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We study the dynamics of classical and quantum particles moving in a punctured plane
under the influence of a homogeneous magnetic field and driven bya time-dependent singular
flux tube through the hole.
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1. Introduction

The model under consideration was introduced by physicistsin order to understand
the integer quantum all effect and much investigated by mathematical physicists
who introduced topological indices in order to explain the quantization of charge
transport observed in the experiments; consult [5] for an access to the literature.

Let m > 0, e > 0, h̄ > 0 be physical parameters,q ∈ R
2 \ {0}, q⊥ := (−q2, q1)

and 8 : R → R be a smooth function. The time-dependent Hamiltonian is

1

2m
(p − eA(t, q))2 , A(t, q) =

(

B

2
−

8(t)

2π |q|2

)

q⊥,

where in the classical casep ∈ R
2 and the Hamiltonian is a function on the phase

space and where in the quantum casep =
(

−ih̄∂x,−ih̄∂y
)

and the Hamiltonian is
the Friedrichs extension of(1/2m) (p − eA(t, q))2 defined onC∞

0 \ {0}.
In the quantum case we discuss the meaning of the propagator and show that an

adiabatic approximation is valid. To this end we introduce the notion of a propagator
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weakly associated to a time-dependent Hamiltonian. A detailed presentation is given
in [2].

For the classical case we show: in the past the center is boundand the particles
spiral inward towards the flux line, their motion being accompanied by energy loss;
after hitting the puncture they become “conducting”, i.e. the motion becomes a
cycloid around an outward drifting center orthogonal to theinduced electric field.
The outgoing drift is without energy loss.

The latter results have not been published yet but can be found in preprint [3].
Finally let us note that the dynamics of the classical systemwithout magnetic field
was discussed in [1].

2. The quantum case

2.1. Existence and adiabatic approximation

We discuss the case∂t8 = const. After rescaling the physical parameters
and restricting ourselves to a sector of fixed angular momentum we consider in
L2((0,∞), rdr) the operator

H(s) = −
1

r
∂rr∂r +

1

r2

(

s +
r2

2

)2

.

which is essentially self-adjoint onC∞
0 (0,∞)) iff |s| ≥ 1, and defined by the

regular boundary condition atr → 0 for |s| < 1. We study the “adiabatic” limit
(ε → 0) of the evolution equation

iε∂sU(s, s0)ψ = H(s)U(s, s0)ψ

for the propagatorU . Now, Dom(H(s)) is time-dependent and so the existence
of a unique solution of the evolution equation is not assured(cf. [6]); on the
other hand∂sH(s) is not relatively bounded and the gaps between the eigenvalues,
En+1(s)−En(s), are approximately constant inn and thus the known theorems (cf.
[4]) do not assure the validity of the adiabatic approximation.

Our solution to these problems is the following: we use the explicit knowledge
of the spectral measure ofH(s) to show the existence of an “adiabatic” propagator
Uad. Uad in turn is used to define a unique propagatorUw weakly related toH(s).
Then we show thatUad is an approximation ofUw (see Section 2.2 for the weak
relationship).

The spectrum ofH(s) is discrete. Denote byEn(s), ψn(s), Pn(s) the eigen-
values, eigenfunctions (chosen real) and eigenprojections respectively; letP(s) :=
i
∑

N
(∂sPn)Pn(s). Define Had(s) and its propagatorUad by

Had(s) := H(s)+ εP(s) and Uad(s)ψn(0) := exp

(

−
i

ε

s
∫

0

En

)

ψn(s).

THEOREM 1. For s ≥ 0,
(1) ‖P(s)‖ ≤ M(s) whereM(s) is a positive increasing function onR+,
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(2) ∃Ŵ(s) differentiable such thatP = i[H,Ŵ] and ‖Ŵ(s)‖ + ‖∂sŴ(s)‖ ≤ const,
(3)

∥

∥

∥

s
∫

0

U−1
ad PUad

∥

∥

∥
≤ const εs,

(4) For C(s) defined byi∂sC(s) = −(U−1
ad PUad)(s)C(s), C(0) = id, it holds

‖C(s)− id ‖ ≤ const εM(s)exp(sM(s)).

Comments on the proof.The main problem is to control the operator bound on
l2(N) of the matrix

〈ψm, ψ̇n〉 ∼
〈ψm, Ḣψn〉
En − Em

∼
1

n−m

(

m+ 1

n+ 1

)s/2

.

This is done in a number of steps. As an illustration, the firststep is to find a
bound onL2((0,∞), dx) for the self-adjoint integral operator with the kernel

K(x, y) = −
i

y

(

x

y

)s

for x < y, K(x, y) =
i

x

(y

x

)s

for x > y.

The bound reads‖K‖ ≤ (s + 1
2)

−1. But more steps of similar nature are needed to
complete the proof. �

REMARKS 1.
1. Dom(Had(s)) = Dom(H(s)), Uad(s)(Dom(Had(0))) = Dom(Had(s)),

iε∂sUad(s)ψ = Had(s)Uad(s)ψ, ∀ψ ∈ Dom(H(0)).

2. C(s) is well defined by the Dyson formula.
3. Uw(s) := Uad(s)C(s) is a propagator and the candidate to be generated by
H(s). Further it holds

‖Uw(s)− Uad(s)‖ ≤ εM(s)exp(sM(s)).

4. It is an open question whetherC(s) preserves Dom(H(0)) and thus whether
U(s)Dom(H(0)) ⊂ Dom(H(s)).

2.2. Weakly associated propagator

While we cannot show that the propagatorUw is the propagator ofH(s) we
can show that it is the unique propagator weakly associated to {H(s)}; so if the
propagator forH(s) exists, it equalsUw.

The definition of weak association relies heavily on the notion of the quasi-
energy operator which is directly related to the propagator: K = U(−i∂s)U∗, where
U =

∫ ⊕
Uw(s,0) ds. We say that a propagatorUw is weakly associated toH(s) iff

K = −i∂s + H where H =
⊕

∫

R

H(s) ds.
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One can actually prove that in this way introduced notion of weak association
generalizes the standard relationship between a propagator and a Hamiltonian as
well as that at most one propagator can be weakly associated to a Hamiltonian.
For details see [2].

3. The classical case

We again discuss the linear case8(t) = 80t . After a rescaling one is lead to
consider the Hamiltonian flow of

H(s) =
1

2
(p − a(q))2 , with a(q) :=

(

1

2
− φ

t

q2

)

q⊥,

for φ := e80/(2πω), ω := eB/m. Because of the cycloid-type nature of the
trajectoriesq(t) around a moving centerc we use the natural splittingq = c+ v⊥

where v := p − a(q), c := q − v⊥. Let us denote

e(ϕ) := (cosϕ, sinϕ) .

An appropriate canonical coordinate system is then defined so that

q = |c|e(ϕ1)+ |v|e(−ϕ2).

The action–angle coordinates readI1 = |c|2/2, I2 = H , ϕ1, ϕ2; the transformed
Hamiltonian is an integral of motion

K(ϕ, I) = I2 − φ arg(
√

2I1 e(ϕ1)+
√

2I2 e(−ϕ2)).

The fundamental relation between the centerc and the energy is

|c(s)|2

2
= H(s)+ φ(s − s0),

where s0 is a constant depending on the trajectory. The asymptotic behaviour
described below is illustrated by Fig. 1 depicting a typicaltrajectory.

THEOREM 2. For any fixed initial condition there exists a constanta0 > 0 such
that

q(s)
√
s

→
s→∞

√

2φ e
(

a2
0

4φ2
−
K

φ

)

,
q(s)
√

|s|
∼

s→−∞

√

2φ e(−s),

H(s) →
s→∞

a2
0

4φ
,

H(s)

|s|
→

s→−∞
φ.

Proof: The problem can be reduced to a two-dimensional system withcoordinates
J := I1 + I2 and ψ := ϕ1 + ϕ2. After a change of variables one arrives at a system
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Fig. 1. A typical trajectory of the HamiltonianH(s).

of differential equations which is equivalent to the integral equations

xj (s)= c1sJj−1(s)+ c2sYj−1(s)

−
πs

2

∞
∫

s

(

Yj−1(s)J1(τ )− Jj−1(s)Y1(τ )
)

F(τ, x1(τ ), x2(τ ))dτ,

j = 1,2, where the numbersc1, c2 involve initial conditions and

F(s, x1, x2) := φ −
x1

s
−

φ2s
√

x2
1 + (x2 − φ)2 + φ2s2 + x1

.

The integral equations allow for iterative solution and arewell suited for asymptotic
analysis. �
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