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We study the dynamics of a quantum particle moving in a plane under the influence
of a constant magnetic field and driven by a slowly time-dependent singular flux
tube through a puncture. The known standard adiabatic results do not cover directly
these models as the Hamiltonian has time-dependent domain. We give a meaning to
the propagator and prove an adiabatic theorem. To this end we introduce and
develop the new notion of a propagator weakly associated to a time-dependent
Hamiltonian. ©2005 American Institute of PhysiddDOIl: 10.1063/1.1895865

I. INTRODUCTION

The model under consideration originates from Laughlfrésd Halperin'$ discussion of the
integer quantum Hall effect. In the mathematical physics literature Bellisstaadl® and Avron
et al® used an adiabatic limit of the modelith additional randomnesso introduce indices. The
indices explain the quantization of charge transport observed in the exper%ents.

In this paper we discuss some mathematical aspects of the existence of the propagator and the
validity of the adiabatic approximation and propose how to overcome the difficulties originating
from the strong singularity of the external field.

Let us specify the model, summarize our results and introduce the notation. The configuration
space i2%\{(0,0)} and the model is considered in polar coordingte®). The vector potentiah
is the sum of a part for the homogeneous magnetic field of stré®igth,

2

B Br
E(Xl dX2 - X2 Xm) = 7d6,

plus a part describing the fluk which varies in time,
1 b
— —=(Xq dX, = X, dXq) = —d6;
27T|)?|2( 10X = X5 dXq) o
the real-valued functiomp is assumed to be monotonous a@@ With the metric coefficients

g11=1, 9=r?% 0:,=0, the differential expression of the Hamiltonian acting if(R,
X[0,2a(,r dr d6) is

1/( . e F-( , e ) h2< 1 1< _ eBr? e )2>
—|-ifig; = =A Nag¥| —ihd— A = —=| = =ard + S| —idg— —— - —P| |.
Zm(I J C]>\ggl = A = o\ T 2\ T 5 T e
Our purpose is to study the response of the system if flux queritaare added adiabatically, i.e.,
the flux function is of the form— ®(t/7) with the timet varying in[0, 7] for somer>1.
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In a first step we analyze the case whkns linear. Furthermore, we fix an angular momen-
tum sector defined by id,€M’=meé™ (meZ), and use a slow time, i.e., the substitution
s=—m+e/(hc)®(t/ 7). Also we are not interested here in keeping track of the behavior in the
physical parameters 7, ¢, 2m, so we set them all equal to one. This is our motivation to consider
the operator

1 1 Br?\2
H(s)=— F&rr&r + ﬁ<5+ 7) in LAR,,r dr). 1)

In a second step we shall then show that our analysis generalizes to Hamiltonians of the form
H(Z(s)) whereZ € C? is a monotone function.

H(s) is essentially self-adjoint 08(]0,[) iff s2=1." For 0<s?<1 we impose the regular
boundary condition as— 0+ [i.e., a wave function belongs to the domain if it has no part
proportional to thesquare integrabjesingularity r1]. This is in fact the most common choice,
see Ref. 8 for a detailed discussion. The css@ is particular since the singularity in question is
logarithmic but otherwise the situation is similar, see Ref. 1. The Hamiltddi@his unambigu-
ously determined by specifying a complete set of eigenfunctions with corresponding eigenvalues,
see below.

The dynamics of the model should be defined by

10U (s,50)¢ = H(U (5,504, U0, S ¥ =¥, 2
whereU . is unitary andy is an arbitrary initial condition from the domain bf(sy). The existence
of a propagator in this sense is, however, uncertain. The problem arises from the fact that the

domain ofH(s) is not constant irs, respectively, thaH(s) is not relatively bounded with respect
to H(s). Thus the usual theorems which assure the existence of the proﬁ&gm:bthe validity of
the adiabatic approximatiéﬁ are not directly applicable.

A convenient way to see this is to consider the eigenfunctions. The opétedonas a simple
discrete spectrum; the eigenvalues are

M(s)=B(s+|g+2n+1), ne{0,1,2,..}, 3)
with the corresponding normalized eigenfunctions

Br? Br?
PACHE cn(s)rsLﬂS“(?) exp(— T) ,

where

. <E>(S+M( onl )1/2
&S ={3 I(n+|s/+1)

are the normalization constants ahﬁf‘) are the generalized Laguerre polynomiadse, for ex-
ample, Ref. 8
The derivative ofH(s) equals

: 2s
H(s) = zt B.

Notice that if|s| <1 theng,(s) cannot belong to the domain DdH(s) sinceH(s)<pn(s) ~ =24l for

r —0+. This means that(s) is not relatively bounded with respect kt(s).
Remark that, on the other hand, the quadratic expression

Downloaded 15 Sep 2005 to 139.124.7.126. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



053303-3 Adiabatic analysis of the Landau Hamiltonian J. Math. Phys. 46, 053303 (2005)

f (S DH(S) @n(sir)r dr
0
makes good sense. In order to avoid a complicated notation we shall denote it by the symbol

<gom(S),H(S)gDn(S)> even though the symbol cannot be taken literally and is therefore somewhat
misleading. Furthermore, the derivative of the eigenfunctiggs), belongs td_(R,,r dr). Since
the eigenfunctions are chosen to be real valued it holds true that

(@n(s),¢n(s))=0.

Let us also note that, similarly, ifs|<1 ands?+#s'? then the eigenfunctiorp,(s) cannot
belong to DonH(s'). It is so becausgas formal expressiondH(s')—H(s)=(s'2-s?)/r?+B(s’'
-s) andH(s') ¢, (s;r) has a nonintegrable singularity et 0. Hence DonH(s) depends ors.

It turns out that, following the strategy of Born and Fdcthe problems of existence and
adiabatic approximation can both be handled.

Denote the eigenprojector ontiw,(s) by P,(s); it is differentiable as a bounded operator. The
hard part of our work consists in showing that

i >, P()Py(S)
k=0

is a bounded operator. This is stated in Lemma 6. It requires work because its matrix elements
have bad off-diagonal decay, see Lemmadwhich is formulated for the unitarily equivalent

operatorQ).
Now

Hap(9:=H(9) + - PL(Py(9)
Th=0

has a propagator which is well defined in the usual way, i.e.,

198Unp(S,S0) = THap(S)Uap(S,%0) ¥, Uap(S,S0) ¥ = ¥, (4)
for y€Dom(Hap(Sp)). To see this notice thdl 5 can be computed by its action on the eigenba-

sis,
Uan(S.S0)¢n(So) = €775 (s)
Furthermore\,(s)—\,(0) is bounded im and so
Uap(S,So)DomHp(sp) = DomHaR(S).

Since H(s)—Hpp(s) is bounded the domains dfi(s) and Hap(s) are identical. By time-
dependent transformation a natural candidate for the propagatéfspis

U’T‘(S’ SO):: UAD(S! O)C(S! SO)UAD(OISO)i (5)
whereC(s,sy) is defined by
195C(s,59) =~ QA9)C(s,%), Clsp, ) =1, (6)
with
Q.(9):= UAD(o,s)<i2 Py(9) Pk(s))uAD(s, 0). (7)
k=0

Since||Q,(s)| is locally bounded the propagat@Xs,s,) is well defined by the Dyson formula.
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The adiabatic approximation problem is settled in Proposition 11 where it is shown that

1
1050 - Usols 0l =0[ 2).

It remains unclear, however, whethéss,s;) preserves the domain ¢i(0) and therefore
whether the propagatds (s,sy) is actually related to the Hamiltonidt(s) in the usual sense. To
handle this problem we develop the general concept of weak association of a propagator and a
time-dependent Hamiltonian. We can show thhtis weakly associated téi(s) and that the
Schradinger equatiof®?) is fulfilled in the sense of distributions.

We shall use the following notation. The symbé(s) stands for the unitary operator which
sends all eigenstates at time 0 to the corresponding eigenstates af time

V(s) ‘Pn(O) = QDn(S) OneZ, (8

(here and everywhere in what follows stands for the set of non-negative integeRurther set

[’

W(s) = V(S) H(S)V(S) = 2 Ny(S)Py(0) (9)
n=0
and
Q) = X wy(9)Py(0), (10
n=0
where

S
wn(9) :j An(u)du.
0
Remark that the adiabatic propagator decomposes as

Unap(s,5) = V()e™ ¥ @)v(5) 7

The paper is organized as follows. In Secs. Il and 11l we do the analysis necessary to prove the
boundedness result stated in Lemma 6. Section |V is devoted to the existence problem for the
propagator. In Sec. V we prove the adiabatic theorem in Proposition 11. The result is then ex-
tended to a more general time dependence in Sec. VI.

A rather independent part of the paper is the Appendix where we propose the notion of a
propagator weakly associated to a time-dependent Hamiltonian. We indicate cases where the weak
association can be verified while the usual relationship between a propagator and a Hamiltonian is
unclear or even is not valid. In particular, this concept was inspired by the situation we encoun-
tered in the present model. We believe, however, that this idea need not be restricted to this case
only and that it might turn out to be useful in resolving this type of difficulties in other models as
well.

Il. AUXILIARY ESTIMATES OF MATRIX OPERATORS

Here we derive some auxiliary estimates that will be useful later when verifying assumptions
of the adiabatic theorem.

Lemma 1:Let Alo) be an operator in4(N) depending on a parameter=0 whose matrix
entries in the standard basis equal
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0 for m=n,
A(O')mn: _ri_1 )0 form<n,
L(L2)7  form>n.

m
n

Then Ao) is bounded, uniformly irr, and its norm satisfies the estimate

[A(0)]| < 24.

Proof: The proof will be done in several steps.
(i) Let K(o) be an integral operator acting irf(R,,dx) with the integral kernel

o [

)i-((f)" for x >y.

Let us show that

2
20+1°

IK(a)] =
First we apply the unitary transform
U:L%(R,,dx) — LA(R,dy), Uiy) =e"2y(e). (11
The inverse transform readisy(x) =x"*2(In x). Set
K(0) = UK(o)U™.
One finds thak (o) is again an integral operator with the integral kernel
Ko(y.2) =i sgriy - 2)e /272,

HenceR(o) is a convolution operator and it is therefore diagonalizable with the aid of the Fourier
transformF on R. This means that

(FK(o)F1)(2) =42 2),

where
4(2) = J g7y Sgr(y)e—(ml/z)\y\ dy = L '
! (o+1)7+2
It follows that
K 1 — A 1
”K(U')” = ”]:K(O')f_ || = ||q||OC = 1 (12

2

(i) Suppose thafy}, is an orthogonal system i?(R,,dx) such that
Dmvn € JN, <¢m1K(U) ¢n> = A(O')mn
and

OneN, |[°=«x>0.

Let P, be the orthogonal projector onto spdut.}, in L%(R,,dx). Then one can identify
P.K(o)P, with K A(o). Hence
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1A = k|PLK ()Pl < K (o). (13)

(iii) We shall construct an orthogonal systdm,},.-, described in the preceding point as
follows. Consider the natural embedding?®([n,n+1],dx) CL%(R,,dx), nEN. We seek
U €L2([n,n+1],dx) in the form

U= apUn + Bron + fr,
wherea,, B,ER, Uy, v, fo€LA([N,n+1],dx),

Uy(X) =%, v, =x"1 forxe[nn+1],

andf, Lu, f,Lv, Suppose for definiteness that<n. Then

m+1 n+l
(hm K(0) ) = f de dy /o (%,Y) n(X) hn(Y) = = I{Uppy YV, ) -

Furthermore,

n+l n+1
(U K(0) ) = f f Ko(,Y)¢n(X) ¢n(y)dx dy = 0

since K ,(x,y) is antisymmetric K (y,X)=-K,(X,y). Consequently, it suffices to choose the real
coefficientsa,, B, so that
Dn € N,<un1 ‘pn) = nO" <Unv ’ﬂn) = n_lT_l_

This system has a unique solutita,, 3,,). The functionf, can be arbitrary. Its only purpose is to
adjust the norms of the functiong, so that they are all equal. Set

n+l

Np(o) = ”anun + ,ann”2 = f (apX” + an_g_l)z dx

n

and
k(o) = supN,(o).
neN

One can choose the orthogonal systef -, so that|i,|>= (o) for all n. According to(12) and
(13) we have

2x(0)
20+ 1°

IA(0)]| < (14

(iv) It remains to find an upper bound aiio). Set
&=n7%, = no L,

Simple algebraic manipulations yield

(Unavn>§ﬁ - 2<Unrvn>§n7]n + <Uni un) ﬂﬁ

Nn(0) = (Un, UnX(vn,0p) = (Un,0p)?

Here

(Up,up) = In(l + }) ,
n
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1
- 20+1 _ ~20+1
(Un, Up) 20+1((n+1) n“o),
1 —20-1 -20-1
(Onow = 5= (727 = (n+ )77,
Set
1 1
w=|lo+=]|In{1+-].
2 n

One can rewrite the expression fidy(o) as follows:

20 + 1sinh(w)coshw) —w

n sink(w) — w?

Using an elementary analysis one can show that

Np(o) =

sinh(w)coshiw) —w _ sinh(w)coshiw) —w
sinff(w) —w?  sinh(w)(sinh(w) —w)

< 4 cotghw).

Hence
1 20+1
(1 + —) +1
420 +1) n
No(o) < — J\ee <1220+ 1)
(1 + —) -1
n
Consequently,
k(o) <1220 +1). (15)
From (14) and (15) it follows that ||A(o)|| < 24. O
Lemma 2:Let Alo) be an operator in4(N) whose matrix entries in the standard basis equal
0 for m=n,
A(O')mn_ - #frr(%) form<n,
L (%) form>n,
where
1_ e
fo(u) = , ueloq,
1-u

and o €[0,1] is a parameter. Then (&) is bounded and its norm satisfies the estimate

—_

2
[A(o)|| < (% + 4) 0.

Proof: The proof will be done in several steps.
(i) Let K(o) be an integral operator acting irf(R,,dx) with the integral kernel

Ko(x,y) = {
L, (Y)  forx>y.

Let us show that
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|K(0)|| < 7o (16

This step is quite analogous to the proof of pointin Lemma 1. First we apply the unitary
transformU defined in(11). Set

K(o) = UK(o)U ™.

One finds thafi(a) is again an integral operator with the integral kernel,

ko’(y: 2)=isgry- z)f(r(e—ly—ZI)e—ly—z|/2.

Thusk(a) is a convolution operator which is diagonalizable with the aid of the Fourier transform
F on R. This means that7K(o)F 4)(2)=0(2)y(2) where

8@ = | e¥sgny)f,(eMe2dy.
R

A standard estimate yields

© — o

ay
§(2)| <2 V2 gy < f — Y dy= 2.
6@ = L R Al Wpeermvr Tt

It follows that

IK(0)] = |7K () F Y| = |fil.. < 7o
(i) Let x,(x) be the characteristic function of the interndal,n+1[. The linear mapping

[

JI2(N) — L2(R,, dX):{&} = > énxn

n=1
is an isometry. The adjoint mapping reads
J LR, dx) — PN {Oxn, 0 en-
Set
L(o) = IA(0)J".
L(o) is an integral operator with the kernel
L (x,y) = 2 E A() mpXm(¥) Xn(Y) -
m=1n=1
This can be rewritten as
- wf(5) ifo <<yl
L,xy) =) &t (55)  ifo<[yl<I[x],
0 otherwise.

Here [x] denotes the integer part of Notice thatJ'J is the identity onl?(N) and solL(o)J
=JA(o). Consequently,

1A= [9A()]| =IL(0) ] < [IL(a]. 1

(iii) Denote byl~3n, nEZ,, the orthogonal projector ontdy, in L2(R,,dx). Set
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oo

KM(a) =K(0) = PoK(a) = K(0)Pg + PoK () Py = > PoK(0)P,.

n=1

In other words, we subtract froid(o) the diagonal as well as the first row and the first column
(i.e., with index 0 with respect to the orthogonal systdm},—,. We can say also that the integral
kerneIIC?,ﬁ(x,y) vanishes ifix]=[y] or [x]=0 or[y]=0 and otherwise it coincides witki (x,y).
Since

PoK(@)Pg = 25 P (0)Py|| = sUp[PoK(@)Py| <K ()],
neZ,

n=1
we have
K ()]l < 4K (o). (18

(iv) It remains to estimate the norm of the differericer)—K°™ (o). This is a Hermitian
integral operator whose kernel does not vanish only<f[®] <[y] or 0<[y]<[X]. Suppose for
definiteness that € [x] <[y]. Then the kernel equals, up to the multipligr -

1, (M) _1f0<5) :(i_1)[y]“—[x]“+3<[y]ff—[x]ff_yff—xa).

[yl \lyl) y2\y yl” y7/) [yl-[x]  y’\ [y]-[x] y-x
Let us show that
_1 M)A <>_<><L
0\[y]f"<[y] v \y) = XEI-00) (9

First notice that

1 1 vl _
os——-—=- a-f Z-(r—l dz< U(y UE-/])
y [y]

and so

Og(l g)[y]“—[x]: o

oy - OI-0) (20

Further set temporarily

I e
V-1 y-x

The integrand in the last integral equals

o(1- o) & A(x=[XDA =) +(y=[yDD),
whereé, is a real number lying betwedn](1-t)+[y]t andx(1-t)+yt. Notice that

1
f ((XIQ =0 +[y]D7™ = (x(1 =) + y)“ .
0

0= (x-[xDA-t)+(y-[yDt=1.
We assume that€ o<1. Therefore

[yl =[x]"*

1
0<sD<o(l- U)fo ([X11 -t +[yl)?dt=-0 Iyl - [x]

and so
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0= iD < U[X]U_l < a (21)
yo o yyl =D DXyl - [xD
Inequalities(20) and (21) jointly imply (19).
(v) From estimaté19) one can deduce that(o)—K°™(o) is a Hilbert-Schmidt operator and

22
ILo) =K (@)l =~ o (22)
Actually,
L(o) - K" —Zfdf dylL,(x,y) = K2 (, 2<802fd—r ;
= 80‘2<E E) .
k=1
(vi) Inequalities(17), (18), (16), and(22) imply that
\r2772

A < L(o)]| < K ()] + [IL(0) = K™ (o) < 47°0 +

This shows the lemma. O
Lemma 3:Let Alo) be an operator in4(N) with the matrix entries in the standard basis

Ao = 0 for m=n,
Jmn= L min{()7,(2)°} for m#n.
Then Ao) is bounded for all0< ¢ and its norm satisfies the estimate

—

12
A < m+ (*? + 4) o
Proof: Let us first show that

IAQ)] < 7.

For 0=0 we get

i
A0) = o if m#n.

Considering the natural embeddittgN) C 12(Z) let us denote by, the orthogonal projector onto
I2(N) in 1%(Z). Let B be an operator it?(Z) with the matrix

0 forn=0,

Bnn=q(n—m) whereq(n) = {i_ for n = 0

One can identifyA(0) with P,BP,. B is a convolution operator and therefore it is diagonalizable
by the Fourier transfornf:1%(Z) — L%([0,2x],d6). In more detail,

(FBFY)(0) =§(0)(6) whered(d) = X, q(n)e"’.

nez

One finds thafj(¢) =—=+ 6. Consequently,
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IA)|| = [P.BP.| < [B| =|FBF Y= max [§(6)| = 7.
0€[0,27]

Suppose now that€ m<n. Notice that
i[m\?
(A(a+1) = A(0)mn=~ H(H)

and

m

(A~ A=~ L1, 7).

n

Using Lemma 1 and Lemma 2 one can estimate

IA(@)]| < [AO) + [[Alo = [a]) = AO)| + [|Alo =[] + 1) = Alo = [o])]| + - - +[|A(0) = Alo - 1)
<7+ (ng + 4)772(0'— [o) +24o]< 7+ (LSZ + 4)7720.
This proves the lemma. O

IIl. BOUNDEDNESS OF THE OPERATOR /S  Py(S)Py(S)

We consideliE"k":OPk(s)Pk(s) in the time independent frame, i.e., the oper&¢s) defined by

oo

Q(s) = iV(s>*k2 PUSIP(V(S) = —iV(s) V() =iV(9) V(9). (23)
=0

The operatol(s) is defined in(8). Q(s) is symmetric and its matrix entries in the ba&ig(0)} are

(@m(0),Q(8)¢n(0)) = i{er(S), @n(S))-

Since ¢, (s) depends ors only through the absolute value it holds true tlEts)=-Q(s) for s
# 0. Fors=0 the operator-valued functidQ(s) has a discontinuity. The goal of this section is to
show that the operatdd(s) is in fact bounded.

To compute the matrix entries one can use the identity

o {on(9,H(9¢n(9)
(on(9) () = T O (24)

Let us emphasize once more that the scalar product on the right-hand side should be interpreted as

a quadratic form since, in generag,(s) €« DomH(s). The derivation goes through basically as
usual even though one cannot use the scalar product directly. Differentiating the equation on
eigenvalues one arrives at the equality

H(9)en(S;1) + H(S)@n(SiF) = Na(S) @n(SiT) + N9 n(SiT),

valid for anyr>0, in which one should substitute fbf(s) and H(s) the corresponding formal
differential operators. Next one multiplies the equality iy, (s;r) and integrates the both sides
from & to infinity for somee>0. In the integral

- f em(s; r)arrar(.Pn(S; r)dr

occurring on the left-hand side one integrates twice by parts. Checking the asymptotic behavior of
the eigenfunctions near the origin,
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(|s+1)/2 onl 1/2 < ,
gon(S I’) (2) (m) r (l +O(I’ )) forr — 0+, (25)

one finds that
lim reg(s;r)dren(s;r) = lim r(d on(s;r)en(s;r) =0.
r—0+ r—0+

Hence sending to O actually leads to equalit{24).
Lemma 4:The matrix entries of the operator(§ for s# 0 are given by the formulas

(em(0),Q(S)¢n(0)) =0 form=n,
and

sgris) min{ Yol® 39

2-m ™" () ym<s>} form#n,

(em(0),Q(S)¢n(0)) =

where

(26)
n!

Yn(S) = (—F(n *ld+ ) )1/2.

Proof: Assume thatm<<n and s> 0. Using the explicit expression for the generalized La-
guerre polynomials,

(@) :n _ kn+a>_k
Ly?(9 g( 1)(n_k X,

one finds that

2
(9n(9) FS¢r(9) = 256919 f o[ B )L<s><52f )exp<_5_f)dr

—SCm(S)Cn(S)( ) STIFI!

where

B D _ k+€F(m+s+1)F(n+s+1)F(k+€+s)<m>(n>
Sm’n_gg( Y I'(k+s+1I(€ +s+1)min! k/\e)

In this expression only the summand wkk 0 does not vanish since

n

n\ .
> (- 1)‘(€)€J =0 forj=0,1,..,n-1.
=0

Hence

I(m+s+1)I(n+s+1) X (€ +s) (n)_F(m+s+1)1“(n+5+1)

o= [(s+1)min! E( lﬁ(5+3+1) ) I'(s+ )min! Blsn+1)
_I'(m+s+1)
- sml ’

Furthermore),(s) —\(S)=2B(n-m) and so
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2 )Scm<s>cn(s) L(m+s+1)

(en(0),Q(8)¢1(0)) = i( 5) 2Bm

Now it suffices to plug in the explicit expressions for the normalization consi@g® and
cn(9). O

Using the Stirling formula one can check the asymptotic behavior of the matrix entries of the
operatorQ(s) for m andn large. It turns out that the operat@(s) is in some sense close to a
Hermitian operatoA(s) in L%(R,,r dr) with the matrix entries

(¢m(0),A(8)¢(0)) =0 form=n, (27)
and
~ isgns) . m+1 sl2 ( n+ 1)|s|/2
(em(0),A(8) ¢, (0)) = 2(n_m)mln{( n+1> 71 for m# n. (28

Note thatA(0+)=Q(0+). We shall also writeQ(s),, instead ok ¢,(0),Q(S)¢,(0)), and similarly
for A(s).

Lemma 5:Let A(s) be the Hermitian operator in 4(R,,r dr) defined by relation§27) and
(28). Then @s)—A(s) is a Hilbert—Schmidt operator and it holds true that

|Q(s) = AS)lus = 3[sl(1 + )72,

Proof: Let us suppose for definiteness tisat 0 andm<n. Forx=1 set
)= I'(x+s)
%0 = xT(x)
One can express

m+1
n+1

1 s/2
|Q(S)mn_ A(S)mn| = M|gs(m + 1)1/2 —g{n+ 1)1/2|< ) gs(n+ 1)_1/2

1

1
=%+ 1)‘1’2f gf(m+ 1 +(n=mt)4gi(m+ 1 +(n-mt)|dt.
0

Notice that

g _T'(x+s) T'(X) s
gx) T(x+s T x

Using the well-known formula for the logarithmic derivative of the gamma function,

_m_1+y+2(i_1)’ (29)

Iz z “~\n+z n

one finds that

e _(s_ 1 1) _ [y 1 1)_ (1 ("dy 1) s
gs(x)_s<n§::0(n+x)(n+x+s) x)\s<n§)(n+x)2 x>\s(x2+ < Y x>_x2'

Similarly,
gS(X)sz dy 1 :|n<1+§)—§>—i2.
9s(X) x Yy+s) x x/ x 2

In particular,
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s(s+1)
X2

95| =< 95(X).

From here one derives the estimates, tf@f0, 1],

g(m+1+(n-mt) _ f”” gi(y) ) p(f“”(s (y+8)) )
= - =—dy| = —=In|l—||d
gs(n + 1) ex% m+1+(n—-m)t gs(y) y & m+1 y " y y

1) -(n+1 +s)|n(1 +nTsl>) < (1L+9'*s

s
= ex;((m+ 1 +s)|n<1 +
m+

and

dt

! - 1/2
|Q(S)mn_ A(S)mn| = S(S+ 1) f gS(m +1+ (n m)t)

4gn+ Y2 ), (m+1+(n-mt)?

1
< 1s,(l +s)(3+5)/2f dt :
4 o (M+1+(n-mp)?
Let F(t) be a Hermitian operator ih?(R,,r dr) with the following matrix entries in the basis
{‘Pn(o)}:
F(t)nn=0 form=n
and

F()mn=(M+1+(n-mt)2 for m<n.
ThenF(t) is a Hilbert—-Schmidt operator and

o]

o< S (7 dy 2 1 1
FOlfs=22 X (m+1+(n—m)t)‘4s22J = ==
IF®lls m=0 n=m+1 moJo (M+1+ty)* 3tz (m+1)° t
Hence
1 ! 1
1Q(s) = A(9)lus < Zs(l +5) 92 [F(b)|lysdt < 53(1 +9)39/2,
0
This proves the lemma. O

Combining Lemma 3 and Lemma 5 we deduce that the ope@(®ris actually bounded.
Lemma 6: The operator @s) is bounded and its norm satisfies the estimate

™ 1
[Q(s)]| < E +12s + E|S|(l + |s|)<3+\s\>/2_

Proof: Let A(s) be the Hermitian operator ib*(R,,r dr) defined by relation$27) and (28).
According to Lemma 3 it holds true that

1 V2 ) |s|>
A<\ 7+ | =+4]|7= .
A 2(” (3 >
Lemma 5 leads to the estimate

1 1
Qs = A+ 10t~ Al = 2w (25 2] i ga gy e992).

Since(1+1/(62))72< 12 the lemma follows. O
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IV. THE MEANING OF THE PROPAGATOR U,(s, )

As already discussed in the Introduction the natural propadaia;,s,) defined in(5) is not
related in the standard way to the Hamiltonigti(s) defined in(1). In particular it is not clear if
U (s,s9) maps the domain Doriid(sp) into DomH(s). This is why we propose in the Appendix the
notion of a propagator weakly associated to a Hamiltonian, see Definition A.3. We should like to
emphasize that this relationship is unique, i.e., at most one propagator can be weakly associated to
a Hamiltonian.

In this section we show that ; is weakly associated teH and that(s,r)—U (s, sy) #(r)
satisfies the Schrédinger equation as a distribution foggdt L2(R.,,r dr de).

Proposition 7: The propagator U(s,sy) is weakly associated teH(s).

Proof: Relation(5) means that

U.(s,50) = V(s)e™9C(s,50)€ ™0 V() 2.

So starting fromC(s,s) one can reacld (s,sy) by two consecutive unitary transformations. The
propagatorC(s,sy) was defined in6). It corresponds to the HamiltonianQ(s) defined in(7).
According to Lemma 6 the functidfQ,(s)||=[Q(s)| is locally bounded and thus(s,s) is given
by the Dyson formula, see relatigBl) in Sec. V.

First we apply Proposition A.4 in which we set

A(t) = - Q,(t), D = DomH(0), T(t) = exp(— i 7)(1)),

and

X(t) = (e ™ 0)d 20 = An(t).

We conclude that the propagater “*9C(s,s,)e ™ is weakly associated to
AW(s) - €7™9Q ()€™ = AN(s) — Q(s).

Next we apply Proposition A.6 in which we seﬁ(t):rvv(t)—Q(t) and G(t,s)
=g 0C(t,5) ™, Recall further thaV(t) was defined in Eq(8). We conclude thatl (s, s)
=V(s)U(s,s)V(sp) ! is weakly associated to

MSWEV(S) - V(S)Q(V(S) T +iV(9V(s) 1 = H(9).

The proposition is proven. O
In the studied modeH=L%R,,r dr) and so

K =L3R,H,ds) =LAR X R,,r dsdr).

Let H=[H(s)ds be the direct integral of the family of self-adjoint operatéiés) which is
nothing but a multiplication operator K. Let K, be the quasienergy operator associated to the
propagatoiJ (s,sy) (see Appendix According to Proposition 7 it holds true that

K,=—ids+ 79. (30)

To an initial condition, € H we relate the functiomi(s,r)=(U (s, 0)¢)(r) which is a locally
square integrable function in the variablesand r. We now show thaty(s,r) fulfills the
Schrodinger equation in the space of distributi@n$R X ]0,[). Let us note that for the proof it
suffices to know that s+ 7§ CK, the stronger property E@30) is not necessary.

Proposition 8: For every yyEH, the function (s,r)=(U,s,0)ip)(r) satisfies the
Schrddinger equation in the sense of distributions.

Proof: Let ¢ECJ(RX]0,+x[) be an arbitrary real-valued test function. Sets,r)
=&(s,r)/r. Clearly, ge Dom(-ids+7$) CDomK .. Let [a,b]X[c,d] be a rectangle containing
supp¢ and choosey€ C;(R) so thaty=1 on a neighborhood of the interva, b]. From Propo-
sition A.2 we know thaK (7(s)(s,r))=-i%'(s)¥(s,r). From the choice ofy it follows that
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0=- |<gi 7], llf>lC = <g'K7'( 77'//)>IC = <(_ iL;'S-'- Tﬁ)gv 77'7//>1C
The last term equals

f (ias%g(s,r) + TH(S)%g(s,r)) 7(S) (s, r)r dsdr
RXR,

2\ 2
=f (iasg(s,r)+r(—arra,l+12(s+8—r) )g(s,r)>¢(s,r)dsdr.
RXR, rr 2

This means that
_ 1 1 Br2\?
—1dg(s,r) + 7| — Farra, + 2 S+ > Y(s,r)=0

in the domainR X ]0, +o[ in the sense of distributions. O

V. PROOF OF THE ADIABATIC THEOREM

We follow the strategy explained in the Introduction. The adiabatic propaghgefsee(4)]
and the propagatdd . defined in(5) differ by C defined by(6). SinceQ.(s)=€™®Q(s)e™ ¥,
defined in(7), is unitarily equivalent toQ(s) it is bounded, uniformly ins on every bounded
interval[0,S]. HenceC(s,s) exists and is given by the Dyson formula

- s S Sn-1
Clss) =1+2i"[ ds f dsy - f ds, Q,(s1)Q(s) --Q(sy). (31
So So So

n=1

The task is to estimate the norm of the integral@f This will be done by the integration by
parts technique developed in the following two lemmas.
The first step is to find a bounded differentiable solutis) of the commutation equation

Q(s) =i[W(s),X(s)].
The operatoiV(s) was defined in9). The off-diagonal entries of th¥(s) are determined unam-
biguously,

_ (em(0),Q(S)¢,(0))
(em(0),X(s)pn(0)) = —i An(S) = Ar(S)

_ sgr(s) ) Yml(S) ()
~ 4B(n-m)? m{ Y(9)' 7m(5)} form#n,
(32
with v,(s) defined in(26). We set
(¢m(0),X(8)¢(0)) =0 form=n, (33

and write againX(s),, instead of{¢,(0), X(S),(0)).
Lemma 9: The operator Xs) defined by relations (33) and (32) is bounded and its norm
satisfies the estimate

71'2
XS = 15

The derivative'X(s) exists in the operator norm and satisfies the estimate
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+ 2)772

Kl ="

Proof: The operator norm oX(s) is bounded from above by the Shur—Holmgren norm,

1wl
X = IX = X =—2, S5=—.
XS < X(3)sw= sup %| Ol = 352 (2= 125
Suppose thas>0 andm<n. Let us estimate the derivative &{s),, Using(29) one finds
that
(m4@>1_m49(r%m+s+1)_r%n+s+n)
WS/ 2y(\ T(m+s+1)  T(n+s+1)
_ S n-m
297(9 jcp (k+m+s+ 1) (k+n+s+1)’
Hence
d 1 1 y 1 1
_X(S)mn = + =
ds 8B(n-m)\(m+1)(n+1) J; (y+m)(y+n) 8B(n-m)\(m+1)(n+1)

1 <n+1))
+ In .
n-m \m+1

Thus we get, fom#n,

‘dMQW

ds

<_£< 1 + ! ) 34
T 8B\(m+1)(n+1) |[n-mmin{m+1n+1}/ (34)

Let X(s) be a Hermitian operator ih?(R,,r dr) with the matrix entries ¥(s),/ds. From the
estimate(34) we deduce thaX(s) is a Hilbert—Schmidt operator and

. vE w2 o 12
IX(8)|ls =< @(20 (m+ 1)22 (n+1)2) +£<220 (m+1)2, El(n m)z)
_(1+V'E)772
© o488

Furthermore, since estima(84) is uniform ins one can apply the Lebesgue dominated conver-
gence theorem to conclude that

1 .
;(X(S +£) = X(9) = X(s)

=0.
HS

lim

e—0

Hence the derivative of the operator-valued functiis) exists in the operator norm and equals
X(s). O
The matrix entries of the operat@,(s) defined in(7) equal

(¢m(0),Q(8)¢n(0)) =i mS =N (), ¢y(9)).

Notice that the both operatof3(s) andW(s)=€)'(s) are diagonal in the bas{g,(0)} and there-
fore they commute.
Lemma 10:It holds true that
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l+\e’5 2
|1+ Is| | ——

8 6B7’
Proof: Suppose thas>0. The integral can be rewritten as follows:

f Q. (udu
0

f Qwau=i f & UIW(u), X(u)]e™ ™ du
0

0

1(s . ) . .
:;f ((elm(u))rx(u)e—nﬂ(u)+elm(u)x(u)(e—lfﬂ(u))/)du
0

S
:}f ((eifﬂ(u)x(u)e—ifﬂ(u))r_ ifﬂ(u))'((u)e—ifn(u))du_
7Jo
Consequently,

f Q,(u)du= %_(eiﬂ(s)x(s)e‘”ms) - X(0) - f X ()g ™Y du).
0 0

More precisely, the derivation of this equality was rather formal but it becomes rigorous when
sandwiching the both sides with the scalar produgt(0), -¢,(0)). This is to say that the both
sides have the same matrix entries in the b&gig0)}. But since the equality concerns bounded
operators it holds true.

Using Lemma 9 one arrives at the estimate

(1 l+\/§>

1 s .
= ;(IIX(s)II +[Ix(0) + fo ||X(u)||du) < E(é s

J SQT(U)du
0

The lemma is proven. O
We can now show that the adiabatic propagatgg(s,0) [see(4)] is close to the propagator
U(s,0)=Uxp(s,0)C(s,0) defined in(5) provided the adiabatic parameters large.
Proposition 11:It holds true that

||UT(S! 0) — Uap(s, 0)” = M(s)e‘S‘M(S) m '
3Br
where
il 1 (3+9))/2
M(S)=E+1ZIS|+§|S|(1+|S|) _ (35)
Proof: According to Lemma 6)Q(s)| <M(s), and from Lemma 10 one easily deduces that

s v
fo Q,(uydu|| = EM(S).

Using formula(5) one can estimate
* rls Sh-2
lU(s,0) = Unp(s,0)| =[IC(s,0) =1 < X | dsy- f dsy-1/| Qs - |Q-As-0)|
n=1J0 0

X

Sn-1 T oo Is| Sn-2
f ds, Q)| < 2= M(9)" J ds; - f dsy;
3BT 0 0

0
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n-1
> Mol

_3Bn1 (n-1)!

The proposition is proven. O

VI. THE GENERAL DEPENDENCE ON TIME

Here we show that the adiabatic theorem extends to Hamiltonians of the form

H4(s) = H({(9)

where H(s) is defined in(1) and /€ C?(R) is a real-valued function. In order to simplify the
discussion and to avoid considering discontinuifiexall thatQ(s) is discontinuous as=0] we
shall further assume thdt(s) >0 and(0)=0.

Set

VE(S) = V(L(9), WE(S) =W(L(s), Q¥(s)= f WE(u)du.
0

Let Ci(s,s,) be the propagator related via the Dyson formula to the Hamilton(aﬁs-}, where

Qi(s) = expli724(9) Q4(s)exp— i704(s),  QX(s) =" (9QL(S)).
Exactly in the same way as in the proof of Proposition 7 one can show that the propagator
U(s,50) = VA(9)exp(= i 724(s)) CX(s, sp)expli 2 4(sp)) VE(s0)
is weakly associated to the Hamiltoni&ti(s). The adiabatic propagator now reads

Uhp(S,50) = VE(s)exp(= i Q(s) - Q4(sp) Vi(s) ™.

Proposition 12: Assume that' € C*(R), £’(s)>0 and £(0)=0. Then there exists a locally
bounded function As) such that

m>(S
Os€ER, [U4s0)-Usp(s0) < —— ()

Proof: Suppose for definiteness that 0. Recall that|Q(s)|| < M(s) whereM(s) was defined
in (35). The operator-valued function

X4(s) = ' (9X(&(9)),
with X(s) being defined i32) and(33), satisfies the commutation equation
QX(s) =i[WH(9),X{(5)].

Quite analogously as in the proof of Lemma 10 one derives the estimate

s 1 s |
f Q4(u)du $;<||X5(8)||+IIX§(O)II+ J ||X§(U)||dU>-
0 0

In virtue of Lemma 9 we have

7T2
{ - !
[X4(9)]| < B’ (s)

and
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s = (° <1+\’E>”2f
4 — 1" Sl ’ 2
fo [IXé(u)||du < 123[0 | (w)]du + B, ' (u)? du.

Hence

° § = @
JO Qi(u)dufl = B,

where

<u<s 4

2 s 1+ \’E s
q‘(s) = | £'(0)+ sup £'(u) +J |¢"(w)]du + J '(u?du.
12 0 0 0
Finally one can proceed similarly as in the proof of Proposition 11 to derive the estimate

{(s) qg(s)
Uk(s,0) - Ukp(5,0)] = |Cs,0) - 1] < exp( f Mo | £
0

This completes the proof.
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APPENDIX: PROPAGATOR WEAKLY ASSOCIATED TO A HAMILTONIAN

By a propagatotJ(t,s) we mean a family of unitary operators in a separable Hilbert space
depending ort, s€ R which satisfies the following conditions:

(i) U(t,s) is strongly continuous jointly i, s,
(i)  the Chapman—Kolmogorov equality is satisfied, i.e.,

Ot,s,r € R, U(t,r)uU(r,s) = U(t,s).

Let H(t), tER, be a family of self-adjoint operators . The domain may depend @nThe
standard way how one relates a propagait(r,s) to H(t) is based on the following two require-
ments:

(i) Ot,seR, U(t,s)(DomH(s))=DomH(t),
(i)  OgebomH(s), OteR, igU(t,s)y=H({)U(t,s).

Clearly, if a propagator exists then it is unique. In some situations, however, these require-
ments may turn out to be unnecessarily strong. In particular this is true for the model studied in the
current paper. The heart of the problem is illustrated on the following example.

Let A(t) be a family of bounded Hermitian operatorstfiwhich is uniformly bounded. Then
the propagator exits and is given by the Dyson formula. Let us d@ltits). Let D C H be a dense
linear subspace, and I&(t) be a strongly continuous family of unitary operators such as
invariant with respect t@(t) and for every€ D there exists the derivativigT(t) . Furthermore,
suppose tha(t)=iT(t)T(t)™%, with DomX(t)=D, is a self-adjoint operator for all (the dot
designates the derivatixeA formal computation gives
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TO(=id+AM)TE) L= —ig + X(t) + TOAMD)TH) ™.

If C(t,s) preserved the domaiD then the propagatoi(t)C(t,s)T(s)™* would solve the
Schrédinger equation fot(t) + T(tH)A(t) T(t)™* on D. Thus it is natural to associate it to this family
of self-adjoint operators. The hypothesis©ft,s) need not be, however, satisfied sifg¢) is an
arbitrary family of bounded operators and G¢,s) will in general not preserve this domain.

In this appendix we propose a way how to associate a propagator to a given time-dependent
Hamiltonian in a weak sense. This association is more general than the standafahicie
supposes a constant domain and solving the Schrodinger equation in the stronguséiisis still
unique(i.e., there is at most one propagator weakly associated to a given time-dependent Hamil-
tonian.

Here we develop this approach only to an extent which makes it possible to apply these ideas
to the studied model with a time-dependent Aharonov—Bohm flux. In particular, the described
example is covered by Proposition A.4 below.

Let X be a Banach space. We shall say that a vector-valued funttidr- X' is absolutely
continuous onR if it is absolutely continuous on every compact interval R. By the symbol
AC(R,X) (or just AC if there is no danger of misunderstandirge shall denote the space of all
absolutely continuous vector-valued functiof($) such that the derivativé’(t) exists almost
everywhere onR. In such a case the functiofff’(t)|| is locally integrable andf(t)=f(0)
+[Lf'(s)ds (Ref. 10 Theorem 3.8)6lf the Banach spacé’ has the Radon—Nikodym property then
the spaceAC(R,X) coincides with the space of absolutely continuous vector-valued functions
AC(R, X). Let us recall thatY is said to have the Radon—Nikodym property if the fundamental
theorem of calculus holds, i.e., if any absolutely continuous function is the antiderivative of a
Bochner integrable function. For example, separable Hilbert spaces are known to have the Radon—
Nikodym property.

Clearly, if f,ge AC(R,H) then the functionf(t),g(t)) is absolutely continuous and

a(f(v),9(t)) = (f'(1),g(v) +(f(t),g'(1)) a.e.
Similarly, if A€ ATC(JR,B(H)) andf€ AC(R,H) thenA(t)f(t) € AC(R,H) and

FAMDF() = ADF(t) + ADT () ae.

Let {g} be an orthonormal basis . A vector-valued functiorf(t)=>n(t)e, belongs to
AC(R,H) if and only if the following two conditions are satisfied:

@ e R such thats,| p(a)|? <,
(i) Ok, 7 E€AC, and(Z| m(B))M?€ Ligd(R).

From here one easily derives the following criter[afternatively, one can again cons(iRef.
10, Theorem 3.8)8.

Lemma A.1: A vector-valued function:R — H belongs to ACR,H) if and only if the fol-
lowing two conditions are satisfied:

(i) there exists a total sefC H such that for alliyE 7, (i, f(t)) is absolutely continuous,
(i) the derivative f(t) exists almost everywhere afitl ()| € L% (R).

Set K=L%(R,H,dt). Let us recall that to every propagatbi(t,s) on H one can relate a
unique self-adjoint operatdf in I which is the generator of the one-parameter group of unitary
operators exp-ioK), o€ R, defined by

(€K (t) = U(t,t — D) f(t - o).

K is called the quasienergy operator. Equivalently,
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53]
K=8(-ig)y", wheredl= J U(t,0)dt. (A1)
R

SofeDomK if and only if U(t,0)"f(t) € Dom(-id,) which means thate L?, U(t,0)"f(t) € AC
and (U(t,0)7%(1))' e L2

From (A1) one concludes that the spectrumkois purely absolutely continuous and coincides
with R. So the kernel oK is always trivial. It seems to be natural, however, to introduce a
generalized kernel ok, called Kep K, as follows:

Kerg K ={f € L2 (R, H,dt); 0 € C5(R), #f € DomK andK(zf)=—-izn'f}.

SinceK can be very roughly imagined as the formal operatigt+H(t) the elements of KgrK
can be regarded as solutions of the Schrédinger equation in a weak sense.

Proposition A.2:Let U(t,s) be a propagator and let K be the quasienergy operator associated
to it. Then it holds

Kery K ={U(t,0)¢; o € H}.
Proof: If f(t)=U(t,0)¢, with y€H, and € Cg(R) then, ink, there exists the derivative

.d o . d .,
Id—(e )| = i —(pt-)UL0Y) | =iy (D).
g o=0 do =0
Hence, by the Stone theoremf € DomK andK(#7f)=-i»'f.
Conversely, suppose thiE Ker, K and seg(t)=U(t,0)7f(t). Let % be a test function. From
(A1) one deduces thajge Dom(-id,) and

d(ngt) = 7' (Hg(t) a.e.

Since n€ Cy(R) is arbitrary this implies thag(t) € AC(R,H) and g'(t)=0a.e. Consequently,
g(t)=¢€H is a constant vector-valued function af(d)=U(t, 0). O

It is known that the correspondence between the propagators and the quasienergy operators is
one-to-one[Ref. 11, Remark(1l) on p. 32]. On the one hand, by the very definitiok, is
unambiguously determined hy(t,s). On the other hand, i)(t,s) andU,(t,s) are two propaga-
tors with equal quasienergy operatdfs; K, thenU(t,s)=U;(t,s). This uniqueness result is also
a straightforward corollary of Proposition A.2. Actually, Proposition A.2 implies that for every
Y€ H there existg;, € H such thatJ(t, 0)y=U,(t,0) ¢ for all t (we use the strong continuity of
the propagatops By settingt=0 one finds thai/=,. HenceU(t,0)#=U,(t,0)¢ for all 4yEH.
Consequently,

U(t,s) = U(t,0)U(s,0071 = U;(t,0)U;(s,0) L = Uy(t,9).

For a family of self-adjoint operatorsl(t), tER, set$H=/{H(t)dt. This means thaf € K
belongs to Dony if and only if f(t)€DomH(t)a.e. and|H(t)f(t)|E€L2(R,dt). Then $ is a
self-adjoint operator infC. In what follows we shall always suppose that the intersection
Dom(-ig;) NDom$ is dense ink. For example, this is true in the case when the domain
DomH(t) is independent of. Consequently, id;+$) is a densely defined symmetric operator.

Definition A.3: We shall say that a propagator(Us) is weakly associated tbi(t) if

K==ig+9. (A2)
Notice that equality(A2) is equivalent to the following two conditions:
(i)  -ig+HCK,
(i) -6+ is essentially self-adjoint.
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Furthermore, it is important to note that this definition still guarantees the uniqueness, i.e., to
H(t) one can weakly associate at most one propadafoys). Actually, if U(t,s) andU,(t,s) are
weakly associated tbi(t) then K=K; according to equalitfA2). But due to the one-to-one
correspondence between the propagators and the quasienergy operators Wét fawdJ,(t,s).

Now we are ready to formulate and prove two propositions which are directly applicable to
the model studied in this paper.

Proposition A.4:Let A(t) be a family of bounded self-adjoint operators#fiwhich is locally
bounded. Let @,s) be the propagator associated tqtAvia the Dyson formula. Let O H be a
dense linear subspace and left)Tbe a strongly continuous family of unitary operators%h
obeying the following conditions:

(i) OteR, T(t)D=D,
(i)  OygeD, T(t)y is continuously differentiable

(i) OteR, X(t):i"r(t)T(t)‘l, with Dom X(t)=D, is a self-adjoint operator.

Then the propagator (T)C(t,s)T(s)™* is weakly associated to the family

X(t) + T()AMD)T() .
Proof: Set

Y(t) = X(t) + THOADTH) L, 9= f ’ Y(t)dt, T= J ’ T(t)dt.
R

R

Let Ky be the quasienergy operator associated to the propaf@a(t,s)T(s)™ . Set

C(t)=C(t,0), ¢= f® C(t)dt.
R

C(t) is a family of unitary operators which satisfi€st) E‘K'C(R,%(H)) and A(t):iC(t)C(t)‘l.
(i) Let us verify that
g+ CKy=F¢(-ig)e gL
Suppose that a vector-valued functibrR — H belongs to Dortrid,+%)). This happens if and
only if f obeys the following conditions:€ L2, fEAC, f' €L?, f(t) €D a.e. andv(t)f(t) L2 In
that case the functiofi(t)"f(t) is differentiable almost everywhere and the derivative
(TOH®) =T (1) +iIXOF(D)

is square integrable. Moreover, §f€ D then the function(y, T(t)"(t))=(T(t)¢, (1)) is abso-
lutely continuous. According to Lemma A.1 this implies ti&t)'f(t)€ AC(R,H) and conse-
quently C(t)"1T(t)"*(t) € AC as well. Furthermore, a straightforward computation yields

YOO =i(TOTO) () + TOCOCH) ™ TO) (D)
=i(T(H)C() ) T(H)H(t)
=if’ (1) —iT(t)CH)(CE) LT (1) H(1))".
Hence(C(t)"T(t)" (1))’ €L?, f€ DomKy and -f’(t)+Y(t)f(t) =Kf(t).

(i) Let us verify that +4,+%) is essentially self-adjoint. Suppose thgE Dom(-id+9Q))"
satisfies(-idg+2)) 'g=zg with Im(2) # 0. This means that
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Of e Dom(=ig+92), ((—ig+Df, 9k =«f, 0.
Choosef ()= 7(t)T(t) ¢y wherey€ D and € Cj(RR) is real valued. Thefie Dom(-ig+2)) and an
easy computation shows that
(=g + YO =-in' OTO Y+ nO TOAWD P
Hence for allp€ C{(R) we have

J (7' W(TO ¢, 9(1) + nOTOAM) ¢, g(1))dt =z f (T () ¢, g(t))dt.
R

R

Setting

F() =(TMOa1), G =(TAD) ¥ a(1),
we find that

—igF(t) + G(t) = zF(t) (A3)

in the sense of distributions. Since bditt) andG(t) are locally integrable, a standard result from
the theory of distributions tells us th&{t) is absolutely continuous and equali#3) holds true
in the usual sense. Moreover, equalif3) implies that

(€ M@ E(1)[?) = 2¢ M Im(F()G(1)).

Let us now choose an orthonormal basig} whose elements all belong to the domBinLet
us writeF, instead ofF andG, instead ofG when replacing/ by 4. We have derived the equality

t

Fuf?=e? MR () + 2 f &2 M9 Im(Fy(5)Gy(9))ds (Ad)

a

which is valid for allk and alla, t€R. Observe that

2 IFOP=g0)? ae.,
k

> [F9)IG(9)] < llgdIAGT(9 g(s)]| € Li(R,ds) a.e.,
k
and
> Fr(8)G(s) =(g(9), TOAST(S) g9 ER  ace.
k

Summing ink in equality (A4) we find that

g = e ™@g(a)|

for almost alla, t€ R. Sincel|g(t)|| is square integrable this is possible onlygit)=0 a.e. O

Proposition A.4 has a corollary justifying the adverb “weakly” in Definition A.3.

Corollary A.5: Assume that a propagator (Uty) is associated as a strong solution of the
Schrodinger equation to a time-dependent Hamiltoniaft) Hvhich has, however, a time-
independent domain (i.e., the relationship between the propagator and the Hamiltonian is the
usual one). Then W,t,) is weakly associated to ().

Proof: In Proposition A.4 it suffices to sdd=DomH(0), T(t)=U(t,0) and A(t)=0. Then
X(t)=H(t), C(t,s)=1, and T(t)C(t,9)T(s)"*=U(t,s). d

Proposition A.6:Suppose that i), tER, is a family of unitary operators which is continu-
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ously differentiable in the strong sense. Ifdt)HtEJHi, be a family of self-adjoint operators such
that DomH(t)=D for all t €. Set

H(t) = VIOHOVO) L+ iVOV(D) ™.

If the propagator Ut s weakly associated to ) then the propagator {,s)

:V(t)'L“J(t,s)V(s)‘l is weakly associated to ().
Proof: Set

U(t) = U(t,0), ﬂ:FD(t)dt, m=f®v(t)dt.
R R

By the assumptioréjl(—iat)ﬂ‘lz—iatﬂ%. We must show that

V(- i) BB =14+ 9.

Since

V(= iU SV L=V(=ig+ H)V L=V(=ig,+H)V L

it is sufficient to verify that

V(=g + 9V L==ig+9.
This would also imply that Doffid,) N Dom($)) is dense ink.
A vector-valued functiorf: R — H belongs to Dort®(-ig,+$)U™?) if and only if it satisfies
the following conditions: fEL?, V(t)™f(t)EAC, (V(1) ()’ €L? V() H(t)ED a.e. and
H(t)V(t)"1f(t) L2 Let us note that from the continuous differen_tiability #ft) in the strong

sense and from the uniform boundedness principle it follows Y&t tER, is a family of
bounded operators which is locally bounded. Furthermd(s, =V(t)™* is continuously differen-
tiable in the strong sense as well aMit)™*y€AC for all 4#EH. Suppose thaf €L? If
V()" (t) € AC then f’(t) exists almost everywhere afjéf (1) is locally integrable, the function
(i, F(1))y=(V(t) Ly, V(1) (1)) is absolutely continuous for aly€H and therefore, by Lemma
A.1, f(t) € AC. Similarly, the converse is also true. fift) € AC then V(t)"*f(t) EAC.

Using these facts and the relation betw&a(rh) and H(t) [including that DonmH(t)=V(t)D]
one easily finds that the domains Bi(—id,+ )V~ and -id,+$ coincide and that

V(1)(= g+ HO)VO (1) = =i/ (1) + HO ()

for every f € Dom(-ig,+$). O

Remark: Proposition A.6 can be easily extended to the case when the family of unitary
operatorsV(t) is continuous and piecewise continuously differentiable in the strong sense and in
each point of discontinuity there exist the limits of the derivative both from the left and from the
right.
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