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Abstract
We consider the quantum dynamics of a single particle in the plane under the
influence of a constant perpendicular magnetic and a crossed electric potential
field. For a class of smooth and small potentials we construct a non-trivial
invariant of motion. To do so we prove that the Hamiltonian is unitarily
equivalent to an effective Hamiltonian which commutes with the observable of
kinetic energy.

PACS numbers: 73.43.−f, 73.43.Cd

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Consider a particle of mass m and charge e in the plane under the influence of a constant
magnetic field of strength B and an electric potential. We choose the units of magnetic length√

h̄
|eB| , the gyration time m

|eB| and the energy gap h̄|eB|
m

. The dynamics are generated by

H = HLa + V in L2(R2),

with

HLa = 1
2

(
−i∇ − q⊥

2

)2

with the operator core Schwartz space S(R2). V is the multiplication operator by a function
V (q) and (q1, q2)

⊥ := (−q2, q1). For the gaussian

g(q) := e− q2

2 (q ∈ R2)

* We dedicate this work to the memory of Pierre Duclos.
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Figure 1. V (q) =
∑

i∈[−10,10]2 u(i)g(q − i), u(i) i.i.d. random variables.

we consider the class of functions defined by convolution with a real-valued finite measure µ,
g ∗ µ(q) :=

∫
R2 g(q − q ′)dµ(q ′):

G :=
{
V : R2 → R;V = g ∗ µ,

∫

R2
d|µ| < ∞

}
.

Our main result is that there exists a non-trivial integral of motion; thus, in this weak
sense, the two-dimensional system is integrable.

Theorem 1.1. For V ∈ G small enough there exists a unitary operator U such that

[U−1(HLa + V )U,HLa] = 0.

In particular, UHLaU
−1 is an invariant of the flow e−iHt for all t ∈ R.

The meaning of ‘small enough’ will be made precise in the following. A potential in G is
depicted in figure 1.

It is folklore in plasma physics that in slowly varying fields the classical particle gyrates
on a cycloid whose centre drifts along the contour lines of the averaged potential and whose
kinetic energy is an approximate invariant up to a certain time [CB, Nei]. On the other hand
classically chaotic motion may occur in relevant regimes of parameters [GWNO].

In the realm of quantum physics the corresponding invariance is, in the large magnetic
field limit, an essential ingredient for the current understanding of the integer quantum Hall
effect [L, BESB, ASS, HS, G, GKS, CC, ABJ], while the interesting physics happen in the
lowest Landau level. Coupling between Landau bands may, however, lead to non-negligible
effects [PG].
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Several methods to construct an approximately invariant subspace, making precise the
notion of lowest Landau level, and an effective Hamiltonian are known, see [N, T, BDP].
They may lead to estimates valid to exponential order in a small parameter and valid for
exponentially long times. See [BG] for an application of these ideas to a propagation problem.
Our aim here is to study all Landau levels simultaneously as well as the possibility to go to
the limit of all times.

Our strategy is to employ a superconvergent iterative partial diagonalization procedure
which was originally introduced in quantum problems to discuss stability of non-resonant time
periodic problems [B, C, DŠ]; see [ADE] for an application to a condensed matter problem.
It coincides in first order with the above-mentioned ‘space adiabatic’ algorithms. In particular
the effective Hamiltonian restricted to the lowest Landau level is in first order 〈V 〉(x,D), a
pseudodifferential operator whose symbol is the potential averaged over the Landau orbits. At
higher orders the algorithm differs; on one hand it exhibits quadratic convergence, and on the
other hand it is an unsolved, and to our opinion important problem, whether our higher order
effective operators are pseudodifferential.

The partial diagonalization procedure is roughly described as follows: the diagonal part of
an operator H with respect to a fixed, orthogonal, mutually disjoint family of projections {Pn}
is defined by DH :=

∑
n PnHPn. In fact, as the dimension of Pn is not supposed to be one, or

even to be finite, DH is block diagonal. Suppose that the off-diagonal part OH := H − DH

is small with respect to DH . The equation

eWHe−W − DH = O(‖OH‖2)

is satisfied by an anti-self-adjoint operator W of order O(‖OH‖) solving

OH + [W, DH ] = 0.

If one takes Pn the projections on the Landau levels, then because of the gap a solution of
this equation can be found if the coupling between the bands decays sufficiently fast. This
is the case for the potentials of our class G. The procedure can then be iterated by replacing
H by eWHe−W . The convergence of the transformed H to a block-diagonal operator which,
because of the degeneracy, commutes with HLa is quadratic.

We remark that in order to be really applicable to the quantum Hall effect our result should
be extended to a more general class of potentials than stated above. This should in principle
be possible. However, a delicate control of [HLa, V ] is needed. The method does not work
for the extensively studied purely periodic problem V (q1, q2) = cos q1 + cos q2.

The plan of the paper is to set up the iterative algorithm in section 2. The class of potentials
G and control of the necessary norms will be discussed in section 3. Section 4 contains the
proof of theorem 1.1 and a discussion related to special cases.

2. An iterative partial diagonalization algorithm

As discussed in the introduction, the task is to partially diagonalize the operator HLa + V .
Recall that HLa =

∑
n∈N0

(n + 1/2)P La
n with infinite dimensional projections P La

n . We
consider H which is of the same type as HLa; in order to cover situations where H is already
an effective Hamiltonian at finite order, we assume that it has either a finite number of bands
σn or an infinite number such that

dist(σn, σm) ! g|n − m|.
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Definition 2.1. A self-adjoint operator H is of class Cg for a g > 0 if for a complete family
of orthogonal, mutually disjoint projections {Pn}n∈I⊂N0 which commute with H; it holds for

σn := spect
(
PnHPn|RanPn

)
:

min σn+1 − max σn ! g.

Figure 2. Typical spectrum of H.

For the same family of projections Pn and a bounded operator V we use the notation

DV :=
∑

n∈I

PnV Pn, OV := V − DV.

To organize the estimates we shall make frequent use of the notations

〈a〉 := max(1, |a|), ‖ ‖ : the operator norm, and

‖A‖l := sup
n,m∈I

〈n − m〉l‖PnAPm‖.

We prove (extending [DLŠV])

Theorem 2.2. Let H ∈ Cg and V be a bounded self-adjoint operator such that

‖V ‖1 " g

8
.

Then there exists a unitary U such that U−1D(H) ⊂ D(H) with the property that for

H∞ := U(H + V )U−1, D(H∞) = D(H)

it holds

[H∞, Pn] = 0.

Proof. Define H0 := H + V = DH0 + OH0. Assume ‖V ‖1 " g
8 . Then DH0 ∈ C1/4,

‖OH0‖1 = ‖OV ‖1 < ∞. By lemma 2.3 there exists a bounded solution W 0 of

[DH0,W0] = OH0, DW0 = 0.

Define U0 := eW0 .
Remark. U0 is unitary, D(H0) ⊂ D(H), W0D(H0) ⊂ D(H0), U0D(H0) ⊂ D(H0).
Suppose that for s ∈ N diagonalization has been done up to Hs, Us−1 such that

‖DHs − H‖ " g/4, ‖OHs‖1 < ∞. To go to step s + 1, use lemma 2.3 to solve

[DHs,Ws] = OHs, DWs = 0

for a bounded Ws and define Us := eWsUs−1,

Hs+1 := eWs Hse
−Ws = eLWs (Hs) =

∞∑

k=0

Lk
Ws

(Hs)

k!
,

with the notation LW(A) := [W,A]. Now

LWs
(DHs) = −OHs;

thus, for k ! 1

Lk
Ws

(Hs) = −Lk−1
Ws

(OHs) + Lk
Ws

(OHs)
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so that

Hs+1 = DHs + φ
(
LWs

)
(OHs), (1)

with

φ(x) := ex − 1
x

(ex − 1) =
∞∑

k=1

k

(k + 1)!
xk (x ∈ R).

It holds by corollary 2.5 that
∥∥LWs

(OHs)
∥∥

1 " ‖WsOHs‖1 + ‖OHsWs‖1 " 2K‖Ws‖2‖OHs‖1.

Thus, by induction and lemma 2.3
∥∥∥Lk

Ws
(OHs)

∥∥∥
1

"
(
π2K

g

)k

‖OHs‖k+1
1 ,

which implies

∥∥φ
(
LWs

)
(OHs)

∥∥
1 "

∞∑

k=1

k

(k + 1)!

(
2πK

g
‖OHs‖1

)k

‖OHs‖1

= g

2πK
ψ

(
2πK

g
‖OHs‖1

)
,

with ψ(x) := xφ(x) = (x − 1)ex + 1 (x ! 0). Remark that ψ is non-negative,
ψ(x) " x (x < 1) and 0 is a superattractive fixed point. By (1)

2πK

g
‖OHs+1‖1 " ψ

(
2πK

g
‖OHs‖1

)

thus

‖OHs‖1 " λ2s

, (2)

with λ proportional to ‖OV ‖1 small enough. For the diagonal part it holds

‖DHs+1 − DHs‖ = ‖DHs+1 − DHs‖1 "
∥∥φ

(
LWs

)
(OHs)

∥∥
1 " g

2πK
ψ

(
2πK

g
‖OHs‖1

)

and thus for an x proportional to ‖OV ‖1

‖DHs+1 − H‖ " g

8
+

g

2πK

∫ x

0
ψ " g

4
,

so the iteration is well defined.
In particular s -→ DHs − H is a norm convergent sequence. Equation (2) and

lemma 2.3 imply that ‖Ws‖ converges superexponentially to 0. By (1) this implies in turn as
OV is bounded and ‖OV ‖1 is small enough:

‖OHs+1‖ "
∥∥φ

(
LWs

)
(OHs)

∥∥ "
∑ k

(k + 1)!
2k‖Ws‖k

︸ ︷︷ ︸
!1

‖OHs‖;

thus, OHs converges in operator norm, and furthermore as
‖Us+1 −Us‖ =

∥∥eWs+1 − I
∥∥ one concludes that Us →‖.‖ U . By construction H∞ = DH∞,

which commutes with the projections. #

We now prove some claims which where used in the preceding proof: the existence of a
bounded solution of the commutator equation is assured by
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Lemma 2.3. Let H ∈ Cg and V be a bounded self-adjoint operator such that PnV Pn = 0 ∀n

and such that ‖V ‖1 < ∞. Then there exists a bounded anti-self-adjoint W such that

[H,W ] = V, DW = 0,

so that

‖W‖ " πζ(2)

g
‖V ‖1,

‖W‖2 " π

2g
‖V ‖1.

Proof. In [BR] for bounded operators A,B,C there exists a solution X of AX − XB = C

such that

‖X‖ " π

2
‖C‖

dist(spect(A), spect(B))
.

It follows that there exists Wnm such that

PnHPnWnm − WnmPmHPm = PnV Pm,

with Wnm = PnWnmPm and

‖Wnm‖ " π

2
‖PnV Pm‖ 1

g〈n − m〉
" π

2g

‖V ‖1

〈n − m〉2
.

Now define W :=
∑

n/=m Wnm in norm convergence; then

‖W‖ " sup
n

∑

m

‖PnWPm‖ = sup
n

∑

m

1
〈n − m〉2

π‖V ‖1

2g

from which the claim follows. #

Lemma 2.4. Let n,m ∈ N0 and K := 3 + 2ζ(2). It holds
∑

j"0,j /=n,j /=m

1
〈j − n〉2〈j − m〉

" K

〈m − n〉
. (3)

Proof. The case where n = m is evident. In what follows, we will simply write j as the
index for the sum except of j ! 0, j /= n, j /= m:

∑

j

1
〈j − n〉2〈j − m〉

= 1
〈m − n〉




∑

j

〈j − n + m − j 〉
〈j − n〉2〈j − m〉





" 1
〈m − n〉




∑

j

1
〈j − n〉2

+
∑

j

1
〈j − n〉〈j − m〉



 .

The left term of the r.h.s. is bounded by 2ζ(2). It remains to prove that the second term of the
r.h.s. is bounded. Recall the series expansion of the digamma function ψ0:

ψ0(x + 1) + γ =
∞∑

j=1

x

j (j + x)
(x ∈ N). (4)

6
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Now, since it is symmetric in m and n, we can assume that m > n and define a := m − n ! 1.
Then the second term of the r.h.s. becomes

∑

j

1
〈j − n〉〈j − m〉

=
∑

j"−n

1
〈j 〉〈j − a〉

=
a−1∑

j=−n

1
〈j 〉〈j − a〉

+
∑

j"a+1

1
〈j 〉〈j − a〉

=
a−1∑

j=−n

1
〈j 〉〈j − a〉

+
γ + ψ0(1 + a)

a
,

where we used (4). But
a−1∑

j=−n

1
〈j 〉〈j − a〉

=
n∑

j=1

1
〈j 〉〈j + a〉

+
a−1∑

j=1

1
〈j 〉〈j − a〉

" γ + ψ0(1 + a)

a
+ |a − 1| sup

j∈[1,a−1]∩N

1
|j ||j − a|

.

Since a ! 1, both of these terms are bounded by 1, so the claim of the lemma follows. #
We have the following corollary.

Corollary 2.5. For operators A and B such that ‖A‖2 < ∞ and ‖B‖1 < ∞ it holds

‖AB‖1 " K‖A‖2‖B‖1,

where K was defined in 2.4.

Proof. Since {Pn}n∈I is a complete family of orthogonal and mutually disjoint projectors, we
can write

PnABPm =
∑

l∈I

(PnAPl)(PlBPm).

Thus,

‖AB‖1 " sup
n,m

〈m − n〉
∑

l"0

‖A‖2

〈n − l〉2

‖B‖1

〈l − m〉
.

The result follows from lemma 2.4. #

3. The class G

We show that the basic decay estimate is satisfied for potentials in the class G defined in the
introduction and give some examples.

Proposition 3.1. For V ∈ G and Pn the eigenprojections of HLa on its nth level it holds in
operator norm on L2(R2) for a d > 0 and all n,m ∈ N0:

‖PnV Pm‖ " d

〈n − m〉
.

Proof.

‖PnV Pm‖ = ‖Pn

∫
g(. − y)dµ(y)Pm‖

"
∫

|dµ(y)|‖Png(. − y)Pm‖.

7
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Consider the unitary magnetic translations on L2(R2) defined for a ∈ R2 by

T (a)ψ(q) = e
i
2 q∧aψ(q − a).

It holds that [T (a),HLa] = 0 and T (a) g T ∗(a) = g(. − a). Thus,

‖Png(. − y)Pm‖ = ‖PngPm‖ ∀y ∈ R2,

and the result follows from proposition 3.5 to be proven below. #

Remark that V = g ∗ µ extends necessarily to an entire analytic function; its Fourier
transform V̂ has the property that V̂ (p) exp p2

2 is the Fourier transform of a finite measure.
We elaborate on this in order to point out that G contains sufficiently many potentials to be of
interest for applications to the quantum hall effect.

Definition 3.2. Denote by A the class of functions V : R2 → R such that

(i) V has an extension to an entire function on C2;

(ii) R2 2 y -→ e− y2

2 V (iy) ∈ L1(R2);

(iii) for Ṽ (p) := e
p2

2
∫

R2 e−ipye− y2

2 V (iy) dy
(2π)2 , it holds Ṽ ∈ L1(R2).

Proposition 3.3. For V ∈ A it holds

V = g ∗ (Ṽ dq).

Proof. By Fourier’s theorem, it holds for q ∈ R2

e− q2

2 V (iq) =
∫

R2×R2
eip(q−y)e− y2

2 V (iy)
dy

(2π)2
dp.

Thus,

V (iq) =
∫

R2
e

(q+ip)2

2 Ṽ (p)dp

and the claims follows as both sides are analytic in q. #

We list some examples of potentials in G which contain in particular Anderson-type
models on a finite portion of the probe.

Corollary 3.4. G contains

(i) for p a real polynomial, α ∈ (0, 1), k1, k2 ∈ R:

p
(
q1, q2, eik1q1 , eik2q2

)
e−α q2

2 ,

(ii)
∑

i∈Z2 µi g(q − i) with µ ∈ l1(Z2, R).

The function q -→ eikq for k ∈ R2 does not belong to G.

Proof. For 1. it is sufficient to verify that

R 2 y -→ e− y2

2 f (iy) ∈ L1(R)

and

R 2 x -→ e
x2
2

∫
e−ixye− y2

2 f (iy)dy ∈ L1(R)

for f (y) = yne−α y2

2 and f (y) = eikye−α y2

2 , n ∈ N and k ∈ R.

8
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This is by standard properties of the Fourier transform. In the first case,
∣∣∣f (iy)e−α y2

2

∣∣∣ = |y|ne−(1−α) y2

2 ∈ L1(R)

and ∣∣∣∣e
x2
2

∫
e−ixyyne−(1−α) y2

2 dy

∣∣∣∣ = 1√
1 − α

∣∣∣poly(x)e
x2
2 e− 1

1−α
x2
2

∣∣∣ ∈ L1(R).

In the second case∣∣∣f (iy)e−α y2

2

∣∣∣ " e|k||y|e−(1−α) y2

2 ∈ L1(R)

∣∣∣∣e
x2
2

∫
e−ixye−kye−(1−α) y2

2 dy

∣∣∣∣ = 1√
1 − α

e
k2

2(1−α) e
x2
2 e− 1

1−α
x2
2 ∈ L1(R).

In 2., one deals with the pure point measure
∑

i∈Z2

µiδ(x − i).

Finally, one has

eikx = g ∗ µ,

with µ = e−ikxe
k2
2 dx which is not a finite measure. #

It remains to treat the case of the gaussian potential g which turns out to be non-trivial.
We follow the strategy designed in [W].

Proposition 3.5. For g(q) = exp
(
− q2

2

)
, (q ∈ R2) and Pn the eigenprojections of HLa on

its nth level it holds in operator norm on L2(R2) for a c > 0 and all n,m ∈ N0:

‖PngPm‖ " c

〈n − m〉
.

Proof. We use the representation of Pn by angular momentum eigenfunctions:

Pn =
∑

l"−n

|ψn,l〉〈ψn,l |

ψn,l(r,*) := (−1)n

√
n!

2l (n + l)!
rlei*lLl

n

(
r2

2

)
e− r2

4

√
2π

,

(5)

where the Laguerre polynomials are defined by

Ll
n(x) :=

n∑

j=0

(−x)j

j !

(
n + l

n − j

)
(l ! 0)

Ll
n(x) := (n + l)!

n!
(−x)|l|L

|l|
n+l (x) (0 ! l ! −n).

Then

PngPm =
∑

l"−n∧m

|ψn,l〉〈ψn,l, gψm,l〉〈ψm,l |;

thus,

|〈ψ,PngPmϕ〉| " sup
l"−n∧m

|〈ψn,l, gψm,l〉|‖ψ‖‖ϕ‖

9
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and the claim follows from equation (6) and estimate (9) to be proven in the following two
lemmas. #

Lemma 3.6. For g(q) = exp
(
− q2

2

)
, (q ∈ R2) and ψn,l defined in (5) it holds for

n,m ∈ N0, l ! −(n ∧ m) :

|〈ψn,l, gψm,l〉| = 1
2l+m+n+1

(l + m + n)!√
(l + m)!(l + n)!n!m!

. (6)

Proof. By definition

|〈ψn,l, gψm,l〉| = 1
2l

√
n!m!

(l + n)!(l + m)!

∫ ∞

0
e−r2

r2lLl
nL

l
m

(
r2

2

)
rdr.

Consider first l ! 0. To study the dependence of the integral on l, m, n we use that the family
n -→ Ll

n(x) is orthogonal in L2(R+, dνl), dνl := xle−xdx and the identity:

Ll
nL

l
m

(x

2

)
=

∑

s"0

Bn,m,l
s Ll

s(x).

As Ll
0 ≡ 1 ∀l, one has

∫ ∞

0
Ll

nL
l
m

(x

2

)
dνl(x) =

∑

s"0

Bn,m,l
s

∫ ∞

0
Ll

sL
l
0(x)dνl(x)

= Bn,m,l
0

∫ ∞

0
dνl(x) = Bn,m,l

0 -(l + 1).

It was proven in [Ca] that

gs(x, y, l) =
(

x
2(1−x)

+ y
2(1−y)

)s

(1 − x)l+1(1 − y)l+1
(
1 + x

2(1−x)
+ y

2(1−y)

)l+s+1

=
∑

n,m

Bn,m,l
s xmyn.

Thus,

Bn,m,l
0 = 1

n!m!
∂m
x ∂

n
y g0(x, y, l)

∣∣∣∣
x=y=0

= 1
2m+n

(l + m + n)!
l!m!n!

from which the claim follows for l ! 0.
Now for l < 0, one has

ψn,l = ψn+l,−l;
thus,

|〈ψn,l, V ψm,l〉| = |〈ψn+l,−l , V ψm+l,−l〉|
and the result follows for l < 0. #

The following lemma might be known to probabilists, we know of no reference though.

Lemma 3.7. For a c > 0, it holds

(m + n)!
2m+nn!m!

" c
m + n

√
(m + n)2 − (m − n)2

e− m−n
2(m+n) (N 2 m, n ! 1), (7)

10
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(m + n)!
2m+nn!m!

" c

〈m − n〉
(m, n ∈ N0), (8)

(l + m + n)!
2l+m+n+1

√
(l + m)!(l + n)!n!m!

" c

〈m − n〉
(m, n ∈ N0, e ! −m ∧ n). (9)

Proof. Denote by C a positive constant whose value may change from line to line.
We use Stirling’s and a concavity inequality:

1
C

" n!
(

n
e

)n √
n

" C (n ! 1) (10)

(1 + x) log(1 + x) + (1 − x) log(1 − x) ! x2 (x ∈ [0, 1)), (11)

to estimate

am,n := (m + n)!
2m+nn!m!

.

For m, n ! 1 it holds by (10):

am,n " C
(m + n)(m+n)

mmnn2m+n

√
1
n

+
1
m

" C
aa

(a + b)
a+b

2 (a − b)
a−b

2

√
a

a2 − b2
,

with a := m + n, b := m − n in

G := {(a, b) ∈ Z2; a ! 2, |b| " |a − 2|}.
Note that the case n = m follows from the first inequality of the previous line. Using (11)
with x := b

a
it follows

am,n "
√

a

a2 − b2
e− b2

2a ,

which implies (7). Consider now

G< := G ∩
{
(a, b) ∈ Z2; b2

a2
<

1
2

}
;

then

〈m − n〉2a2
m,n " C

1

1 − b2

a2

b2

a
e− b2

a < 2 ((a, b) ∈ G<).

In G \ G<, it holds

a

2
" b2

a
" a as well as 1 − b2

a2
! 2

a
;

thus,

〈m − n〉2a2
m,n " Ca2e− a

2 " C

which proves (8) as it is evident for n = 0.
Denote now

bl,m,n :=
(

(l + m + n)!
2l+m+n

)2 1
(l + m)!(l + n)!m!n!

.

From the identity bl,m,n = al+m,n al+n,m it follows for l + m, l + n,m, n ! 1

bl,m,n " C

√
a

a2 − b2

√
a

a2 − c2
e− b2+c2

2a ,

11
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with a := l + m + n, b := l + m − n, c := l + n − m, (a, b) ∈ G and (a, c) ∈ G. It follows

〈m − n〉2bl,m,n " C

∣∣∣∣
b − c√

a

∣∣∣∣
2 1
√

1 − b2

a2

√
1 − c2

a2

e− b2+c2
2a .

In G, one has 1
1− b2

a2

" a
2 so if b2

a2 ! 1
2 , then a

2 " b2

a
" a and, denoting any polynomial

by poly:

〈m − n〉2bl,m,n " Cpoly
(

c√
a
,
√

a

)
e− a

2 e− c2
2a " C.

Now if b2

a2 < 1
2 , then either c2

a2 ! 1
2 and

〈m − n〉2bl,m,n " Cpoly
(√

a,
b√
a

)
e− b2+c2

2a " C

or c2

a2 < 1
2 and

〈m − n〉2bl,m,n " Cpoly
(

b√
a
,

c√
a

)
e− b2+c2

2a " C.

For the cases where one of l + m, l + n,m, n is zero, remark first that

bl,n,n = |al+n,n|2 " C

〈l〉2
" C

by (8) and secondly that for l + m = 0, n ! m

〈m − n〉2bl,m,n = 1
2n

〈m − n〉2al+n,m " 〈m − n〉2

2n−m

C

2m〈n − 2m〉
" C,

which covers all cases. #

4. Application of the algorithm

We prove theorem 1.1, and then give an illustration.

Proof. (of theorem 1.1)
Choose H = HLa and {P La

n }n∈N0 its eigenprojections. Then HLa ∈ C1. By proposition
3.1 ‖V ‖1 is finite for V ∈ G. So for a V ∈ G with ‖V ‖1 " 1

8 by theorem 2.2 there exists U
unitary such that [U(HLa + V )U−1, P La

n ] = 0; thus, [U(HLa + V )U−1,HLa] = 0. #

4.1. Quadratic Hamiltonians

We discuss the case where V is a polynomial of degree at most 2 for a sufficiently high magnetic
field. Though this case is not covered directly by theorem 1.1, the iterative algorithm can be
applied to the Hamiltonian matrix which defines the operator. This results in the construction
of an integral of motion which is the quantization of a classical integral, independent of the
Hamiltonian function. The following operations are to be understood first on vectors in S(R2)

then on the appropriate extensions. Denote by D := −i∇, the velocity and centre operators

v := D − q⊥

2
, c := −D⊥ +

q

2
,

and recall the commutation relations

[v1, v2] = i, [c2, c1] = i, [ci, vj ] = 0.

12
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The linear case is trivial, nevertheless it is instructive:

V (q) = −〈E, q〉 = −(E1q1 + E2q2),

define W0 := i〈E, v〉, U0 = eW0 . From the Weyl relations

ei〈E,v〉ve−i〈E,v〉 = v − E⊥

it follows.

Proposition 4.1. For E ∈ R2, V (q) = −〈E, q〉, U0 = ei〈E,v〉, it holds

(i) U0(HLa + V )U−1
0 = HLa − 〈E, c〉 − 1

2E2 = DH − 1
2E2

(ii) U−1
0 HLa U0 = 1

2 (v + E⊥)2.

Now consider the quadratic case, V (q) = 1
2 〈q, V ′′q〉 for a real symmetric 2 × 2 matrix

V ′′.
The Hamiltonian is

H = 1
2

(
D − q⊥

2

)2

+
1
2
〈q, V ′′q〉

= 1
2

〈(
q

D

)
,

(
0 I

−I 0

)
H

(
q

D

)〉

with

H =
(

σ t/2 −I
I/4 + V ′′ σ t/2

)
,

where we denote σ =
( 0 1
−1 0

)
and I the 2 × 2 identity matrix.

H is a Hamiltonian matrix with respect to the symplectic structure defined by
( 0 I
−I 0

)
. Its

eigenvalues are

{± i
√

P + Q︸ ︷︷ ︸
:=λ

,±
√

Q − P︸ ︷︷ ︸
:=µ

},

with P := 1 + trV ′′, Q = P 2 − 4 det V ′′. For V ′′ small enough, P > 0,Q > 0; thus, λ ∈ iR.
In the case of an hyperbolic fixed point, det V ′′ < 0 so µ ∈ R. In the elliptic case, µ ∈ R if
det V ′′ is small enough and in the parabolic case, µ = 0. In all three cases one knows from
normal form theory (see [Wi]) that there exists a symplectic transformation decoupling the
degrees of freedom. We state the explicit result for the cases of the quantum dot and antidot,
i.e. V ′′ = ±ε2I, which one verifies by the direct calculation.

Proposition 4.2. Let 1/2 > ε > 0, V (q) = ± ε2

2

(
q2

1 + q2
2

)
. Define 0 :=

√
1 ± 4ε2 and the

unitary Uψ(q) = 1√
0
ψ(q/

√
0), then it holds

(i) U(HLa + V )U−1 = 1+0
2 HLa + 0−1

2
c2

2 = DH + 0−1
2

(
HLa + c2

2

)
± ε2

2
c2

2 ,

(ii) and for the constant of motion:

U−1HLaU = 1
2

(
1√
0

D −
√
0

q⊥

2

)2

.

13
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