1 on D. Thus it is natural to associate it to this family
of self-adjoint operators. The hypothesis onCst ,sd need not be, however, satisfied sinceAstd is an
arbitrary family of bounded operators and soCst ,sd will in general not preserve this domain.

In this appendix we propose a way how to associate a propagator to a given time-dependent
Hamiltonian in a weak sense. This association is more general than the standard oneswhich
supposes a constant domain and solving the Schrödinger equation in the strong sensed and it is still
uniquesi.e., there is at most one propagator weakly associated to a given time-dependent Hamil-
toniand.

Here we develop this approach only to an extent which makes it possible to apply these ideas
to the studied model with a time-dependent Aharonov–Bohm flux. In particular, the described
example is covered by Proposition A.4 below.

Let X be a Banach space. We shall say that a vector-valued functionf :R→X is absolutely
continuous onR if it is absolutely continuous on every compact intervalI ,R. By the symbol

AC̃sR ,Xd sor just AC̃ if there is no danger of misunderstandingd we shall denote the space of all
absolutely continuous vector-valued functionsfstd such that the derivativef8std exists almost
everywhere onR. In such a case the functionif8stdi is locally integrable andfstd= fs0d
+e0

t f8ssdds sRef. 10 Theorem 3.8.6d. If the Banach spaceX has the Radon–Nikodym property then

the spaceAC̃sR ,Xd coincides with the space of absolutely continuous vector-valued functions
ACsR ,Xd. Let us recall thatX is said to have the Radon–Nikodym property if the fundamental
theorem of calculus holds, i.e., if any absolutely continuous function is the antiderivative of a
Bochner integrable function. For example, separable Hilbert spaces are known to have the Radon–
Nikodym property.7

Clearly, if f ,g[ACsR ,Hd then the functionkfstd ,gstdl is absolutely continuous and

]tkfstd,gstdl = kf8std,gstdl + kfstd,g8stdl a.e.

Similarly, if A[AC̃sR ,BsHdd and f [ACsR ,Hd thenAstdfstd[ACsR ,Hd and

]tAstdfstd = Ȧstdfstd + Astdf8std a.e.

Let hekj be an orthonormal basis inH. A vector-valued functionfstd=ohkstdek belongs to
ACsR ,Hd if and only if the following two conditions are satisfied:

sid ∃a[R such thatokuhksadu2,`,
sii d ∀k, hk[AC, andsokuhk8stdu

2d1/2[Lloc
1 sRd.

From here one easily derives the following criterionfalternatively, one can again consultsRef.
10, Theorem 3.8.6dg.

Lemma A.1:A vector-valued function f:R→H belongs to ACsR ,Hd if and only if the fol-
lowing two conditions are satisfied:

sid there exists a total setT,H such that for allc[T, kc , fstdl is absolutely continuous,
sii d the derivative f8std exists almost everywhere andif8stdi[Lloc

1 sRd.

Set K=L2sR ,H ,dtd. Let us recall that to every propagatorUst ,sd on H one can relate a
unique self-adjoint operatorK in K which is the generator of the one-parameter group of unitary
operators exps−isKd, s[R, defined by11

se−isKfdstd = Ust,t − sdfst − sd.

K is called the quasienergy operator. Equivalently,
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K = Us− i]tdU* , whereU =E
R

%

Ust,0ddt. sA1d

So f [DomK if and only if Ust ,0d−1fstd[Doms−i]td which means thatf [L2, Ust ,0d−1fstd[AC
and sUst ,0d−1fstdd8[L2.

FromsA1d one concludes that the spectrum ofK is purely absolutely continuous and coincides
with R. So the kernel ofK is always trivial. It seems to be natural, however, to introduce a
generalized kernel ofK, called Ker0 K, as follows:

Ker0 K = hf [ Lloc
2 sR,H,dtd; ∀ h [ C0

`sRd, hf [ DomK andKshfd = − ih8fj.

SinceK can be very roughly imagined as the formal operator −i]t+Hstd the elements of Ker0 K
can be regarded as solutions of the Schrödinger equation in a weak sense.

Proposition A.2:Let Ust ,sd be a propagator and let K be the quasienergy operator associated
to it. Then it holds

Ker0 K = hUst,0dc;c [ Hj.

Proof: If fstd=Ust ,0dc, with c[H, andh[C0
`sRd then, inK, there exists the derivative

Ui
d

ds
se−isKhfdstdU

s=0
= Ui

d

ds
shst − sdUst,0dcdU

s=0
= − ih8stdfstd.

Hence, by the Stone theorem,hf [DomK andKshfd=−ih8f.
Conversely, suppose thatf [Ker0 K and setgstd=Ust ,0d−1fstd. Let h be a test function. From

sA1d one deduces thathg[Doms−i]td and

]tshstdgstdd = h8stdgstd a.e.

Since h[C0
`sRd is arbitrary this implies thatgstd[ACsR ,Hd and g8std=0a.e. Consequently,

gstd=c[H is a constant vector-valued function andfstd=Ust ,0dc. h

It is known that the correspondence between the propagators and the quasienergy operators is
one-to-onefRef. 11, Remarks1d on p. 321g. On the one hand, by the very definition,K is
unambiguously determined byUst ,sd. On the other hand, ifUst ,sd andU1st ,sd are two propaga-
tors with equal quasienergy operators,K=K1, thenUst ,sd=U1st ,sd. This uniqueness result is also
a straightforward corollary of Proposition A.2. Actually, Proposition A.2 implies that for every
c[H there existsc1[H such thatUst ,0dc=U1st ,0dc1 for all t swe use the strong continuity of
the propagatorsd. By settingt=0 one finds thatc=c1. HenceUst ,0dc=U1st ,0dc for all c[H.
Consequently,

Ust,sd = Ust,0dUss,0d−1 = U1st,0dU1ss,0d−1 = U1st,sd.

For a family of self-adjoint operatorsHstd, t[R, set H=eR
%Hstddt. This means thatf [K

belongs to DomH if and only if fstd[DomHstda.e. andiHstdfstdi[L2sR ,dtd. Then H is a
self-adjoint operator inK. In what follows we shall always suppose that the intersection
Doms−i]tdùDomH is dense inK. For example, this is true in the case when the domain
DomHstd is independent oft. Consequently, −i]t+H is a densely defined symmetric operator.

Definition A.3: We shall say that a propagator Ust ,sd is weakly associated toHstd if

K = − i]t + H. sA2d

Notice that equalitysA2d is equivalent to the following two conditions:

sid −i]t+H,K,
sii d −i]t+H is essentially self-adjoint.
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Furthermore, it is important to note that this definition still guarantees the uniqueness, i.e., to
Hstd one can weakly associate at most one propagatorUst ,sd. Actually, if Ust ,sd andU1st ,sd are
weakly associated toHstd then K=K1 according to equalitysA2d. But due to the one-to-one
correspondence between the propagators and the quasienergy operators we haveUst ,sd=U1st ,sd.

Now we are ready to formulate and prove two propositions which are directly applicable to
the model studied in this paper.

Proposition A.4:Let Astd be a family of bounded self-adjoint operators inH which is locally
bounded. Let Cst ,sd be the propagator associated to Astd via the Dyson formula. Let D,H be a
dense linear subspace and let Tstd be a strongly continuous family of unitary operators inH
obeying the following conditions:

sid ∀t[R, TstdD=D,
sii d ∀c[D, Tstdc is continuously differentiable,

siii d ∀t[R, Xstd= iṪstdTstd−1, with DomXstd=D, is a self-adjoint operator.

Then the propagator TstdCst ,sdTssd−1 is weakly associated to the family

Xstd + TstdAstdTstd−1.

Proof: Set

Ystd = Xstd + TstdAstdTstd−1, Y =E
R

%

Ystddt, T =E
R

%

Tstddt.

Let KY be the quasienergy operator associated to the propagatorTstdCst ,sdTssd−1. Set

Cstd = Cst,0d, C =E
R

%

Cstddt.

Cstd is a family of unitary operators which satisfiesCstd[AC̃sR ,BsHdd andAstd= iĊstdCstd−1.
sid Let us verify that

− i]t + Y , KY = TCs− i]tdC−1T−1.

Suppose that a vector-valued functionf :R→H belongs to Doms−i]t+Yd. This happens if and
only if f obeys the following conditions:f [L2, f [AC, f8[L2, fstd[D a.e. andYstdfstd[L2. In
that case the functionTstd−1fstd is differentiable almost everywhere and the derivative

sTstd−1fstdd8 = Tstd−1sf8std + iXstdfstdd

is square integrable. Moreover, ifc[D then the functionkc ,Tstd−1fstdl=kTstdc , fstdl is abso-
lutely continuous. According to Lemma A.1 this implies thatTstd−1fstd[ACsR ,Hd and conse-
quentlyCstd−1Tstd−1fstd[AC as well. Furthermore, a straightforward computation yields

Ystdfstd = isṪstdTstd−1fstd + TstdĊstdCstd−1Tstd−1fstdd

=isTstdCstdd8Cstd−1Tstd−1fstd

=i f 8std − iTstdCstdsCstd−1Tstd−1fstdd8.

HencesCstd−1Tstd−1fstdd8[L2, f [DomKY and −i f 8std+Ystdfstd=KYfstd.
sii d Let us verify that −i]t+Y is essentially self-adjoint. Suppose thatg[Doms−i]t+Yd*

satisfiess−i]t+Yd*g=zg with ImszdÞ0. This means that

053303-23 Adiabatic analysis of the Landau Hamiltonian J. Math. Phys. 46, 053303 ~2005!

Downloaded 15 Sep 2005 to 139.124.7.126. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



∀ f [ Doms− i]t + Yd, ks− i]t + Ydf,glK = zkf,glK.

Choosefstd=hstdTstdc wherec[D andh[C0
`sRd is real valued. Thenf [Doms−i]t+Yd and an

easy computation shows that

s− i]t + Ydfstd = − ih8stdTstdc + hstdTstdAstdc.

Hence for allh[C0
`sRd we have

E
R

sih8stdkTstdc,gstdl + hstdkTstdAstdc,gstdlddt = zE
R

hstdkTstdc,gstdldt.

Setting

Fstd = kTstdc,gstdl, Gstd = kTstdAstdc,gstdl,

we find that

− i]tFstd + Gstd = zFstd sA3d

in the sense of distributions. Since bothFstd andGstd are locally integrable, a standard result from
the theory of distributions tells us thatFstd is absolutely continuous and equalitysA3d holds true
in the usual sense. Moreover, equalitysA3d implies that

]tse2 ImszdtuFstdu2d = 2e2 Imszdt ImsFstdGstdd.

Let us now choose an orthonormal basishckj whose elements all belong to the domainD. Let
us writeFk instead ofF andGk instead ofG when replacingc by ck. We have derived the equality

uFkstdu2 = e−2 Imszdst−aduFksadu2 + 2E
a

t

e−2 Imszdst−sd ImsFkssdGkssddds sA4d

which is valid for allk and alla, t[R. Observe that

o
k

uFkstdu2 = igstdi2 a.e.,

o
k

uFkssduuGkssdu ø igssdiiAssdTssd−1gssdi [ Lloc
1 sR,dsd a.e.,

and

o
k

FkssdGkssd = kgssd,TssdAssdTssd−1gssdl [ R a.e.

Summing ink in equality sA4d we find that

igstdi = e−Imszdst−adigsadi

for almost alla, t[R. Sinceigstdi is square integrable this is possible only ifgstd=0 a.e. h

Proposition A.4 has a corollary justifying the adverb “weakly” in Definition A.3.
Corollary A.5: Assume that a propagator Ust ,t0d is associated as a strong solution of the

Schrödinger equation to a time-dependent Hamiltonian Hstd which has, however, a time-
independent domain (i.e., the relationship between the propagator and the Hamiltonian is the
usual one). Then Ust ,t0d is weakly associated to Hstd.

Proof: In Proposition A.4 it suffices to setD=DomHs0d, Tstd=Ust ,0d and Astd=0. Then
Xstd=Hstd, Cst ,sd=I, andTstdCst ,sdTssd−1=Ust ,sd. h

Proposition A.6:Suppose that Vstd, t[R, is a family of unitary operators which is continu-
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ously differentiable in the strong sense. Let H˜ std, t[R, be a family of self-adjoint operators such

that Dom H̃std=D for all t [R. Set

Hstd = VstdH̃stdVstd−1 + iV̇stdVstd−1.

If the propagator Ũst ,sd is weakly associated to H˜ std then the propagator Ust ,sd
=VstdŨst ,sdVssd−1 is weakly associated to Hstd.

Proof: Set

Ũstd = Ũst,0d, Ũ =E
R

%

Ũstddt, V =E
R

%

Vstddt.

By the assumption,Ũs−i]tdŨ−1=−i]t+H̃. We must show that

VŨs− i]tdŨ−1V−1 = − i]t + H.

Since

VŨs− i]tdŨ−1V−1 = Vs− i]t + H̃dV−1 = Vs− i]t + H̃dV−1

it is sufficient to verify that

Vs− i]t + H̃dV−1 = − i]t + H.

This would also imply that Doms−i]tdùDomsHd is dense inK.

A vector-valued functionf :R→H belongs to DomsVs−i]t+H̃dV−1d if and only if it satisfies
the following conditions: f [L2, Vstd−1fstd[AC, sVstd−1fstdd8[L2, Vstd−1fstd[D a.e. and

H̃stdVstd−1fstd[L2. Let us note that from the continuous differentiability ofVstd in the strong

sense and from the uniform boundedness principle it follows thatV̇std, t[R, is a family of
bounded operators which is locally bounded. Furthermore,Vstd* =Vstd−1 is continuously differen-
tiable in the strong sense as well andVstd−1c[AC for all c[H. Suppose thatf [L2. If
Vstd−1fstd[AC then f8std exists almost everywhere andif8stdi is locally integrable, the function
kc , fstdl=kVstd−1c ,Vstd−1fstdl is absolutely continuous for allc[H and therefore, by Lemma
A.1, fstd[AC. Similarly, the converse is also true. Iffstd[AC thenVstd−1fstd[AC.

Using these facts and the relation betweenH̃std and Hstd fincluding that DomHstd=VstdDg
one easily finds that the domains ofVs−i]t+H̃dV−1 and −i]t+H coincide and that

Vstds− i]t + H̃stddVstd−1fstd = − i f 8std + Hstdfstd

for every f [Doms−i]t+Hd. h

Remark: Proposition A.6 can be easily extended to the case when the family of unitary
operatorsVstd is continuous and piecewise continuously differentiable in the strong sense and in
each point of discontinuity there exist the limits of the derivative both from the left and from the
right.
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