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Abstract. We derive the complete asymptotic series, as t → +∞, for a general solution h(t) of the nonlinear differential
equation h3(h′′ + h′) = 1. The equation originates from a physical model related to the Hall effect.

1. Introduction

The purpose of this article is to describe the asymptotic behaviour of solutions of the second-order
ordinary nonlinear differential equation

h(t)3(h′′(t) + h′(t)
)

= 1 (1)

with initial conditions

h(t0) = h0 > 0, h′(t0) = h1. (2)

Before formulating the result let us describe our motivation and the origin of the problem which has its
roots in the physical Hall effect.

In a classical mechanics description the issue is to study the dynamics of a point mass moving in
a periodic planar potential and driven by an exterior electromagnetic field where the magnetic field
is constant and the electric field circular and created by a linearly time dependent flux tube through the
origin, see [8] for the origin of the model. The equations of motions are Hamiltonian. The time dependent
Hamiltonian is

1
2

(
p − A(q, t)

)2 + V (q, t) on R ×
(
R

2 \ {0}
)
× R

2

with

A(q, t) =
(

b

2
+

et

|q|2
)

(q2,−q1).
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Here b and e are real parameters and V a smooth periodic function. In Newtonian form the equations of
motion are

q̈ = E(q) + bDq̇ −∇V (q) in R
2 \ {0},

where D is rotation by π/2 and E(q) = e|q|−2 Dq = −∂tA(q).
We shall prove elsewhere that if b and e are nonzero the solutions are diffusive with or without

direction depending on the direction of the fields. In this article we discuss the particular case when
e = 1, b = 0 and V = 0. In polar coordinates the Hamiltonian reads

1
2

(
p2

r +
1
r2

( pφ + t)2
)

and the equations of motion become

p′φ = 0, φ′ =
pφ + t

r2
, p′r =

(pφ + t)2

r3
, r′ = pr.

Consequently, pφ is a constant and r′′ = r−3(pφ + t)2. After a shift in time we arrive at the equation

r′′ =
t2

r3
.

The substitution

r(t) = th(ln t)

leads to Eq. (1).
In order to formulate our result we have to introduce some auxiliary notation. The polynomials in-

troduced below will be needed for an inversion method such as the Lagrange inversion formula (see
Chapter 2, pp. 21–33, in [6]). Let sm,k ∈ R[a1, a2, . . . , ak] be polynomials defined as follows:

sm,k(a1, a2, . . . , ak) =
∑

i1+i2+···+im=k

ai1ai2 · · · aim , (3)

m = 1, 2, . . . , k = 0, 1, 2, . . . . Clearly, sm,k(a1, a2, . . . , ak) = 0 if k < m, and we set by definition
s0,k = δ0,k. The polynomials obey the recursive rule

sm+1,k(a1, a2, . . . , ak) =
k−1∑
j=m

sm,j(a1, a2, . . . , aj)ak−j for m + 1 � k.

In the space of formal power series, R[[x]], it holds

( ∞∑
k=1

akx
k

)m

=
∞∑

k=m

sm,k(a1, a2, . . . , ak)xk , m = 0, 1, 2, . . . .
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This implies that if

a =
∞∑

k=1

akx
k, f =

∞∑
k=0

fkx
k ∈ R[[x]],

then

∞∑
m=0

fmam =
∞∑

k=0

gkx
k where gk =

k∑
m=0

fmsm,k(a1, a2, . . . , ak). (4)

Furthermore, set

σ0
k(a1, a2, . . . , ak) =

k∑
j=1

(−1)j+1

j
sj,k(a1, a2, . . . , ak) (5)

and

σm
k (a1, a2, . . . , ak) =

k∑
j=0

(−m
j

)
sj,k(a1, a2, . . . , ak) for m � 1. (6)

Then it holds, in R[[x]],

ln

(
1 +

∞∑
k=1

akx
k

)
=

∞∑
k=1

σ0
k(a1, a2, . . . , ak)xk ,

(
1 +

∞∑
k=1

akx
k

)−m

= 1 +
∞∑

k=1

σm
k (a1, a2, . . . , ak)xk for m � 1.

Further, let f (z) =
∑∞

n=0 βnzn be the formal solution of the differential equation

f ′(z) = − 1
z2

f (z)2(1 − f (z)
)
+

3
4

f (z)
z

.

This first order differential equation is in turn derived by setting f (z) = 1/g(z) in the differential equa-
tion

g′(z) =
1
z2

(
1 − 1

g(z)

)
− 3

4
g(z)
z

.

The original second order differential equation (1) can be reduced to this last differential equation as
explained in detail in Section 4.1. The sequence of real numbers {βn}∞n=0 is defined recursively,

β0 = 1,
(7)

βn+1 =
(

n − 3
4

)
βn +

n∑
j,k=0

j+k=n+1

βjβk −
n∑

j,k,�=0
j+k+�=n+1

βjβkβ�.
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Here are several first values:

β1 = −3
4

, β2 = −21
16

, β3 = −165
32

, β4 = −7245
256

, . . . .

For a fixed constant c ∈ R we introduce a sequence of polynomials, pn(c; z) ∈ R[z], n ∈ Z+, by the
recursive rule

p0(c; z) = 3z − c (8)

and

pn = 3σ0
n(p0, p1, . . . , pn−1) +

n−1∑
k=1

4k+1βk+1

k
σk

n−k(p0, p1, . . . , pn−k−1) +
4n+1βn+1

n
. (9)

This can be rewritten with the aid of the polynomials sm,k,

pn = 3
n∑

j=1

(−1)j+1

j
sj,n(p0, p1, . . . , pn−1)

+
n−1∑
k=0

4n−k+1βn−k+1

n − k

k∑
j=0

(−n + k
j

)
sj,k(p0, p1, . . . , pk−1).

For n � 1, the degree of pn(c; z) is less or equal to n (this can be easily shown by induction when using
the fact that for any monomial as1

i1
as2

i2
· · · as�

i�
occurring in σm

k (a1, a2, . . . , ak) it holds
∑

ijsj = k). Here
are several first polynomials pn(z),

p1(c; z) = 9z − 21 − 3c,

p2(c; z) = −27
2

z2 + (90 + 9c)z − 228 − 30c − 3
2
c2,

p3(c; z) = 27z3 −
(

621
2

+ 27c

)
z2 +

(
1638 + 207c + 9c2)z − 3540 − 546c − 69

2
c2 − c3.

Now we are able to formulate the result.

Theorem 1. For any initial data (t0, h0, h1) ∈ R× ]0,∞[×R there exists a unique solution h(t) to the
problem (1), (2) on the real line. Moreover, there exists a constant c = c(t0, h0, h1) ∈ R such that

h(t) = (4t)1/4

(
1 +

n∑
k=1

qk(c; ln(4t))
tk

+ O
((

ln(t)
t

)n+1))
(10)

as t → +∞ for all n ∈ Z+, where

qk =
k∑

m=1

1
4k

( 1
4
m

)
sm,k(p0, p1, . . . , pk−1).

The degree of qk(c; z) is less than or equal to k.
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Remarks. (i) Several first polynomials qk(c; z) are

q1(c; z) =
3

16
z − 1

16
c,

q2(c; z) = − 27
512

z2 +
(

9
64

+
9

256
c

)
z − 21

64
− 3

64
c − 3

512
c2,

q3(c; z) =
189

8192
z3 −

(
135

1024
+

189
8192

c

)
z2 +

(
549

1024
+

45
512

c +
63

8192
c2

)
z

− 57
64

− 183
1024

c − 15
1024

c2 − 7
8192

c3.

(ii) In the final step of the proof, in Subsection 4.5, we shall show the following invariance property
of the asymptotic expansion. Set

An(c; t) = (4t)1/4

(
1 +

n∑
k=1

qk(c; ln(4t))
tk

)
,

with n ∈ Z+ and c, t ∈ R. Then for all s ∈ R it holds true that

An(c; t + s) = An(c − 4s; t) + t1/4 O
((

ln(t)
t

)n+1)
as t → +∞.

(iii) For the definition of the constant c see equality (27).

The remainder of the paper contains all necessary steps to prove Theorem 1. We shall proceed as
follows. In Section 2 we show the completeness and derive the first term of the asymptotic series. In
Section 3 we make use of the fact that the second order differential equation can be reduced to a first
order differential equation and we investigate the asymptotic properties of the latter equation with the aid
of the centre manifold theorem. These results are used in Section 4 to derive the asymptotic properties
of the original second order differential equation and this way we complete the proof of Theorem 1.
Section 5 contains an additional remark on the asymptotics of the Lambert function.

2. Basic properties of the differential equation

The differential equation (1) is equivalent to the dynamical system

(x′, y′) =
(

y,
1
x3

− y

)
on M = ]0,∞[×R. (11)

Proposition 2. The flow of (11) is complete and so for all initial data (t0, h0, h1) ∈ R× ]0,∞[×R there
exists a unique globally defined positive solution h of (1) with initial conditions

h(t0) = h0, h′(t0) = h1.
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Proof. We use the following criterion (cf. [1, Chapter 2.1.20]): The flow of a C1 vector field ξ on a
manifold M is complete if there is a proper map f ∈ C1(M , R) which meets the estimate

∃A > 0, B > 0, ∀p ∈ M ,
∣∣ξ · f (p)

∣∣ � A
∣∣f (p)

∣∣ + B.

In our case M = ]0,∞[×R, ξ = y∂x + (x−3 − y)∂y and we choose f (x, y) = x2 + y2 + x−2. With this
choice we have

∣∣ξ · f (x, y)
∣∣ =

∣∣2xy − 2y2∣∣ � x2 + 3y2 � 3f (x, y).

Moreover, for any bounded set S ⊂ R the inverse image f−1(S) is bounded and separated from the
border of the half-plane M : there exists ε > 0 such that f−1(S) ⊂ [ ε,∞ ] ×R. This implies that f is in
fact a proper map and the proposition is proven. �

Proposition 3. Let (x(t), y(t)), with t ∈ [t0,∞[, be a solution of the dynamical system (11). Then there
exists T ∈ [t0,∞[ such that

∀t, s, t � s � T ,
√

2
(
t + c(s)

)1/4 � x(t) � y(s) +
√

2
(
t + c(s)

)1/4

where c(s) = 1
4x(s)4 − s.

Proof. We shall first show that y′(t) is negative for all sufficiently large t. Note that

y′′ = −
(

1 + 3
y

x

)
y′ − 3

y2

x
= −

(
1 + 3

y

x
+ 3y2x2

)
y′ − 3y3x2.

Hence for all t, y′(t) = 0 implies y′′(t) < 0. Consequently, it is sufficient to show that there is at least
one t such that y′(t) � 0. Suppose on the contrary that y′(t) > 0 for all t. Notice that (11) implies

y(t) = y(t0) +
t − t0

x(t0)3
−

∫ t

t0

(
3
t − s

x(s)4
+ 1

)
y(s) ds.

Therefore there exists s � t0 such that y(s) > 0. It follows that for all t � s, both x(t) and y(t) are
increasing positive functions and y′′(t) � −3y(s)3x(s)2 < 0, a contradiction.

Let now T � t0 be such that y′(t) < 0 for all t > T . Let us fix s � T . Due to (11), for any t > T we
have (x4/4)′ = x3y > 1. Consequently, if t � s then

x(t) �
√

2
(

t +
1
4
x(s)4 − s

)1/4

=
√

2
(
t + c(s)

)1/4
.

To show the other inequality set, for t � s, z = x − ϕ where ϕ(t) =
√

2(t + c)1/4 and c = c(s). Note
that ϕ′ = ϕ−3 and ϕ′′ < 0. Furthermore, ϕ(s) = x(s), i.e., z(s) = 0, and z′(s) = y(s) − x(s)−3 =
−y′(s) > 0. We find that

(
etz′

)′ = et
(

1
x3

− 1
ϕ3

− ϕ′′
)

� −etϕ′′.
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Integrating twice this inequality one easily deduces that

z′(t) � e−t+sz′(s) −
∫ t

s
e−t+uϕ′′(u) du

and

z(t) � z(s) +
(
1 − e−t+s) z′(s) −

∫ t

s

(
1 − e−t+u)

ϕ′′(u) du � z(s) + z′(s) + ϕ′(s).

Hence x(t) − ϕ(t) � x′(s) = y(s). This completes the proof. �

Corollary 4. If h(t) is a solution of (1) on [t0,∞[ with the initial conditions h(t0) = h0 > 0, h′(t0) = h1,
then there exists T � t0 such that h′(t) > 0 for all t > T .

Corollary 5. If h(t) is a solution of (1) on [t0,∞[ with the initial conditions h(t0) = h0 > 0, h′(t0) = h1,
then

h(t) =
√

2t1/4 + O(1) as t → +∞.

Remark. This means that if we restrict ourselves in what follows to the initial condition (2) with h1 > 0
we do not loose the generality as far as the asymptotics is concerned. Furthermore, due to the invariance
of the differential equation in time we can set t0 = 0. This fact will be used in the course of the proof.
First we verify Theorem 1 for the particular case when t0 = 0 and h1 > 0 and then, in Subsection 4.5,
we shall extend the result to the general initial condition.

3. A reduced differential equation of first order

In accordance with the remark at the end of Section 2 we assume that t0 = 0 and h1 > 0. The second-
order differential equation (1) is invariant in t and this is why it can be reduced to a first-order differential
equation. Actually, using the substitution h(t) = (G−1(4t))1/4, z0 = 4/h4

0 and g0 = h3
0h1 where

G(x) =
∫ x

h4
0

ds

g(4/s)

we arrive at a first-order nonlinear differential equation, namely

(
1 − 3

4
zg(z) − z2g′(z)

)
g(z) = 1, g(z0) = g0. (12)

Here we confine ourselves to noting that this substitution means that

z =
4

h(t)4
, g = h(t)3h′(t). (13)

However we shall carry out the computations relating (1), (2) and (12) in detail later, in Subsection 4.1.
In the current section we shall concentrate on the study of (12) on the interval [0, z0], assuming that
z0 > 0 and g0 > 0.
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3.1. Domain of the left maximal solution g(z)

We shall need two equivalent forms of the differential equation (12), namely

g′(z) =
1
z2

(
1 − 1

g(z)

)
− 3

4
g(z)
z

(14)

and

(
z3/4g(z)

)′ = z−5/4
(

1 − 1
g(z)

)
. (15)

Remark. In what follows we use repeatedly the following elementary argument: if ψ and ϕ are two
differentiable functions on ]a, b[ and the equality ψ(z) = ϕ(z) implies ψ′(z) < ϕ′(z), for all z ∈ ]a, b[,
then the two functions coincide in at most one point z ∈ ]a, b[.

Proposition 6. Let g(z) be the left maximal solution of (12). Then g(z) is defined and positive on ]0, z0],
and

lim
z↓0

g(z) = 1. (16)

Proof. Let γ be the minimal nonnegative number such that g(z) is defined on ]γ, z0]. Eq. (12) clearly
excludes the possibility that g(z) = 0 for some z ∈]γ, z0]. So g(z) is positive on ]γ, z0]. Our goal is to
show that γ = 0 and (16) holds true. We split the proof into six claims.

(i) ∃ξ ∈ ]γ, z0] s.t. g(ξ) � 1.
Suppose that g(z) < 1, ∀z ∈ ]γ, z0]. Then, by (14), g′(z) < 0 on ]γ, z0] and so there exists

lim
z↓γ

g(z) = g1

with g0 < g1 � 1. Hence, by minimality of γ, it should hold γ = 0. According to (15),

(
z3/4g(z)

)′
< 0 ⇒ g(z) > g0

(
z0

z

)3/4

, ∀z ∈ ]0, z0],

a contradiction.
In the remainder of the proof we choose ξ ∈ ]γ, z0] to be the largest number such g(ξ) � 1.
(ii) g(z) > 1, ∀z ∈ ]γ, ξ[.
Actually, g(z) = 1 implies g′(z) < 0.
(iii) γ = 0.
If γ > 0 then, by (15), |(z3/4g(z))′| � γ−5/4 < ∞ for all z ∈ ]γ, ξ[. This means that z3/4g(z) is

absolutely continuous on ]γ, ξ[ and so limz↓γ g(z) exists and is finite, a contradiction with the minimality
of γ.

(iv) ∃η ∈ ]0, ξ[ s.t. g′(z) �= 0, ∀z ∈ ]0, η[.
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Equalling the right-hand side of (14) to zero we get a quadratic equation with respect to g(z). Its
solution is a couple of functions,

ϕ1(z) =
2

1 +
√

1 − 3z
, ϕ2(z) =

2

1 −
√

1 − 3z
,

defined on the interval ]0, ξ[∩ ]0, 1
3 [. Clearly, ϕ′

1(z) > 0 and ϕ′
2(z) < 0 everywhere on that interval.

This implies that the right-hand side of (14) vanishes in a point z from that interval if and only if
g(z) = ϕ1(z) or g(z) = ϕ2(z) and in such a case either 0 = g′(z) < ϕ′

1(z) or 0 = g′(z) > ϕ′
2(z). Thus

ϕ1(z) coincides with g(z) in at most one point z, and the same is true for ϕ2(z). Consequently, there
exists η ∈ ]0, ξ[∩ ]0, 1

3 [ such that g′(z) does not vanish on ]0, η[.
We choose η having the property stated in claim (iv).
(v) g′(z) > 0, ∀z ∈ ]0, η[.
If g′(z) < 0, ∀z ∈ ]0, η[, then g1 = limz↓0 g(z) exists (finite or infinite) and g1 > g(η) > 1. On the

other hand, in virtue of (14),

z2g′(z) = 1 − 1
g(z)

− 3
4
zg(z) < 0. (17)

Equality (15) implies that (z3/4g(z))′ > 0 on ]0, η[ and so

g(z) < g(η)
(

η

z

)3/4

, ∀z ∈ ]0, η[.

Consequently, limz↓0 zg(z) = 0. Sending z to 0 in (17) gives

1 − 1
g1

� 0,

a contradiction.
(vi) limz↓0 g(z) = 1.
It follows from claim (v) that g1 = limz↓0 g(z) exists and 1 � g1 < g(η). Suppose that g1 > 1. Then

one concludes from (14) that there exists δ ∈ ]0, η[ s.t.

g′(z) >
d

z2
, ∀z ∈ ]0, δ[, where d =

1
2

(
1 − 1

g1

)
> 0.

This implies

g(z) < g(δ) +
d

δ
− d

z
, ∀z ∈ ]0, δ[,

a contradiction.

Corollary 7. The maximal solution g(z) satisfies the integral identity

g(z)2 = 2z−3/2
∫ z

0
s−1/2(g(s) − 1

)
ds, ∀z ∈ ]0, z0]. (18)
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Proof. Rewrite (14) as

(
z3/2g2)′ = 2z−1/2(g − 1),

and integrate from 0 to z when taking into account (16). �

3.2. Asymptotics of the left maximal solution g(z) at z = 0

Let us consider Eq. (12) (without the initial condition) in the space of formal power series C[z]. Its
solution

g̃(z) =
∞∑

k=0

αkz
k ∈ C[z] (19)

is unique, with the coefficients being determined by the recursive relation

α0 = 1, αk+1 =
(

1
2
k +

3
4

) k∑
j=0

αjαk−j for k � 0. (20)

Several first coefficients are

α0 = 1, α1 =
3
4

, α2 =
15
8

, α3 =
483
64

, . . . .

Proposition 8. The left maximal solution g(z) has an asymptotic series, as z ↓ 0, that is equal to

∞∑
k=0

αkz
k.

Proof. Consider the system

u′ = Φ(u, w) = −u2,

w′ = Ψ (u, w) = −1 +
1

w + 3u/4
+

3
4
uw +

21
16

u2, (21)

on the interval t � 0. A particular solution is u(t) ≡ 0, w(t) ≡ 1. It can be shown to be stable provided
we restrict ourselves to the initial conditions with u(0) � 0. An analysis of the system is possible with
the aid of the centre manifold theorem [2,3]. The derivative of the mapping (u, w) �→ (Φ(u, w), Ψ (u, w))
at the point (0, 1) equals diag(0,−1). According to the theorem, a centre manifold w = f (u) through
the point (u, w) = (0, 1) exists. Recall that, by definition, this is an invariant manifold for the system of
differential equations such that f ′(0) = 0.

The function f can be taken from the class Ck for arbitrary k ∈ N provided we restrict ourselves to a
sufficiently small neighbourhood of the origin. The Taylor series of f at the origin, f̃ (u) ∈ R[u], is well
defined as a formal power series,

f̃ (u) = 1 +
∞∑

k=2

fku
k,
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and satisfies the differential equation

f̃ ′(u)Φ
(
u, f̃ (u)

)
− Ψ

(
u, f̃ (u)

)
= 0. (22)

This equation determines f̃ (u) unambiguously.
According to the theory, the stability properties of the system (21) are the same as those of the reduced

equation

v′ = Φ
(
v, f (v)

)
= −v2. (23)

Since the zero solution of (23) is stable provided we restrict ourselves to the initial conditions with
v(0) � 0 an analogous claim is actually true for the distinguished constant solution of (21). In that case
the theory yields an asymptotic result: if (u, w) is any solution of (21) on the positive half-line with
(u(0), w(0)) sufficiently close to (0, 1) then there exists a solution v of (23) and γ > 0 such that

u(t) = v(t) + O
(
e−γt), w(t) = h

(
v(t)

)
+ O

(
e−γt).

Since both u(t) and v(t) satisfy the same Eq. (23) it readily follows that these functions coincide. Thus
the asymptotic series of w(t), as t → ∞, is the same as that of f (u(t)).

Let g(z) be a left maximal solution of (14) and a > 0 be a point from the domain of g. To conclude
the proof it suffices to note that

u(t) =
1

t + b
, w(t) = g

(
u(t)

)
− 3

4
u(t), with b =

1
a

,

is a solution of the system (21), with the initial condition u(0) = a, w(0) = g(a) − (3/4)a. According
to Lemma 6 we can take a as small as we please making the point (u(0), w(0)) arbitrarily close to (0, 1).
Therefore the asymptotic behaviour of g(z), as z ↓ 0, is determined by the formal power series

ϕ(z) = f̃ (z) +
3
4
z.

A simple manipulation shows that if f̃ (z) satisfies (22) then ϕ(z) obeys (14). Hence ϕ(z) = g̃(z), with
g̃(z) being the formal series (19), (20), as claimed. �

Corollary 9. The left maximal solution g(z), after having been defined at z = 0 by g(0) = 1, belongs
to C∞([ 0, z0 ]).

Proof. Observe that consecutive differentiation of Eq. (14) jointly with Proposition 8 imply that, for any
m ∈ Z+, zm+1g(m)(z) has an asymptotic series at z = 0 which we shall call

∑∞
k=0 αm

k zk . We have to
show that g ∈ Cm, ∀m, and this in turn amounts to showing that αm

k = 0 for k < m+ 1. Let us proceed
by induction in m. The case m = 0 was the content of Proposition 6. Assume now that g ∈ Cm. Then
αm

k = 0 for k < m + 1, and the mean value theorem implies that

lim inf
z↓0

g(m+1)(z) � dg(m)(0+)
dz

= αm
m+2 � lim sup

z↓0
g(m+1)(z). (24)
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On the other hand, since zm+2g(m+1)(z) has an asymptotic series the limit limz↓0 g(m+1)(z) always exists
and equals either ±∞ or αm+1

m+2 depending on whether there exists an index k < m + 2 s.t. αm+1
k �= 0 or

not. However the property (24) clearly excludes the first possibility. �

4. Asymptotics of a solution h(t) of the second order differential equation

Except of the last subsection, we still consider the particular case when t0 = 0 and h1 > 0 (see the
remark at the end of Section 2). We shall proceed to the case of general initial condition only at the very
end of the proof, in Subsection 4.5.

4.1. Reduction of the second order differential equation

Let us now complete some computations concerning the reduction of the second order differential
equation (1), (2) to a first order differential equation. Let g(z) be the left maximal solution of the first
order differential equation

(
1 − 3

4
zg(z) − z2g′(z)

)
g(z) = 1, g(z0) = g0,

where

z0 =
4
h4

0
, g0 = h3

0h1.

From Section 3 we know that g(z) is a positive function from the class C∞([0, z0]) (Proposition 6 and
Corollary 9). Consider the function

G(x) =
∫ x

h4
0

ds

g(4/s)
, h4

0 � x < ∞. (25)

Then G ∈ C∞([h4
0,∞[), G is strictly increasing, G(h4

0) = 0, and, due to (16), limx→∞ G(x) = ∞. So
the inverse function satisfies G−1 ∈ C∞([0,∞[) with G−1(0) = h4

0. Set

h(t) =
(
G−1(4t)

)1/4
.

Then h(t) solves the problem (1), (2).
Actually, G(h(t)4) = 4t, G′(h4) = g(4/h4)−1, and so

h3h′ =
1

4G′(h4)
dG(h4)

dt
= g

(
4
h4

)
. (26)

Differentiating (26) once more gives

3h2(h′)2 + h3h′′ = −16h−5h′g′
(

4
h4

)
.
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Denote for brevity z = 4/h4. Hence

h3(h′ + h′′) = g(z) − 3h−4(h3h′)2 − 16h−8(h3h′)g′(z) = g(z) − 3
4
zg(z)2 − z2g(z)g′(z) = 1.

Furthermore, h(0) = (G−1(0))1/4 = h0 and

h′(0) = G−1(0)−3/4 d
ds

G−1(0) = h−3
0

(
d

dx
G

(
h4

0

))−1

= h−3
0 g

(
4
h4

0

)
= h1.

4.2. Asymptotics of G(x)

First let us find, in C[z], the reciprocal element to the formal power series g̃(z) =
∑∞

k=0 αkz
k defined

in (19), (20). Set

g̃(z)−1 =
∞∑

n=0

βnzn.

The formal power series g̃(z) solves the differential equation (14) and so an easy calculation shows that
f̃ (z) = g̃(z)−1 solves the differential equation

f ′(z) = − 1
z2

f (z)2(1 − f (z)
)
+

3
4

f (z)
z

.

On the other hand, this differential equation implies a recursive rule on the coefficients βn, namely rule
(7) preceding the formulation of Theorem 1.

Lemma 10. The asymptotic series at infinity of the function G(x) defined in (25) is given by

G(x) ∼ x − 3 ln(x) + c − 4
∞∑

k=1

βk+1

k

(
4
x

)k

,

where

c = c(0, h0, h1) =
∫ ∞

h4
0

(
1

g(4/s)
− 1 +

3
s

)
ds − h4

0 + 3 ln
(
h4

0

)
. (27)

Proof. It holds

G(x) =
∫ ∞

h4
0

(
1

g(4/s)
− 1 +

3
s

)
ds +

∫ x

h4
0

(
1 − 3

s

)
ds −

∫ ∞

x

(
1

g(4/s)
− 1 +

3
s

)
ds.

According to Proposition 8 we have the asymptotics at infinity,

1
g(4/s)

− 1 +
3
s
∼

∞∑
k=2

βk

(
4
s

)k

.

The claim then follows straightforwardly. �



36 J. Asch et al. / Asymptotic properties of the differential equation h3(h′′ + h′) = 1

4.3. Asymptotics of G−1(x)

Let us now focus on the inverse function G−1.

Lemma 11. There exists x� such that for all x > x� it holds true that

0 � G−1(x) − x � x

x − 4

(
x − G(x)

)
. (28)

Proof. Choose y� � G(h4
0) > 0 so that, for all y � y�,

0 � 1 − 1
g(4/y)

� 4
y

and y − G(y) � 0. (29)

This is possible due to Proposition 8 and Lemma 10. Set x� = max{4, y�}. For x > x� fixed define a
sequence {yn}∞n=0 by the recursive rule

y0 = x, yn+1 = x + yn − G(yn).

Due to our choice, yn � x � x� � y� for all n. Using (25) one finds that

yn+2 − yn+1 = yn+1 − yn −
∫ yn+1

yn

ds

g(4/s)
=

∫ yn+1

yn

(
1 − 1

g(4/s)

)
ds.

In virtue of (29), the sequence satisfies

0 � yn+2 − yn+1 � 4
(
ln(yn+1) − ln(yn)

)
� 4

x
(yn+1 − yn).

Since y1 − y0 = x − G(x) we get

0 � yn+1 − yn �
(

4
x

)n(
x − G(x)

)
, ∀n.

By the choice of x� we have 4 < x and, consequently, the sequence {yn} is convergent. The limit
y = lim yn solves 0 = x − G(y) and so y = G−1(x). Moreover,

0 � y − yn =
∞∑

k=n

(yk+1 − yk) �
∞∑

k=n

(
4
x

)k(
x − G(x)

)
=

x

x − 4

(
x − G(x)

)( 4
x

)n

.

The particular case n = 0 in this relation is nothing but our claim. �

Combining Lemma 11 with Lemma 10 one immediately gets

Corollary 12. It holds true that, as x → +∞,

G−1(x) = x + O
(
ln(x)

)
.
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Recall that in (5), (6) we have introduced polynomials σm
k (a1, a2, . . . , ak) labelled by indices m � 0

and k � 1.

Proposition 13. For all n ∈ Z+ it holds true that, as x → ∞,

G−1(x) = x + p0
(
c; ln(x)

)
+

n∑
k=1

pk(c; ln(x))
xk

+ O
((

ln(x)
x

)n+1)
, (30)

where the polynomials pn(c; z) have been defined in (8), (9) and the constant c is given by equality (27).

Proof. Corollary 12 implies

ln
(
G−1(x)

)
= ln(x) + O

(
ln(x)

x

)
,

1
G−1(x)

=
1
x

+ O
(

ln(x)
x2

)
. (31)

Combining (31) with Lemma 10 one derives the relation

x = G−1(x) − 3 ln
(
G−1(x)

)
+ c − 4

n∑
k=1

βk+1

k

(
4

G−1(x)

)k

+ O
(

1
xn+1

)
, (32)

valid for all n � 0. Setting n = 0 in (32) one arrives at the case n = 0 in (30). To finish the proof one
can proceed, in the obvious way, by induction in n when repeatedly using relation (32). �

4.4. Asymptotics of h(t) for particular initial data

We already know that h(t) = (G−1(4t))1/4 solves the problem h(t)3(h′′(t) + h′(t)) = 1, h(0) = h0,
h′(0) = h1. Using the known asymptotics of G−1(x) we get

h(t) = (4t)1/4

(
1 +

n∑
k=1

pk−1(c; ln(4t))
4ktk

+ O
(

ln(t)n

tn+1

))1/4

and consequently

h(t) = (4t)1/4

(
1 +

n∑
k=1

qk−1(c; ln(4t))
tk

+ O
((

ln(t)
t

)n+1))
,

where

qk =
k∑

m=1

1
4k

( 1
4
m

)
sm,k(p0, p1, . . . , pk−1).

So qk are exactly the polynomials introduced in Theorem 1. It is also easy to see that the degree of qk(c; z)
is less than or equal to k since the same is true for the polynomials pn with n � 1 and deg p0 = 1. This
observation in fact completes the proof of Theorem 1 in the case when t0 = 0 and h1 > 0.
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4.5. General initial conditions

Consider first a solution h(t) of (1) with the initial conditions h(0) = h0, h′(0) = h1, assuming that
h1 is positive. Then, as we already know, the asymptotic behaviour of h(t) is described by Theorem 1,
i.e., equality (10) holds true with c = c(0, h0, h1). Choose s ∈ R and set h̃(t) = h(t + s). Then h̃(t)
solves equation (1) and satisfies the initial conditions h̃(0) = h̃0 = h(s), h̃′(0) = h̃1 = h′(s). But h′(s)
is positive for s sufficiently small and so equality (1) applies to h̃(t) as well, with c being replaced by
c̃ = c(0, h̃0, h̃1). Equating the asymptotics of h(t+s) to the asymptotics of h̃(t) one arrives at the equality

(
4(t + s)

)1/4

(
1 +

n∑
k=1

qk(c; ln(4(t + s)))
(t + s)k

)

= (4t)1/4

(
1 +

n∑
k=1

qk(c̃; ln(4t))
tk

+ O
((

ln(t)
t

)n+1))
(33)

valid for t → +∞ and every n ∈ Z+. From (33) it is not difficult to derive the relation between c and c̃,
it reads

c̃ = c − 4s. (34)

Thus the invariance of the differential equation (1) is reflected in an invariance of the asymptotic expan-
sion of its solutions, as expressed by relations (33), (34). It is also clear that these relations must hold
true not only for s small but even for all s ∈ R.

Choose now arbitrary initial data (t0, h0, h1) ∈ R×]0,∞[×R and let h(t) be the corresponding so-
lution. Then, as we know from Corollary 4, h′(t) > 0 for all sufficiently large t. Fix s > t0 such that
h′(s) > 0 and set h̃(t) = h(t + s). We use once more the already proven fact that h̃(t) satisfies equal-
ity (10), with c being replaced by c̃ = c(0, h(s), h′(s)). This implies that the asymptotic behaviour of
h(t) = h̃(t − s) is given by

h(t) =
(
4(t − s)

)1/4

(
1 +

n∑
k=1

qk(c̃; ln(4(t − s)))
(t − s)k

+ O
((

ln(t)
t

)n+1))
,

n ∈ Z+. But in that case one deduces from (33), (34) that h(t) satisfies equality (10) as well, with
c = c̃ + 4s. Theorem 1 is proven.

5. Additional remark: comparison with the asymptotics of −W−1(−e−x)

This is a digression whose aim is to emphasise a rather close similarity of the asymptotic behaviour of
the function G−1(x) with that of Lambert function. The Lambert function W (z) – which was introduced
by Euler in 1779, see [7] – gives the principal solution for w in z = w ew and Wk(z) gives the k-th
solution. Surprisingly, it is not documented in some standard text books and reference books on special
functions though we may have missed some sources. On the other hand, the Lambert function seems
to have attracted even in a rather recent period some attention, particularly from the computational and
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combinatorial point of view (see [5] for a summary). Let us just briefly recall that W (z) is analytic in a
neighbourhood of z = 0 with the convergence radius equal to e−1,

W (z) =
∞∑

k=1

(−1)kkk−1

k!
zk.

The coefficients have a combinatorial interpretation when counting distinct oriented trees.
Consider now the equation

y − ln(y) = x,

or, equivalently,

y e−y = e−x.

It is elementary to see that for x ∈ ]1, +∞[ there are exactly two real solutions, y1(x) and y2(x), with
y1(x) ∈ ]0, 1[ and y2(x) ∈ ]1, +∞[. The both solutions can be expressed with the aid of the Lambert
function, namely

y1(x) = −W
(
−e−x)

, y2(x) = −W−1
(
−e−x)

.

The aim of this remark is to point out that the asymptotics of the second solution, i.e., −W−1(−e−x),
as x → +∞, can be derived in a way quite similar to what we have done in Subsection 4.3 when treating
the function G−1(x). To this end let us recursively define polynomials p̃k(z),

p̃0(z) = z, p̃k+1(z) = σ0
k+1

(
p̃0(z), p̃1(z), . . . , p̃k(z)

)
.

For k � 1, the degree of the polynomial p̃k(z) is k. Here are several first polynomials:

p̃1(z) = z, p̃2(z) = z − 1
2
z2, p̃3(z) = z − 3

2
z2 +

1
3
z3, . . . .

Proposition 14. It holds, as x → +∞,

−W−1
(
−e−x)

= x + O(ln x)

and, for n � 0,

−W−1
(
−e−x)

= x +
n∑

k=0

p̃k(ln x)
xk

+ O
((

ln x

x

)n+1)
.

The proposition can be proven using a similar approach as the one used in the proof of Lemma 11. In
fact, this asymptotic expansion is well known and is in agreement with what has been published in [6,4]
and [5] though the derivation and presentation here is somewhat different.
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