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Abstract. We consider motion in a periodic potential in a classical, quantum, and semiclassical
context. Various results on the distribution of asymptotic velocities are proven.
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1. Introduction

For a function V : Rd ! R which is periodic on a regular lattice L ⇢ Rd we study the
evolutions

i h@tW(t) = H  hW(t) W(0) = Id on L2(Rd) (1)
@t8

t = XH �8t 80 = Id on R2d (2)

where H  h = �  h2

2 1+ V (q), H(p, q) = p2

2 + V (q) and XH(p, q) = (�rV (q), p). This is
done in the limits t ! 1 and  h ! 0.

Why should one get interested in well known things? In view of currently very active
research on transport (anomalous or not) in condensed-matter physics it is first desirable
to put on a firm mathematical ground the folklore that ‘motion in crystals is ballistic’;
second one should try to obtain at least semiclassical information on quantities such as the
distribution of asymptotic velocities.

We investigate the asymptotic velocity limt!1 q(t)/t and the asymptotic behaviour of
q2(t)/t↵ where ↵ = 2 characterizes by definition ballistic, ↵ = 1 diffusive motion.

Our results and the skeleton of the article are as follows.
In section 2 we show for a large class of V that the quantum motion is ballistic

(theorem 2.3). This class of potentials is not optimal in view of singularities; it includes,
however, the Coulomb case. The modulus of the asymptotic velocity is bounded from above
in a natural way (corollary 2.4).

In section 3 we treat the classical motion in smooth potentials. In d = 2 dimensions the
motion is ballistic for high enough energies E; for d > 3 this is true for initial conditions
outside a set of measure ⇠ 1/

p
E. There always exist fast orbits (of speed ⇠ p

E), with a
dense set of directions. This is even true for the ergodic case, where the asymptotic speed
is zero with probability one, whereas almost all orbits are unbounded (theorem 3.1).
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The motion is never Anosov (theorem 3.3).
In particular this means that a gas of particles in a ‘periodic’ container is not Anosov if

the interactions are smooth. So there may be small regions of regular motions and it seems
unlikely that such a gas is ergodic.

In contrast, the planar motion in periodic potentials with coulombic (�1/r type)
singularities is known to be of Anosov type and diffusive, [12]. In section 4 we show
that the distribution of asymptotic velocities—which are zero on a set of full measure—is
dense in a disk of approximate radius

p
E (theorem 4.3).

Concerning semiclassics we show in section 5 that the quantum asymptotic velocities
are always contained in a thickened convex hull of the classical ones for  h small; they
concentrate in measure inside the convex hull of the support of the classical probability
distribution (theorem 5.3).

In particular in the classically ergodic case the positive speed of the quantal motion is
only a quantum fluctuation vanishing in the semiclassical limit. The same is also known to
be true for coulombic potentials, see [13].

The above results are basically consequences of the Birkhoff ergodic theorem. This is
interesting in so far as our technique is likely to be applicable in different semiclassical
situations. On the other hand more specific information is needed to prove sharper results
concerning the distribution of asymptotic velocities.

This is done in section 6, where we consider separable potentials. There we have fast
semiclassical convergence to the classical velocity distribution (theorem 6.1).

2. Quantum ballistic motion

Now we shall prove that the evolution of a quantum system in a rather general periodic
medium is ballistic and that the asymptotic velocity exists. The latter is related to the band
functions.

It is known that for a certain class of singular potentials the spectrum of the Hamiltonian
is absolutely continuous, see Thomas [21], Reed and Simon [19], Knauf [13]. It has been
conjectured that absolute continuity implies ballistic motion. Our proof in d dimensions is
based on Bloch theory.

We consider potentials V : Rd ! R which are periodic w.r.t. a regular lattice L ⇢ Rd

V (q + `) = V (q) (q 2 Rd , ` 2 L)

so that we may consider it as a function V : T ! R on the unit cell T := Rd/L, and
calculate its Fourier transform FV : L⇤ ! C. Our assumptions on the regularity of the
potential are:

(Aq): d = 2: V 2 Lp(T) with p > 1
d = 3: V 2 L2(T) and
d > 3: F(V ) 2 lp(L⇤) with p < (d � 1)/(d � 2).

(Aq) implies that V is form small with respect to �1 and even operator small for d 6= 2,
see [3].

Denote D := �i hr then H  h := D2

2
+̇V

is defined by its quadratic form with form domain Q(H  h) = Q(�1) = H 1(Rd); for d 6= 2
the operator domain is D(H  h) = H 2(Rd).
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We denote by

O(t) := W ⇤(t)OW(t)

(with the solution W(t) := exp(�iH  ht/ h) of (1)) the Heisenberg time evolution of an
operator O.

The symmetries of H  h allow for a decomposition with respect to the group of lattice
translations: let L⇤ be the dual lattice with unit cell T⇤ and denote by

U : L2(Rd) ! L2
✓

T⇤,
dk

|T⇤| ; L2(T, dq)

◆
⌘

Z �

T⇤
L2(T, dq)

dk

|T⇤|
the unitary operator defined by extension from Schwarz space of

U (k, q) ⌘ (U )k(q) :=
X

`2L
e�ik(q+`) (q + `) ( 2 S(Rd)).

The following facts are known in the literature and will be used below.

Theorem 2.1. Let V satisfy (Aq). Then
(1) UH  hU�1 = R �

T⇤ H  h(k) dk
|T⇤| withH  h(k) = 1

2 (D+ hk)2+̇V on L2(T), with form domain
Q(H  h(k)) = H 1(T);

(2) k 7! H  h(k) is a type (B) analytic family;
(3) the spectrum of H  h is absolutely continuous;
(4) H  h(k) has compact resolvent, H  h(k) = P1

n=1 E h
n(k)P  h

n (k) where E h
n(k) are the

eigenvalues in ascending order, P  h
n (k) the eigenprojections;

(5) for every n the following are Lebesgue nullsets:

{k 2 T⇤|E h
n is not differentiable at k}

{k 2 T⇤|P  h
n is not differentiable at k}

{k 2 T⇤|rkE
 h
n(k) = 0}.

Proof. (1)–(4) are proven in [19], respectively in [13] for d = 2. (5) is proven in [23, 21],
see also [5]. ⇤

Remark 2.2. We emphasize that while the assumptions (Aq) are sufficient for absolute
continuity, for d > 2 they are far from necessary for self-adjointness. It would be interesting
to understand what happens in the gap!

The result on ballistic transport in the quantum case is given below (see also the recent
article [5] by Gerard and Nier).

Theorem 2.3. Let V satisfy (Aq). It holds for  with
(D , D ) + (q , q ) < 1:

D̄ := lim
t!1

q(t) 

t
= U�1

✓ Z �

T⇤

1X

n=1
Pn(k)(D +  hk)Pn(k)

dk

|T⇤|
◆

U 

= U�1
✓ Z �

T⇤

1X

n=1
 h�1rkEnPn(k)

dk

|T⇤|
◆

U 

and

lim
t!1

( , q2(t) )

t2 =
Z �

T⇤

1X

n=1
| h�1rkEn|2kPnU (k)k2

L2(T)

dk

|T⇤| > 0.
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Proof. The map

 7! 1
T

Z T

0
D(t) dt � U�1

✓ Z �

T⇤

1X

n=1
Pn(k)(D +  hk)Pn(k)

dk

|T⇤|
◆

U 

is uniformly bounded from H 1 ! L2, consequently it is sufficient to prove the assertion
for  in a dense set; indeed first by the form smallness of V we have the estimate

khDi k2 = h , (1 + D2) i 6 c1|h , H i| + c2k k2 6 c3h , (1 + D2) i
so

����
1
T

Z T

0
D(t) dt

���� 6 khDi(H + i)�1/2kk(H + i)1/2 k 6 ck kH 1

second
����U�1

✓ Z �

T⇤

1X

n=1
Pn(k)(D +  hk)Pn(k)

dk

|T⇤|
◆

U 

����
2

=
Z

T⇤

1X

n=1
kPn(k)(D +  hk)(H(k) + i)�1/2Pn(k)U(H + i)1/2 (k)k2

L2(T)

dk

|T⇤|

6
Z

T⇤
k(D +  hk)(H(k) + i)�1/2k2kU(H + i)1/2 (k)k2 dk

|T⇤| 6 constantk k2
H 1 .

Let  be such that

U =
✓ Z �

T⇤

NX

n=1
Pn(k)

dk

|T⇤|
◆

U .

The set of these is dense in H 1(Rd). Then
����U

✓
1
T

Z T

0
D(t) dt

◆
�

✓ Z �

T⇤

NX

n=1
Pn(k)(D +  hk)Pn(k)

dk

|T⇤|
◆

U 

����
2

6
Z

T⇤

����
1,NX

m,n

1
T

Z T

0
exp(i(Em(k) � En(k))t/ h) dt Pm(k)(D +  hk)Pn(k)U (k)

�
NX

n=1
Pn(k)(D +  hk)Pn(k)U (k)

����
2

L2(T)

dk

|T⇤|

=
Z

T⇤

1X

m=1
m6=n

����Pm(k)
NX

n=1

1
T

Z T

0
ei(Em(k)�En(k))t/ h dt (D +  hk)Pn(k)U (k)

����
2 dk

|T⇤|

! 0 (T ! 1)

by dominated convergence, which is applicable because kPm(k)
P

n . . . k = O(1/T ) for
m 6= n, almost all k, and is uniformly majorized by

constant ⇥ sup
n=1,...,N

kPm(k)(D +  hk)Pn(k)U (k)k2
L2(T)

which is summable w.r.t. m and k.
In [18] it was shown that for  2 H 1(Rd) \ D(|q|):

q(T ) = q +
Z T

0
D(t) dt.
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It follows

lim
T !1

q(T ) 

T
= lim

T !1
1
T

Z T

0
D(t) dt = U�1

✓ Z �

T⇤

1X

n=1
Pn(k)(D +  hk)Pn(k)

dk

|T⇤|
◆

U .

It remains to establish the identity

Pn(k)(D +  hk)Pn(k) =  h�1rkEn(k)Pn(k)

for almost every k 2 T⇤. This follows from:

rkPHP = E(rkP )P + EP(rkP ) + P(rkH)P = ErkP + P(rkH)P

rkPHP = ErkP + PrkE rkH =  h(D +  hk)

all valid in the quadratic-form sense for almost every k by properties 2.1.
This was the first assertion; the second one is a consequence thereof. The positivity is

inferred from theorem 2.1. ⇤

As a corollary we get an estimate for the group velocity in one band.

Corollary 2.4. For every n there is a set of a full measure of k’s such that
����
rkE

 h
n(k)

 h

����
2

6 2(E h
n(k) � inf

{k k=1,Pn(k) = }
h , V iL2(T)).

Proof. Let  2 L2(T), k such that En, Pn are differentiable at k.

| h�2rkEn(k)|2kPn(k) k2 = kPn(k)(D +  hk)Pn(k) k2 6 k(D +  hk)Pn(k) k2

= 2(En(k)kPn(k) k2 � hPn(k) , V Pn(k) i)
implies the inequality. ⇤

3. Classical motion: smooth potentials

The classical motion in a L-periodic potential V on Rd is described by Hamilton’s equations
(2) on phase space P := T ⇤Rd for H : P ! R, H(p, q) = 1

2p2 +V (q). If V 2 C2(Rd , R)

(as we assume in this section), the flow 8t : P ! P exists uniquely for all times t 2 R.
We will analyse its restrictions 8t

E := 8t �6E
to the energy shells

6E := H�1(E).

Alternatively we study motion on the phase space P̂ := T ⇤T over the configuration torus
(and mark corresponding objects with a hat). Using the phase-space projection 5 : P ! P̂

arising from the projection ⇡ : Rd ! T = Rd/L of configuration spaces, we thus consider
the flow 8̂t : P̂ ! P̂ generated by the Hamiltonian function Ĥ : P̂ ! R, Ĥ � 5 = H ,
and its compact energy shells 6̂E := Ĥ�1(E) with the restricted flows 8̂t

E := 8̂t �6̂E
.

The Liouville measures �̂ of the phase-space regions Ĥ�1([Vmin, E]) E 2 R, are now
finite, a fact which enables us to use notions of ergodic theory.

The energy scales Vmin := infq2Rd V (q),

Vmean :=
Z

T
V (q) dq/|T|

and Vmax := supq2Rd V (q) of the dynamics will be used repeatedly.
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As a consequence of Birkhoff’s ergodic theorem for �̂—almost all x̂0 2 P̂

v̄±(x̂0) := lim
T !±1

1
T

Z T

0
p̂(t, x̂0) dt

exist and are equal. In this case we set v̄ := v̄±, and otherwise v̄ := 0, thus defining the
asymptotic velocity

v̄ : P̂ ! Rd

which is a measurable phase-space function.
We denote its lift v̄ �5 : P ! Rd to the original phase space P by the same symbol

and thus have

lim
t!±1

q(t, x0)

t
= v̄(x0)

�—almost everywhere.
8̂t is called ballistic at x̂ 2 P̂ if v̄(x̂) 6= 0 (observe that by the above definition this

implies existence and equality of v̄±).
We are particularly interested in the energy dependence of the asymptotic velocity and

thus introduce the energy–velocity map

A := (Ĥ , v̄) : P̂ ! Rd+1. (3)

A is measurable and generates an image measure ⌫ := �̂A�1 on Rd+1.

Example. In the simplest case V = 0 of free motion ⌫ is a smooth measure on the
paraboloid

A(P̂ ) = {( 1
2v2, v)|v 2 Rd}.

As in the above example, in the general case ⌫ is invariant under (h, v) 7! (h, �v),
since the motion is reversible.

The equality H = 1
2 v̄2 is in the general case replaced by the estimate |v̄(x)| 6p

2(H(x) � Vmin).
For regular values of the energy E one may consider the probability distribution of the

asymptotic velocities v̄ w.r.t. the normalized Liouville measure �̂E on the energy shell 6̂E .
By the above bound this is supported within a ball of radius

p
E � Vmin.

Unlike in the above example, in general it is not expected to depend weak-*-continuously
on E, see remark 3.2(1) below.

Here are our results on classical ballistic motion for V 2 C2 potentials:

Theorem 3.1.
(1) For d = 1 the motion is ballistic at x = (p, q) 2 P iff E := H(x) > Vmax, with

asymptotic velocity

v̄(x) = sign(p)

l�1
R l

0 (2(E � V (q)))�
1
2 dq

(l > 0 being the period of L).
(2) For d > 1 and E > Vmax there exists a set BE ⇢ 6E for which the motion is ballistic,

whose directions

{v̄(x)/kv̄(x)k|x 2 BE}



Motion in periodic potentials 181

are dense in Sd�1, with moduli
p

2(E � Vmax)p
E � Vmean

6 kv̄(x)k 6
p

2(E � Vmin) (x 2 BE). (4)

(3) For d = 2 and V 2 C5(Rd , R) there exists a threshold Eth > Vmax above which the
flows 8t

E (E > Eth) are ballistic �̂E , almost everywhere.
Eth is given by the following condition. ForE > Eth there are two geometrically different

minimal tori T2
1, T2

2 ⇢ 6̂E (by ‘geometrically different’ we mean: not related by time-reversal
symmetry I(p̂, q̂) := (�p̂, q̂)).

(4) We assume here that V is 3d times continuously differentiable. Then for d > 2 there
exists a threshold energy Eth > Vmax and for E > Eth subsets B̂E ⇢ 6̂E of measures

�̂E(B̂E) > 1 �
p

Eth/E

such that on B̂E the motion is ballistic.
(5) If the flow 8̂t

E on the energy shell is ergodic w.r.t. �̂E , then v̄ = 0 with �̂E probability
one. However, if in addition E > Vmax, the trajectories are unbounded with probability one:

�̂E

✓⇢
x̂0 2 6̂E

���� lim sup
T

����

Z T

0
p̂(t, x̂0) dt

���� = 1
�◆

= 1.

(6) For d > 2 there are smooth L-periodic potentials V and energies E > Vmax whose
energy shell contains a set of bounded orbits of positive measure:

�̂E

✓⇢
x̂0 2 6̂E

���� lim sup
T

����

Z T

0
p̂(t, x̂0) dt

���� < 1
�◆

> 0.

Example. Consider first in d = 1 dimensions the potential V (q) = cos(q). With the
formula of theorem 3.1 for E > 1 the asymptotic speed equals

v̄(E) = ⇡
p

E � 1p
2 Elliptic K(2/(1 � E))

(Elliptic K being the complete elliptic integral of the first kind) and v̄(E) = 0 for
�1 6 E 6 1.

For d = 2 this leads to a distribution of asymptotic velocities for energy E of the
potential V (q) = cos(q1) + cos(q2) depicted in figure 1. Observe that there is a positive
probability for motion along the axes.

Proof.
(1) v̄(x0) = l/T where T := R l

0
dq
q̇

is the time needed for the spatial period l.
(2) The idea is to construct periodic but non-contractible orbits on the torus. These are

covered by ballistic orbits in the configuration space Rd
q .

For E > Vmax we consider the geodesic motion on T in the Jacobi metric

ĝE(q̂) := (E � V (q̂)) ·
dX

i=1
dq̂i ⌦ dq̂i . (5)

The geodesics of that metric are known to coincide with the solution curves t 7! q̂(t, x̂0),
x̂0 2 6̂E , up to a time reparametrization ⌧ 7! t (⌧ ).
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Figure 1. Distribution of asymptotic velocities v̄ for the separable potential V (q) = cos(q1) +
cos(q2) and energy E = 3.

In every nontrivial homotopy class l of the fundamental group ⇡1(T) ⇠= L we find a
shortest closed geodesic ĉ : S1 ! T (with S1 := R/Z). The length

L(ĉ) =
Z 1

0

����
dĉ(⌧ )

d⌧

���� ·
p

E � V (ĉ(⌧ )) d⌧ (6)

(k · k denoting Euclidean norm) of that geodesic in the Jacobi metric is the infimum of
the lengths of the curves in its homotopy class l. Let the corresponding solution curve
t 7! q̂(t, x̂0) on the torus have period T .

We have q(nT , x0) = q(0, x0) + n · l for motion in configuration space Rd
q , starting

from a point x0 2 5�1(x̂0). Therefore the asymptotic velocity v̄(x0) of this orbit exists and
equals v̄(x0) = l/T . So our task is to estimate T from below and above.

The upper bound

kv̄(x)k 6
p

2(E � Vmin)

follows from the general bound kpk 6 p
2(E � Vmin) if (p, q) 2 6E .

In order to prove the lower bound for kv̄k, we derive an upper bound for the period T

and argue as follows. The length L(ĉ) of our minimal geodesic ĉ is shorter than the lengths
of all the homotopic straight lines c̃ ⌘ c̃q̂ : S1 ! T,

c̃(⌧ ) := q̂ + ⌧ · l (mod L)

starting from a point q̂ 2 T. However, by formula (6) the length L(c̃) = klk ·R 1
0

p
E � V (c̃(⌧ )) d⌧ . By concavity of x 7! p

E � x

Z 1

0

p
E � V (c̃(⌧ )) d⌧ 6

p
E � Vmean

for some q̂. So we obtain

L(ĉ) 6 L(c̃) 6 klk ·
p

E � Vmean. (7)

On the other hand the period

T =
Z 1

0

dt

d⌧
d⌧ =

Z 1

0

����
dĉ(⌧ )

d⌧

����

�p
2(E � V (c̃(⌧ ))) d⌧ 6 L(ĉ)/(

p
2(E � Vmax)).

Together with (7) this gives T 6 klk · pE � Vmean/(
p

2(E � Vmax)) from which the lower
estimate for the asymptotic speed kv̄(x0)k = klk/T in (4) follows.
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The asymptotic direction v̄(x0)/kv̄(x0)k of our ballistic orbit equals l/klk, but the
directions of lattice points l 2 L \ {0}, seen from the origin are dense in Sd�1.

(3) We show that under the existence assumption for the tori T1, T2 ⇢ 6̂E the motion
is ballistic �̂E almost everywhere.

For E > Vmax and d = 2 the energy shell 6̂E is diffeomorphic to S1⇥T2, S1 representing
the circle of directions p̂/kp̂k.

By the minimality condition the tori

T1, T2 ⇢ 6̂E ⇢ P̂ ⇠ R2 ⇥ T

(and their time inverses) I(T1), I(T2)) project diffeomorphically to the configuration torus
T. Thus we may represent them as graphs of functions P̂1, P̂2 : T ! R2. For i = 1, 2 the
mapping

P̂i/kP̂ik : T ! S1

are the local direction, and is by minimality topologically trivial. So their complement

6̂E � (T1 [ T2 [ I(T1) [ I(T2))

in the energy shell of four components diffeomorphic to thickened two-tori. These
components roughly correspond to sectors of directions in which the particle is forced
to move.

The problem which has to be overcome is that these sectors of directions depend on
the point q, and that their union for all q may have a total opening angle of more than ⇡ .
Thus it may happen that the particle goes backward for some time.

Without loss of generality we consider the component Ĉ ⇢ 6̂E � (T2
1 [ T2

2) which
consists of points (p̂, q̂) 2 6̂E which are linear combinations p̂ = ↵1P̂1(q̂) + ↵2P̂2(q̂) of
the points (P̂i(q̂), q̂) 2 T2

i with positive coefficients ↵i .
On the invariant tori T2

i the motion is conditionally periodic with frequency vectors
!i 2 R2 \ {0}. If we consider the Lagrangian manifolds Mi ⇢ 6E which under 5
project to the tori T2

i , these manifolds are not only diffeomorphic to R2, but by our
minimality assumption they project under ⇧ : P ! R2, (p, q) 7! q diffeomorphically
to the configuration plane R2. Thus they induce two flows

9 t
i : R2 ! R2 9 t

i := ⇧ �8t � (⇧ �Mi
)�1.

These are nearly linear in the sense

9 t
i (q0) = q0 + !i · t + O(t0) (8)

with O(t0) uniform in q0, since they come from a conditionally periodic motion on a torus.
The flow lines of 91 and 92 both foliate the configuration plane and are transversal to each
other. Since both foliations project under ⇡ : R2 ! T2 to foliations of the (compact!)
torus, the angles under which these foliations intersect are bounded away from 0 and ⇡ ,
see figure 2. However, 91 and 92 do not commute in general. Nevertheless, we may use
them to find an adapted coordinate system

9 : R2 ! R2 (s1, s2) 7! 9R
1 �9s2

2 (q0) \9s1
1 �9R

2 (q0)

since the orbit 9R
1 � 9s2

2 (q0) through the point 9s2
2 (q0) has a unique intersection with the

orbit 9s1
1 �9R

2 (q0) through 9R
2 (q0). By the above remarks we have

9(s1, s2) = q0 + !1 · s1 + !2 · s2 + O(1)

and the Jacobian of 9 is uniformly bounded.
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q2

q1

Figure 2. The two foliations of the configuration torus.

We consider the component C = 5�1(Ĉ) of 6E and an initial point x0 = (p0, q0) 2 C.
By compactness of T the angle between P̂1(q̂) and P̂2(q̂) is bounded away from 0 and ⇡ .
Thus for some c > 0 each point (p, q) 2 C has a momentum vector p which is a linear
combination p = ↵1p1 + ↵2p2 with (pi, q) 2 Mi and ↵1 + ↵2 > c.

Thus the 9-coordinates s1, s2 are increasing along the trajectory t 7! q(t, x0), and there
exists a c0 > 0 with d

dt
(s1(t) + s2(t)) > c0.

The linear coordinate q̃ : R2 ! R, q̃ := (!1/k!1k + !2/k!2k) · q on the configuration
plane increases (at least) linearly along the trajectory. Namely, by (8) the trajectory meets
the inequality

q̃(q(t, x0)) =
✓
!1

k!1k + !2

k!2k
◆

·9(s1(t), s2(t)) =
✓

k!1k + !1 · !2

k!2k
◆

s1(t)

+
✓

k!2k + !1 · !2

k!1k
◆

s2(t) + O(1) > cII (s1(t) + s2(t)) > cI cII · t

if t is large. That is, if the asymptotic velocities v̄±(x0) exist and are equal, they must be
non-zero.

The existence of such minimal tori for large E follows under our differentiability
assumption V 2 C5(R2, R) from the results of [17] by Pöschel.

(4) In the Jacobi metric (5) the perturbation of the integrable part equals (1 �
V (q)/E)

Pd
i=1 dqi ⌦ dqi . Since V̂ 2 C3d(T, R), the norm of the perturbation is finite and

proportional to E�1. The unperturbed part of the Hamiltonian function for geodesic motion
in that metric is just the Hamiltonian of free motion. So up to a linear transformation
the momenta coincide with the action variables of this integrable system, and the non-
degeneracy condition of the frequencies is satisfied. These depend analytically on the
action variables, and the perturbation is C3d and of size " = O(1/E) We can apply the
result by Pöschel on the measure of KAM tori for a perturbation of order " [17, corollary 2],
which says that the measure of the complement of the KAM tori is of order

p
".

(5) If �E({v̄ = 0}) < 1, there exists an index j 2 {1, . . . , d} with probabilities
�E({v̄j > 0}) = �E({v̄j < 0}) > 0.

However, this contradicts ergodicity, since these two exclusive events are flow invariant.
To show that the trajectories are unbounded with probability one if E > Vmax, we

consider the flow-invariant measurable events En ⇢ 6̂E , n 2 N defined by

En :=
⇢
x̂0 2 6̂E

����9t1, t2 2 R :
����

Z t2

t1

p̂(t, x̂0) dt

���� > n

�
.
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We know from part 2 of the theorem that there are ballistic trajectories. Each point x̂ 2 6̂E

on such a ballistic trajectory is contained in all the sets En. By absolute continuity of
k R t2

t1
p̂(t, x̂0) dtk w.r.t. the initial condition x̂0 we conclude that for all n 2 N the Liouville

measure �E(En) > 0, but the flow being ergodic, and En flow invariant, �E(En) can only
be zero or one. Thus, the set \n2NEn of unbounded trajectories has measure one.

(6) To construct potentials V 2 C1(Rd , R), d > 2, which have energies E > Vmax
with many bounded orbits on the energy shell, one writes V (q) := P

`2L W(q � `) with
W 2 C1

0 (Rd , R), W(q) := W̃ (|q|), with W̃ (r) = 0 for r > 1
2 min`2L k`k, so that the

supports of the lattice-translated W do not overlap. As long as the particle is captured near
a lattice point `, the motion is one in a potential centrally symmetric around `, and the
angular momentum around that point is constant.

Thus one reduces the dimension by considering the effective potential W̃L(r) :=
W̃ (r) + L2

2r2 for angular momentum L. For a given choice of L 6= 0 one chooses W̃ 6 0 so
that the effective potential has a strictly positive non-degenerate minimum r0: W̃L(r0) > 0,
d
dr

W̃L(r0) = 0, d2

dr2 W̃L(r0) > 0. Then the assertion holds for E = W̃L(r0) + ", since
Vmin 6 0.

Whether one can construct for d > 3 potentials with a positive measure of bounded
orbits on energy shells of arbitrarily large energy, is a much more complicated question.
⇤

Parts 2 and 3 of the above theorem show that the minimal KAM tori play an important
role in the distribution of asymptotic velocities. However, it is known [14] that for d > 2
an energy shell can only be foliated by such a tori if V is constant. This suggests that tori
which do not diffeomorphically project to the configuration torus are important for the high-
energy distribution of asymptotic velocity, see figures 3 and 4. Indeed, in the separable case
V (q) = P

Vj (qj ) with Vj non-constant, the probability to move in each of the directions
`1, . . . , `d is positive (figure 1). In the non-separable case such as the one depicted in
figure 5, it can be proven by perturbation arguments that there are lattice-rational directions
in which the particle moves with positive probability. If for every probability measure ⌫E

which is absolutely continuous w.r.t. �E

D(⌫E) := lim
t!±1

R
6E

(q(t, x0) � q0)
2 d⌫E(x0)

|t |
exist and is positive, we call 8t

E diffusive.

q2

q1 q1

Figure 3. Motion on unperturbed (left) and perturbed (right) invariant torus.
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Figure 4. Motion on an invariant torus which does not
project diffeomorphically onto the configuration torus.

Figure 5. Distribution of asymptotic velocities v̄ for the
non-separable potential V (q) = cos(q1) + cos(q1 + q2)
and energy E = 3 (numerical).

Moreover, we say that the flow 8t
E is diffusive in the strong sense if q(t, x0)/

p|t |
converges weakly to a Gaussian distribution with a positive covariance matrix. An example
of a strongly diffusive flow is given in [12].

Remarks 3.2.
(1) Conversely to the third statement, for d = 2 a lowering of the energy may lead to

the destruction of the second to last KAM torus, which in turn may lead to a discontinuous
decrease of the group velocities.

As only for d = 2 the d-dimensional KAM tori have codimension one in the (2d � 1)-
dimensional energy shell 6̂E , for d > 3 Arnold diffusion may lead to initial conditions of
positive measure which are not ballistic.

(2) By the statement (4) there always exists a threshold energy above which the motion
is not diffusive.

(3) The mean classical velocity v̄ for d = 1 equals the velocity expectation

h � ir i
h , i

of the WKB function

 (q) := 1
(E � V (q))1/4 exp

✓
± i

Z q

0

p
2(E � V (q 0)) dq 0

◆
.

Theorem 3.3. If d > 2, then there is no energy E for which 8t
E is an Anosov flow.

Proof. If V = 0, the motion is integrable and thus never Anosov. So we may assume V is
non-constant. The Hamiltonian is optical, that is, strictly convex on each fibre.

Then for E 6 Vmax the energy shell 6E touches the zero section of T ⇤Rd . Thus by
theorem 1 of Paternain and Paternain [16] 8t

E is not Anosov.
For E > Vmax theorem 3 of [14] which generalizes a theorem of Hopf [7] says that the

flow 8t
E has conjugate points if V is non-constant. Thus by theorem 1 of [16] the flow

cannot be Anosov either. ⇤
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Remarks 3.4.
(1) Of course theorem 3.3 does not imply that motions in smooth potentials on T cannot

be ergodic. In contrast, Donnay and Liverani gave in [4] a method to construct such ergodic
C1(T) potentials for d = 2 freedoms. These potentials were constructed in such a way
that for a given energy they contained circularly symmetric pits with a parabolic circular
trajectory. Any decrease of the energy then makes this trajectory elliptic and the motion
non-ergodic.

Our theorem shows that non-hyperbolic trajectories such as in that example must
necessarily appear. In general we conjecture that for d = 2 these trajectories lead to
anomalous diffusion effects and are incompatible with diffusivity in the strong sense.

Sinai and Kubo gave examples of repelling continuous potentials on a torus which lead
to ergodic flows. However, in this case the potentials could not be chosen to be C1 so that
they too cannot serve as counterexamples to our theorem. See [4] for a discussion.

(2) Motion of k particles on a d-dimensional configuration space with periodic boundary
conditions and mutual forces of potential type can be described by the motion of one particle
on a (kd)-dimensional torus. Thus theorem 2 implies that it will be very hard to show
ergodicity of gases if the interparticle forces are smooth.

(3) A geometric version of the above theorem is: geodesic flows on a torus (T, g) are
never Anosov. This follows from the generalizations of Hopf’s theorem by Burago and
Ivanov [2], together with [16, theorem 1].

This is clearly not a mere consequence of the topology of the unit tangent bundle
Sd�1 ⇥T, since for d = 2 this is a three-torus, and the simplest example of an Anosov flow
(a suspension of Arnold’s cat map) is one on T3.

4. Classical motion: coulombic potentials in d = 2

We now treat motion in a planar crystal with attracting coulombic forces. We fix the
locations of the nuclei within the crystal by selecting m > 1 points s1, . . . , sm 2 D in the
fundamental domain

D := {x1`1 + x2`2|x1, x2 2 [0, 1)} ⇢ R2
q

of the lattice L ⇢ R2
q with basis `1, `2. The nuclei attract the electron with the charges

Z1, . . . , Zm > 0. That is, we assume the potential of the form V (q) ⇠ �Zi/|q � si | for q

near si . Now by the periodicity of the crystal the potential is singular at the points of

S := {si + `|i 2 {1, . . . , m}, ` 2 L}
and thus only defined in the punctured configuration plane M̃ := R2

q \ S. Sometimes we
identify the plane with C.

Definition 4.1. A potential V 2 C1(M̃, R) which is L-periodic

V (q + `) = V (q) (q 2 M̃, ` 2 L)

is called coulombic if for " > 0 small the functions f1, . . . , fm,

fi(Q) :=
(

V (si + Q2) · QQ̄ 0 < |Q| < "

�Zi Q = 0

are C1.
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The reason for the somewhat odd-looking definition is that we want to regularize the
Coulomb singularities by using the so-called Levi-Civita transformation.

Observe that Vmax := supq2M̃ V (q) and Vmean are still well-defined finite quantities.
The classical motion is generated by the Hamiltonian function

H̃ (p, q) := 1
2p2 + V (q) ((p, q) 2 T ⇤M̃).

Due to collisions with the singularities in S the Hamiltonian flow on the cotangent bundle
T ⇤M̃ of the punctured plane M̃ does not exist for all times.

However, as described in lemma 4.2 below, the flow can be smoothly regularized.

Lemma 4.2. There exists a unique smooth extension (P,!, H) of the Hamiltonian system
(T ⇤M̃, dq1 ^ dp1 + dq2 ^ dp2, H̃ ), where the phase space P is a smooth four-dimensional
manifold with

P := T ⇤M̃ [
[

S
R ⇥ S1 (9)

as a set, ! is a smooth symplectic two-form on P with

! �T ⇤M̃= dq1 ^ dp1 + dq2 ^ dp2

and H : P ! R is a smooth Hamiltonian function with H �T ⇤M̃= H̃ .
The smooth Hamiltonian flow

8t : P ! P (t 2 R) (10)

generated by H is complete.
For all energies E which are regular values of V , the energy shell

6E := {x 2 P |H(x) = E} (11)

is a smooth, three-dimensional manifold, and we write 8t
E := 8t �6E

.

Proof. The construction works locally near the singularities s 2 S. We shortly explain the
method by considering the simplest case. For more details see [9, proposition 2.3], where
a scattering potential is considered.

One may linearize the Kepler flow with Hamiltonian function

H̃K(p, q) := 1
2p2 � Z/|q|

in a suitable neighbourhood of R2
p ⇥{0} in the phase space T ⇤(R2

q \{0}), using the canonical
coordinates H̃K , T̃ , L̃ and '̃, where L̃(p, q) := p ^ q is the angular momentum, T̃ (p, q) is
the time needed to come from the phase-space point (p, q) to the pericentre of the Keplerian
conic section and '̃(p, q) is the angle between the direction of that pericentre and, say, the
1-direction. Except T̃ these phase-space functions are constant along the Kepler flow, and
the collision points correspond to T̃ = 0, L̃ = 0. The remaining coordinates (H̃K, '̃) take
values in a cylinder R ⇥ S1.

Similarly, because the singularities of V are of the Kepler form, one may thus complete
the phase space T ⇤M̃ by gluing one cylinder for each singularity in S. ⇤

So after this regularization the Hamiltonian flow exists for all time, and we are in
a similar situation as in the case of a smooth periodic potential treated in section 3. In
particular we also consider the motion over the configuration torus T.
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Theorem 4.3. If 1 ln(Eth � V ) > 0, then for all E > Eth the intersection of the set
v̄(6̂E) ⇢ R2 of asymptotic velocities for energy E with the disk of radiusp

2(E � Vmax)p
E � Vmean

is dense.
Remark 4.4. Since the motion is diffusive [12] and thus in particular the asymptotic velocity
can only be non-zero on a set of measure zero, this should be considered as a ‘very large
deviation’ result.

The ballistic orbits which we construct are of ‘stop and go’ type, that is, they periodically
change between fast motion in a given direction and localized motion. Such orbits are
somewhat special to our coulombic potential and do not exist in the general case. Compare,
however, with theorem 3.1(2).

Proof. Although lemma 4.2 solves the problem of collision orbits and regularizes the motion
without changing it otherwise, we will now introduce a second regularization which is more
useful when one tries to construct orbits with prescribed asymptotic velocity, although it
leads to a different phase space and a new time parametrization.

For coulombic potentials, the Jacobi metric (5) becomes singular near the positions S of
the nuclei. However this is only a coordinate singularity, and Gaussian curvature does not
diverge. This can be seen by considering the case of the Kepler flow and the regularizing
complex coordinate Q 2 C with Q2 = q, that is, the Levi-Civita transformation. It turns
out that in this coordinate the Jacobi metric, originally defined only for Q 6= 0, can be
smoothly extended to a non-singular Riemannian metric on the whole complex Q plane.
Note that the Q plane is a two-fold branched covering of the original q plane, with a branch
point at the position q = 0 of the singularity.

In [12] this local construction was globalized using the toral Riemann surfaces T =
M/L, its four-fold covering torus T2 := M/(2L) (with projection 5T2,T : T2 ! T) and the
compact Riemann surface

M4 :=
⇢
(q, Q) 2 T2 ⇥ P

����Q
2 =

Qm
i=1 � (q � si + `1)� (q � si + `1 + `2)Qm

i=1 � (q � si)� (q � si + `2)

�

� (z) := z
Y

w22L\{0}
(1 � z/w) exp(z/w + 1

2 (z/w)2)
(12)

being the Weierstrass � -function and P := C [ 1 the Riemann sphere. The map
5M4,T2 : M4 ! T2, (q, Q) 7! q is a two-fold branched covering with branch points
at the singularities, all branch numbers equalling one.

Thus by the Riemann–Hurwitz relation the genus G(M4) of M4 equals G(M4) = 2m+1
(m being the number of singularities in the fundamental domain). Since thus the genus is
> 3, by Gauss–Bonnet the integrated Gaussian curvature

R
M4

KE dM4 = �4⇡(G(M4) � 1)

of the lifted Jacobi metric g4,E on M4 becomes negative. Due to the branched covering
construction the metric g4,E , originally not defined at the branch points, can be smoothly
extended to these points by taking limits. So the geodesic flow �t

4,E on the unit tangent
bundle T1M4 of the surface (M4, g4,E) is smooth and defined for all times.

In terms of the potential V the Gaussian curvature KE equals

KE(q) = (E � V (q))1V (q) + (rV (q))2

2(E � V (q))3 = �1 ln(Eth � V (q))

2(E � V (q))
(13)

with 1 and r denoting the Euclidean Laplacian and gradient, respectively.
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For many coulombic potentials V the Gaussian curvature of M4 becomes strictly
negative (KE(x) < 0 for all x 2 M4) if E is large enough. Clearly this can only happen if
1V < 0 in (13), and negativity of (13) is then preserved if one enlarges the energy E.

Similar to the proof of theorem 3.1(2) we construct ballistic orbits in R2
q by finding

closed geodesics of minimal length. However, due to the presence of singularities, these
geodesics are not constructed on T but on the smooth Riemannian surface (M4, g4,E).

Since (M4, g4,E) is closed, there exists a closed geodesic in every non-trivial conjugacy
class of the fundamental group ⇡1(M4). Moreover, if the Gaussian curvature KE is strictly
negative (as is the case if 1 ln(Eth �V ) > 0 and E > Eth), then this geodesic c : S1 ! M4
is essentially unique within its conjugacy class. Namely, any other closed geodesic in
that class coincides with c up to a shift of the initial point (see e.g. Klingenberg [11,
theorem 3.8.14]).

As we are interested in ballistic trajectories on R2
q , we seek closed trajectories on T

which are, however, non-contractible curves on the configuration torus. How many such
orbits can we construct by projecting closed geodesics in M4 to T?

This question can be answered by considering the covering projection

5M4,T := 5T2,T �5M4,T2 . (14)

This continuous map induces a homomorphism

(5M4,T)⇤ : ⇡1(M4) ! ⇡1(T)

of fundamental groups. We claim that the image subgroup Im ⇢ ⇡1(T) equals

Im = ⇡1(T2) ⇠= 2L (15)

that is, consists of the equivalence classes of all loops c : S1 ! T which surround the torus
T ⇠= S1 ⇥ S1 in both basic directions an even number of times (this statement is of course
independent of the base).

Equation (15) follows from the definition (14) if we show that the homomorphism

(5M4,T2)⇤ : ⇡1(M4) ! ⇡1(T2)

is onto. To show this, we consider loops in T2 based at b 2 T2, where we assume the base
point b not to be a one of the 4m branch points of 5M4,T2 , see (12), so that it has exactly
two preimage points b0, b1 2 M4.

Now we can uniquely lift any based loop c : S1 ! T2 which avoids the branch points,
to a path c̃ : [0, 1] ! M4 starting at c̃(0) := b0 and ending either at c̃(1) = b0 or at
c̃(1) = b1.

On the other hand, we can find one fixed based loop l : S1 ! T2 which is contractible in
T2 and is covered by a path l̃ : [0, 1] ! M4 connecting the points l̃(0) = b1 and l̃(1) = b0.
Thus either c̃ or c̃ ⇤ l̃ (⇤ denoting concatenation of paths) is a loop in M4 based at b0, and
in both cases the image w.r.t. 5M4,T2 is freely homotopic to c. This shows that the image
subgroup Im equals (5M4,T2)⇤(⇡1(M4)) = ⇡1(T2) and thus (15).

We need the above information in order to construct fast orbits in a given asymptotic
direction, but we also need orbits with asymptotic speed zero in order to construct our ‘stop
and go orbits’.

With this aim we note that the kernel Ker((5M4,T)⇤) ⇢ ⇡1(M4) of our homomorphism
is non-trivial. Indeed it contains the commutator subgroup

Comm(⇡1(M4)) = {ghg�1h�1|g, h 2 ⇡1(M4)}
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of the fundamental group, which is the smallest normal subgroup F with ⇡1(M4)/F Abelian.
The fundamental group of M4 is non-Abelian, since the genus G(M4) > 3. So there exists
a non-trivial

s 2 Ker((5M4,T)⇤) s 6= id.

By shortening a loop in the conjugacy class of s 2 ⇡1(M4), we obtain a closed geodesic
s̃ : S1 ! M4, our stop geodesic. After a reparametrization of time the projected geodesic
5M4,T � s̃ : S1 ! T is a solution curve of the flow 8̂t with initial conditions x̂s 2 6̂E and
period Ts . This stop orbit has asymptotic velocity v̄(x̂s) = 0.

Now in order to show our denseness result, we consider an arbitrary velocity v 2 R2

with modulus

kvk 6
p

2(E � Vmax)p
E � Vmean

(16)

and seek for any " > 0 an x̂0 2 6̂E with kv̄(x̂0) � vk < ".
This is easy if v = 0 because then we set x̂0 := x̂s for our stop orbit with v(x̂s) = 0.

So we assume that v 6= 0 and first approximate the direction v/kvk.
We can find a lattice vector `0 2 L ⇠= ⇡1(T) with

����
v

kvk � `0

k`0k
���� <

"

2

p
E � Vmeanp

2(E � Vmax)
. (17)

Given `0, we now construct a closed geodesic g̃ : S1 ! M4 whose associated periodic orbit
on T starting at some point x̂g 2 6̂E has asymptotic direction

v̄(x̂g)

kv̄(x̂g)k = `0

k`0k (18)

and speed

kv̄(x̂g)k >
p

2(E � Vmax)p
E � Vmean

. (19)

As in the proof of theorem 3.1(2) we consider the closed straight lines
k : S1 ! T k(⌧ ) := q0 + ⌧ · ` (mod L)

with direction ` := 4`0 and initial point q0 2 T. Since the loop k is at least four-periodic,
we can lift k to M4 obtaining a loop k̃ : S1 ! M4 (namely, the lift of k to T2 is at least
two-periodic and the branched covering 5M4,T2 is only two-sheeted).

Similar to (7), by an appropriate choice of the initial point q0 we can ensure that the
length L(k̃) = k`k · R 1

0
p

E � V (k(⌧ )) d⌧ of the corresponding loop in the Jacobi metric is
bounded by

L(k̃) 6 k`k
p

E � Vmean.

By shortening the loop k̃ we obtain a geodesic g̃ : S1 ! M4 which projects to a closed
orbit on the torus starting at some x̂g 2 6̂E .

By the argument already used in the proof of theorem 3.1(2) the period Tg of that
orbit is 6 k`k

p
E�Vmeanp

2(E�Vmax)
so that the asymptotic velocity v̄(x̂g) = `/Tg meets (19). (18) is

immediate from the construction since `0/k`0k = `/k`k.
Now this go orbit is too fast for our purposes. Therefore we find integers p, q 2 N

with ����
p

q
� Tg

Ts

✓kv̄(x̂g)k
kvk � 1

◆���� < � (20)
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and consider for n 2 N the group elements

on := sn·p · gn·q 2 ⇡1(M4).

By curve shortening we find a geodesic õn : S1 ! M4 in the conjugacy class of on.
We denote the period of the unit speed reparametrized õn by T̃n, and the period of the
corresponding closed orbit on the torus by Tn, and claim that

lim
n!1

Tn

n(p · Ts + q · Tg)
= 1. (21)

This follows from
(1) the Anosov property of the geodesic flow on the unit tangent bundle T1M4 of

(M4, g4,E) proven in [12] and
(2) the formula Tn = R T̃n

0
dt
d⌧ d⌧ = R T̃n

0
d⌧

2(E�V (q(⌧ )))
for the period. So the time

reparametrization factor 1/(2(E�V (q))), seen as a function on T1M4, is Hölder continuous.
By (1) the geodesic flow line of õn approximates the go geodesic exponentially in n,

then switches to the stop geodesic in n-uniformly bounded time, approximates that geodesic
exponentially in n, and finally switches back to the go geodesic in n-uniformly bounded
time.

Thus by (2) the ratio of times in (21) goes to one as n ! 1.
Let x̂n 2 6̂E be a point on the torus orbit corresponding to the stop and go geodesic

õn. Then v̄(x̂n) = nq `/Tn and v̄(x̂g) = `/Tg so that by (21)

lim
n!1 kv̄(x̂n)k = k`k

Tg + (p/q)Ts

= kv̄(x̂g)k
� ✓

1 + pTs

qTg

◆
.

The choice (20) of p/q implies that

lim
n!1 |kv̄(x̂n)k � kvk| < "/2 (22)

for � > 0 small.
The geometric inequality

kv � v̄(x̂n)k 6 |kv̄(x̂n)k � kvk| +
����

v

kvk � v̄(x̂n)

kv̄(x̂n)k
���� · kvk

together with (16)–(18) and (22) gives the result kv � v̄(x̂n)k < " for n large. ⇤

5. Semiclassics: smooth potentials

We now compare the quantum system in the semiclassical limit with the classical one and
thus mimick the definitions of section 3.

The Schrödinger operators H  h(k) on L2(T), k 2 T⇤ have the eigenvalues E h
n(k). The

semiclassical asymptotic velocities are defined by

v̄ h
n(k) :=

(
 h�1rkE

 h
n(k) gradient exists

0 otherwise.

We equip the semiclassical phase space P̂  h := N ⇥ T⇤ with the semiclassical measure
�̂ h := (2⇡  h)dµ1 ⇥ µ2, where µ1 denotes counting measure on N and µ2 Haar measure on
the Brillouin zone T⇤.
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In order to compare classical with semiclassical quantities, we introduce the energy-
velocity map

A h : P̂  h ! Rd+1 with A h(n, k) := (E h
n(k), v̄ h

n(k))

and the image measure ⌫  h := �̂ h(A h)�1.
Our conjecture, which we shall prove in some special cases is as follows.

Conjecture 5.1. For all L-periodic potentials V 2 C1(Rd , R)

w⇤ � lim
 h&0

⌫  h = ⌫

(which means

lim
 h&0

Z

Rd+1
f (x) d⌫  h(x) =

Z

Rd+1
f (x) d⌫(x)

for continuous functions f 2 C0
0(Rd+1, R) of compact support).

As can already be seen from the one-dimensional case, the supports of the semiclassical
measures ⌫  h are in general much larger than that of ⌫. If the bands do not touch, then
R ⇥ {0} belongs to supp(⌫  h) (since then by symmetry v̄ h

n(0) = 0), whereas the classical
motion is ballistic above Vmax.

In this section we draw conclusions from Birkhoff’s ergodic theorem which for some
potentials implies the truth of our conjecture.

We first show that the range of semiclassical asymptotic velocities is included in the
convex hull of the classical ones. No assumption on the integrability or ergodicity of the
classical system is made.

This involves a limit T ! 1,  h ! 0 which is controlled by the Birkhoff-type
proposition 5.2.

Let X be a compact metric space, consider a continuous flow

8t : X ! X (t 2 R)

and a continuous map

O : X ! Rd .

Denote by M(X) the set of Borel probability measures on X, M(X,8) ⇢ M(X) the
set of flow invariant ones and

OT (x) := 1
T

Z T

0
O �8t (x) dt. (23)

By Birkhoff’s theorem the good set

G := {x 2 X| lim
T !±1

OT (x) exist and are equal}

has measure µ(G) = 1 for all µ 2 M(X,8). We set Ō := limT !1 OT �G.
The limit dist(OT (x), Ō(G))

T !1! 0 is in general not uniform in x. However this is
true for the convex hull

conv(Ō(G)).

Denote for C ⇢ Rd and for " > 0 by C" ⇢ Rd the "-neighbourhood of C.

Proposition 5.2. For all " > 0 there exists T" > 0 such that

OT (X) ⇢ conv(Ō(G))" (|T | > T").
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Proof of 5.2. By compactness of X and thus of O(X) we could otherwise find an " > 0,
a sequence of points xn 2 X and of times Tn with Tn ! ±1 such that

z := lim
n!1 OTn

(xn) 2 Rd

exists and z 62 C". Without loss of generality we assume that Tn ! +1.
Consider the sequence of probability measures µn 2 M(X) given by

µn(U) := 1
Tn

|{t 2 [0, Tn]|8t (xn) 2 U}| (U ⇢ X Borel).

We now use the following facts (see in Walters’ book, [22, theorem 6.10]): M(X) and
M(X,8) are non-empty, convex, and compact in the weak-*-topology. The extreme points
of M(X,8) coincide with the ergodic measures. By going to a subsequence, if necessary,

µ := w⇤ � lim
n!1 µn 2 M(X)

exists by compactness of M(X). µ 2 M(X,8) and as OTn
(xn) = R

O dµn the expectationR
X

O dµ = z 62 C". By Choquet decomposition of µ we would find an ergodic measure
⌫ 2 M(X,8) with

R
X

O d⌫ 62 C". On the other hand by ergodicity of ⌫ there exists an
x 2 X with Ō(x) = R

X
O d⌫, which is a contradiction. ⇤

For I ⇢ R compact the phase-space region

P̂I := {x 2 P̂ |H(x) 2 I }
is compact and 8̂t -invariant so that we are in the situation of proposition 5.2.

The semiclassical analogue of the thickened energy shell P̂I is

P̂  h
I := {(m, k) 2 P̂  h|E h

m(k) 2 I }.
We equip them with the probability measures

�̂I := �̂

�̂(P̂I )
on P̂I

and (for  h small)

�̂ h
I := �̂ h

�̂ h(P̂  h
I )

on P̂  h
I .

These induce the image probability measures µI := �̂I v̄
�1 and µ h

I := �̂ h
I (v̄

 h)�1 on the space
Rd of asymptotic velocities.

We shall now consider for " > 0 intervals

I" := [E � ", E + "]

and show our semiclassical results on the group velocities.

Theorem 5.3. Let V 2 C1(Rd , R) be L-periodic, E 2 R, " > 0.
(1) Let C := conv(v̄(P̂I2" )). Then for all ⌘ > 0, a.e. k 2 T⇤ 9 h0 8 h 6  h0

v̄ h
j 2 C⌘ if E h

j (k) 2 I"

(2) let S := conv(supp(µI2" )) ⇢ Rd be the convex hull of the support of µI2" , then the
semiclassical measures concentrate inside S: For all ⌘ > 0

lim
 h&0

µ h
I"
(S⌘) = 1.



Motion in periodic potentials 195

Remark 5.4. In general S ⇢ C is much smaller than C. As an example for ergodic motion
one has by theorem 3.1(5) S = {0}, whereas by theorem 3.1(2) C contains a disk of radiusp

2(E�Vmax)p
E�Vmean

.

Proof. The proof of (1) is based on theorem 5.2, whereas for (2) we use the almost
everywhere convergence to the asymptotic velocity and a Shnirelman type argument. We
shall freely use the semiclassical calculus as exposed in [20, 6] and references therein.

First we state a lemma about Bloch decomposition of anti-Wick quantization.

Lemma 5.5. Let

f 2 C1
b (R2d , R) f (p, q + `) = f (p, q) (` 2 L)

f AW :=
Z

R2d

f (p, q)�p,qh�p,q, i dp dq

(2⇡  h)d
( 2 L2(Rd))

where

�p,q(x) := e� i
2 h pqe

i
 h px�(x � q) �(x) := (⇡  h)�d/4e� x2

2 h .

It holds

Uf AWU�1 =
Z �

T⇤
f AW(k)

dk

|T⇤|
with

f AW(k) :=
Z

P̂

f (p, q)U�p,q(k)hU�p,q(k), iL2(T)

dp dq

(2⇡  h)d
.

Proof. By periodicity of f and unitarity of U we have

Uf AW =
X

`2L

Z

P̂

f (p, q)U�p,q+`hU�p,q+`, U i dp dq

(2⇡  h)d
.

Now

U�p,q+`(k, x) = ei(p+ hk)`/ he�i/(2 h)`pU�p,q(k, x)

so

Uf AW (k) =
Z

P̂

f (p, q)U�p,q(k)
X

`2L

Z

T⇤

dk0

|T⇤| (e
i(k�k0)`hU�p,q(k

0), U (k0)iL2(T))
dp dq

(2⇡  h)d

the claim follows now from Fourier inversion and the L⇤-periodicity of
k0 7! hU�p,q(k

0), U (k0)i. ⇤

A corollary of this lemma, the Egorov theorem and the Weyl–anti-Wick correspondence
is:

eiH  h(k)t/ hf AW(k)e�iH  h(k)t/ h = (f̂ � 8̂t )AW(k) + OT ( h).

Denote 3 h
"(k) = {j ; E h

j (k) 2 I"} and � 2 C1
0 (R, R), supp� ⇢ I2", � �I"= 1.

For j 2 3 h
"(k) consider the eigenfunction   h

j,k of H  h(k) and its Husimi distribution
⇢  h

j,k : P ! R,

⇢  h
j,k(p, q) := (2⇡  h)�d |hU�p,q(k),  h

j,kiL2(T)|2.
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We then have (using notation (23))

v̄ h
j (k) =

Z

P̂

(�(H)p)T d⇢  h
j,k + OT ( h).

We apply proposition 5.2 with X = P̂I2" . By time reversal symmetry 0 2 conv(v̄(X))

so we find a T such that
(�(H)p)T (X) ⇢ conv(v̄(X))⌘/2

and an  h such that OT ( h) < ⌘/2. Thus (1) is proven.
Now we show that almost everywhere for k, for all ⌘ > 0

lim
 h&0

#{m 2 3 h
"(k); |v̄ h

m(k) � R
�(H)v̄ d⇢  h

m,k| < ⌘}
#3 h

"(k)
= 1 (24)

This implies (2) as
R
�(H)v̄ d⇢  h

j,k ⇢ conv(supp µI2" ) by absolute continuity of
�(H) d⇢  h

j,k w.r.t. �̂I2" , by time reversal symmetry and the bound 1 for the fraction.
By Birkhoff’s theorem

lim
T !1

Z

P̂

|v̂T (x̂) � v̄(x̂)| d�̂I2" = 0.

So the set

B(T , ⌘) :=
⇢
x̂ 2 P̂I2"

����|v̂T (x̂) � v̄(x̂)| > ⌘

4

�

of phase-space points x̂ eventually giving rise to v̂T (x̂) 62 S⌘/2 can be made small:

�̂2"(B(T , ⌘)) 6 �

2
(T > T (�)).

On the other hand, by convergence on the  h-independent P̂I" :

w⇤ � lim
 h&0

1
#3 h

"(k)

X

m23 h
" (k)

⇢  h
m,k = �̂I" .

For  h 6  h(�) and T > T (�) we thus have
1

#3 h
"(k)

X

m23 h
" (k)

⇢  h
m,k(B(T , ⌘)) 6 �.

By Tchebycheff’s inequality

#{m 2 3 h
"(k)|⇢  h

m,k(B(T , ⌘)) >
p
�} 6

p
�#3 h

"(k).

For m in the complementary set it holds:
Z

P̂

�(H)(pT � v̄) d⇢  h
m,k 6 ⌘

4
+ 2k�(H)v̄k1

p
� <

⌘

2
(� < �(⌘))).

To summarize: for ↵ > 0 there is a T and a set G h
T ⇢ 3 h

" such that for  h small enough
|v̄ h

j � R
�(H)v̄ d⇢  h

j,k| < ⌘ for j 2 G h
T and #G h

T

#3 h
"

> 1 � ↵. This finishes the proof of (2). ⇤

Corollary 5.6. If the classical motion is non-ballistic with probability one on an energy
interval I : µI = �0, then conjecture 5.1 holds true:

w⇤ � lim
 h&0

⌫  h = ⌫.

For example, this is the case if the classical motion is ergodic.
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6. Semiclassics: separable potentials

If the potential is separable, the distribution of semiclassical group velocities converges
rapidly to the classical velocity distribution. We begin with the case of one dimension, and
thus consider the operator H := � h2 d2

dx2 + V (x) with potential V 2 Cr(R, R), assuming
w.l.o.g. that V (x + 1) = V (x). The band function of the nth band for the quasimomentum
k 2 [�⇡,⇡ ] is denoted by En(k) ⌘ E h

n(k). Of course dEn

dk
(k) = 0 or the band functions

touch at the band edges k = 0 or ±⇡ . However, apart from small neighbourhoods of these
values of the quasimomentum it holds:

Proposition 6.1. Assume that the periodic potential V 2 Cr(R, R), r > 2.
(1) Then all bands in the energy interval [Vmax + ", 1) meet the following uniform

estimate. If the quasimomentum |k| 2 [ h(r�1)/2,⇡ �  h(r�1)/2], then
����sign(k) ·  h�1 dEn

dk
(k) � (�1)nvcl(En(k))

���� 6 c h

for some c = c(") > 0,

vcl(E) = 1
2

✓ Z 1

0

1p
E � V (t)

dt

◆�1
(E > Vmax)

vcl(E) = 0 (E 6 Vmax) being the absolute value of the classical velocity.
(2) In the energy range [Vmin, Vmax � "] and for all k 2 [�⇡,⇡ ]

dEn

dk
(k) = O( h1).

(3)

w⇤ � lim
 h&0

⌫  h = ⌫. (25)

Proof.
(1) We first consider the energy interval [Vmax + ", 1). For the k values under

consideration, the Bloch eigenfunctions have no zeroes. So we are looking for zero-free
solutions ' : R ! C of the differential equation

H' = E'. (26)

The complex phase S :=  h
i ln(') of such a solution solves the differential equation

(S 0)2 � i hS 00 � W = 0 (27)

with W := E � V . We solve this equation, using the ansatz

S(x) = S̃r (x) +  hr+1R(x,  h) with S̃r (x) :=
rX

n=0
 hnSn(x).

With

S0(x) :=
Z x

0

p
W(t) dt

the recursion equation

iS 00
n�1 �

nX

l=0
S 0

lS
0
n�l = 0 (n = 1, . . . , r) (28)
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has the continuous solution

Sn(x) = 1
2

Z x

0

iS 00
n�1(t) � Pn�1

l=1 S 0
l (t)S

0
n�l (t)p

W(t)
dt (n = 1, . . . , r)

since S 0
0 = p

W > 0.
In particular we have S1(x) = i ln( 4

p
W(x)) + c. We set c := 0. Then on bounded

intervals

'(x) = 1
4
p

W(x)
exp

✓
i
Z x

0

p
W(t) dt/ h

◆
+ O( h1).

As a consequence of (28) Sn is real if n is even and imaginary if N is odd. S̃ 0
r is one-periodic.

However, unlike the real part of S̃r the imaginary part is always one-periodic. This
can be seen, e.g. by considering the formal power series S̃1 in  h. By (27) the real part
R := Re(S̃ 0

1) of the derivative is related to the imaginary part I := Im(S̃ 0
1) by

 hR0 = 2IR

so that I = 1
2  h(ln(R))0. Thus the formal power series Re(S̃1) is one-periodic, which implies

the same periodicity for its coefficients S2n+1.
Of course this argument is even valid if (by finite differentiability of V ) only finitely

many coefficients Sn are defined.
Thus for E > Vmax

'̃r := exp
✓

i
 h
S̃r

◆
= Ar exp

✓
i
 h
Ur

◆
: R ! C

is a function with periodic modulus Ar > 0 and phase Ur = Re(S̃r ). We compare this with
the solution ' of (26) with the initial values

'(0) := '̃r (0) '0(0) := '̃0
r (0).

On bounded spatial intervals one has the estimate uniform in x and E

'(x) = '̃r (x) + O( hr) '0(x) = '̃0
r (x) + O( hr).

The same is true for the matrix

M(x) :=
✓
'(x) '̄(x)

'0(x) '̄0(x)

◆

of the corresponding fundamental system ('̄ is linearly independent of '). The monodromy
matrix T := M(1) · M(0)�1 has determinant one and trace

Tr(T ) = 2 Re('̃r (1)/'̃r (0)) + O( hr) = 2 cos(Ur(1)/ h) + O( hr).

Now we consider those quasimomenta k for which

dist(Ur(1)/ h,⇡ · Z) >  h(r�1)/2.

For them | Tr(T )| < 2 if  h <  h0 so that the quasiperiodic function x 7! '(x) is bounded.
Thus ' is a Bloch function with quasimomentum k,

cos(k) = 1
2 Tr(T ).

Differentiating both sides w.r.t. k yields

sin(k) = sin(Ur(1)/ h)
dUr(1)

dE
 h�1 dE

dk
+ O( hr). (29)
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On the other hand

sin(k) =
q

1 � ( 1
2 Tr(T ))2 = ± sin(Ur(1)/ h)(1 + O( h1))

so that (29) implies the relation

 h�1 dE

dk
= ±

✓
dUr(1)

dE

◆�1
+ O( h1) (30)

for the group velocity. By Ur(1) = R 1
0

p
W(t) dt + O( h1) we get the estimate

 h�1 dE

dk
= ± 1

2

✓ Z 1

0

1p
E � V (t)

dt

◆�1
+ O( h1)

for quasimomenta |k| 2 [ h(r�1)/2,⇡ �  h(r�1)/2].
(2) For E 6 Vmax � " we have vcl(E) = 0. Quantum mechanically it is well known that

the wavefunction and its derivatives are exponentially decreasing w.r.t.  h well inside the
potential well, say, for V (x) 6 "/2. This implies exponential decay of the group velocity.

Namely

 h�1 dEn

dk
(k) =

Z 1

0
jn(x) dx = jn(x)

for the current jn(x) = �i h Im('̄n(k)(x) d
dx
'n(k)(x)) of the eigenfunction 'n(k) with

eigenvalue En(k) 6 Vmax � ", since the divergence of the current of eigenfunction vanishes.
If we evaluate j at x inside the potential well, then we see that it is exponentially small.

For more precise estimates valid in the multidimensional case we refer to Outassourt [15].
(3) The convergence of the semiclassical measures ⌫  h to ⌫ follows from the following

reasoning.
By a Weyl estimate we have weak-*-convergence in energy distribution:

w⇤ � lim
 h&0

�̂ h(E h)�1 = �̂H�1

with E h : P̂  h ! R, E h(m, k) := E h
m(k) being the energy function on the Fermi surface.

The first two parts of the proposition exclude the energy interval (Vmax � ", Vmax + ").
However, as  h & 0, we can let " ⌘ "( h) & 0, too. By the above Weyl estimate we do not
lose anything of ⌫  h in the semiclassical limit, since

lim
 h&0

X

m2N
(2⇡  h)|{k 2 T⇤||E h

m(k) � Vmax| < "( h)}| = 0.

Then (25) follows from (1) and (2). ⇤

Corollary 6.2. Let V 2 C2(Rd , R) be a separable periodic potential. Then Conjecture 5.1
holds true:

w⇤ � lim
 h&0

⌫  h = ⌫.

Proof. By our assumption the potential is of the form

V (q) =
dX

j=1
Vj (qj )
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with Vj 2 C2(R, R) of some period lj > 0. Let ⌫  h
j and ⌫j denote the (semi)classical

measures for the one-dimensional potential Vj . Then
⌫ = (⌫1, . . . , ⌫d)L

�1 and ⌫  h = (⌫  h
1 , . . . , ⌫  h

d )L
�1

for the linear map L : (R2)d ! Rd+1,
L(h1, v1, h2, v2, . . . , hd, vd) 7! (h1 + · · · + hd, v1, . . . , vd).

Although for d > 1 the linear map L is not injective and thus not proper, its restriction to
⇥d

j=1([Vj,min, 1) ⇥ R) (31)
has this property, so that pre-images of compactly supported functions are still compactly
supported. We may restrict L to (31), since the support of (⌫1, . . . , ⌫d) is contained in (31),
the spectrum of Hj being contained in [Vj,min, 1)

So multidimensional convergence follows from the one-dimensional one. ⇤
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