
Chapter 3
Face-to-Face Interactions

Alain Barrat and Ciro Cattuto

Abstract Face-to-face interactions of humans play a crucial role in their social
relationships as well as in the potential transmission of infectious diseases. Here
we discuss recent research efforts and advances concerning the measure, analysis
and modelling of such interactions measured using strategies ranging from surveys
to decentralised infrastructures based on wearable sensors. We present a number
of empirical characteristics of face-to-face interaction patterns and novel techniques
aimed at uncovering mesoscopic structures in these patterns. We also mention recent
modelling efforts and conclude with some open questions and challenges.

3.1 Introduction

Our modern interconnected societies make many channels available for commu-
nications and social interactions, such as phone calls, email, virtual conferences,
micromessaging, or online social networks. Despite this wealth of alternatives,
direct face-to-face interactions between individuals remain an essential element
of human behaviour and of human societies. Mining and analysing face-to-face
interaction patterns between individuals therefore has a clear impact towards
the fundamental knowledge and understanding of human behaviour and social
networks. Most crucially, contact patterns among individuals play an important role
in determining the potential transmission routes of infectious diseases, in particular
of respiratory pathogens. An accurate description of these patterns represents
therefore a crucial tool for identifying contagion pathways, for informing models
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of epidemic spread, and for the design and evaluation of control measures such as
the targeting of specific groups of individuals with appropriate prevention strategies
or interventions.

Empirical data describing direct interactions between individuals are however
by nature difficult to gather as, contrarily to online interactions, phone calls
or electronic communications, they do not leave any digital trace. Various data
collection strategies have therefore been used, in particular in the epidemiological
context and at different scales: surveys and diaries, synthetic population models,
and, thanks to the increase in the availability and use of novel technologies, wearable
sensors (see [1] for a review).

Here we first briefly review the measurement strategies and some of their
advantages and intrinsic limitations (Sect. 3.2). We then discuss in Sects. 3.3 and 3.4
a number of empirical characteristics of face-to-face interactions as obtained by
recent projects using wearable sensors, and review in Sect. 3.5 some recent attempts
at modelling these processes. We conclude in Sect. 3.6 by presenting a number of
open questions.

3.2 Proxies of Face-to-Face Interactions
and Measurement Strategies

Face-to-face interactions between individuals occur in a variety of contexts and
situations, contributing to phenomena as diverse as social coordination, information
propagation, disease spread and more. Gathering data and understanding the
patterns of these direct contacts is therefore of interest to fields of research ranging
from the fundamental understanding of human behaviour to the epidemiology of
transmissible diseases, and many efforts have been devoted to these tasks. We refer
the reader to [1] for a recent review of the methods and technologies that have
been used in various projects and provide here only a brief discussion on the range
of methods available and non-exhaustive references to the corresponding research
efforts.

A commonly employed method consists in asking individuals about their
contacts, using surveys and diaries. Volunteer participants are asked to record their
social interactions during a certain time period, for instance on a specific day, or
on consecutive days. While social science studies can be interested in all such
interactions (face-to-face, by email or by phone), the strongest focus on obtaining
information on face-to-face interactions has emerged in epidemiological studies
of infectious diseases, as such direct interactions are considered as relevant for
transmission events. Many efforts have therefore been deployed to use contact
diaries under various forms (using both paper and web-based questionnaires), either
in specific contexts ranging from hospitals to schools or among the general popula-
tion [2–9], and sometimes at very large scale with thousands of respondents [5, 7, 8].
Surveys have both advantages and limitations. One of the main advantages is that
well-studied questionnaires allow to gather information not only on the existence of
contacts but also on additional characteristics, such as their context (home, work,
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travel), estimates of their durations, existence of repeated contacts with the same
individual, or even the distance from home at which the contacts take place [8].
Metadata such as the age, gender and occupation of the respondent can also be
correlated with his/her contact numbers and durations. Questionnaires can even ask
to specify for each contact if it involved physical contact and distinguish periods
of well-being and illness of the respondent [10]. Surveys have also important
limitations. First, questionnaires are costly and it is notoriously difficult to recruit
participants [8, 9]. Second, self-reporting procedures entail biases that are difficult to
estimate [4, 11, 12], as participants might not recall all their contacts or might make
incorrect estimates of their durations. As surveys give access to ego-networks, the
fraction of triangles in contact networks is also difficult to estimate and typically
relies on each individual estimating if two of his/her contacts have themselves been
in contact [8]. Finally, subtleties in questionnaire design might also influence the
results, as discussed in [8]: for instance, the distribution of the number of reported
contacts varies significantly whether individuals have to report the name of each
contact or not.

Alternative approaches to the use of surveys have emerged in the recent years,
giving usually access to proxies of face-to-face interactions. For instance, the
availability of large-scale computing facilities and of detailed socio-demographic
data have made it possible to recreate in silica synthetic populations at the scale of
a whole city or country. These synthetic populations are typically used to generate
contact networks to simulate the spread of infectious diseases [13–15]. Interestingly,
the contact patterns obtained within such synthetic populations have been shown to
match those obtained in large-scale surveys [14, 15].

Another approach takes advantage of the development of various types of sensors
which can in particular measure the proximity of other similar devices, using
technologies ranging from Bluetooth, WiFi or RFID [16–24]. Depending on the
range of the signals used, such methods might yield information only on proximity
at a range that might not imply face-to-face interaction (e.g., Bluetooth signals
between devices can typically be received through a wall), or can be tuned to
specifically detect close-range face-to-face proximity [19, 21, 22]. We will here
mostly report on results obtained with the latter technology. Wearable sensors
are nowadays simple to use and come at reasonable costs. They also afford an
objective definition of contact and can report even short encounters. Their main
limitation comes from the fact that they do not register contacts with individuals
not participating to the data collection (and therefore not wearing any sensor) and
therefore provide data on the contacts among a closed population. Sampling issues
can thus arise if not all the members of the population of interest agree to wear the
sensors [22].

Given the respective advantages and limitations of methods based on surveys
and wearable sensors, a comparison of data collected by both types of methods in
a given population is of great interest. To our knowledge, only one such study has
been performed to date, namely in a high school context, showing in particular that
many contacts registered by sensors are not reported in surveys, especially for short
contacts, while long contacts are better reported [12]. More such studies in various
contexts would be highly welcome in the future.
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3.3 Face-to-Face Interactions as Temporal Networks

One of the advantages of decentralised sensing infrastructures based on wearable
sensors is that they not only yield information on the existence of a face-to-face
interaction between two individuals but also give access to the starting and ending
time of each such interaction, with a certain time resolution (typically of the order
of 20 s to a couple of minutes). The collected data can therefore adequately be
represented as a time-varying social network of contacts within the monitored
community, i.e., an instance of a “temporal network” [25].

The amount of activity, quantified as the number of observed face-to-face
contacts in a given time-window, varies substantially over time and can be very
different in different contexts. For instance, children in a primary school interact
much more than adults in offices. Despite these differences, some generic statistical
properties of the temporal networks of human interactions have emerged through the
various data collection efforts. First, the time intervals between successive contacts
are broadly distributed, spanning several orders of magnitude: most intercontact
durations are short, but very long durations are also observed, and no characteristic
timescale emerges [16, 19, 22, 26–28]. This bursty behaviour is a well-known
feature of human dynamics and has been observed in a variety of systems driven by
human actions [29]. Moreover, the distributions of the durations of single contacts
are also broad, spanning several orders of magnitude, and their functional form
displays a remarkable robustness across contexts [22, 28], measurement periods,
and measurement methods [30], as illustrated in Fig. 3.1.

Overall, temporal networks of face-to-face contacts between individuals exhibit
strongly heterogeneous dynamics, with robust statistical features. This implies two
important facts for modelers, in particular when dealing with processes depending
on contact durations between individuals, such as epidemic spreading. First, the
broadness of the distributions means that taking into account only average contact
durations and assuming that all contacts are equivalent might be a too coarse
representation of the reality. Indeed, different contacts might yield very different
transmission probabilities: many contacts are very short and correspond to a small
transmission probability, but some are much longer than others and could therefore
play a crucial role in disease dynamics, Second, the robustness of the distributions
found in different contexts means that these distributions can be assumed to depend
negligibly on the specifics of the situation being modeled and thus directly plugged
into the models.
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Fig. 3.1 Distributions of the face-to-face contact durations measured in different environments
ranging from a museum (SG) to a school (PS) and several scientific conferences

3.4 Structures and Structure Discovery

3.4.1 Structures in Aggregated Data

3.4.1.1 Contact Networks

It is often useful to aggregate the temporal network of contacts between individuals
over a given time window, in order to obtain static summaries of the contact
sequence. In the obtained aggregated network, each node represents an individual,
and a link between two nodes i and j denotes the fact that the corresponding
individuals have been in contact at least once during the time window under
consideration. Each such link is weighted by a summary of the temporal contact
activity that took place between i and j, such as the number of contact events or the
cumulative duration w of the contact events between the corresponding individuals.

The time window considered for aggregation can range from the finest time
resolution of the recording system (that can be of the order of seconds or minutes)
up to the entire duration of the data collection (e.g., days or weeks). In the case
of surveys, the detailed temporal information on the contacts’ timing is often not
available, and the natural aggregation time scale is 1 day. Surveys thus typically give
access to daily aggregated networks. Overall, different aggregation levels typically
provide complementary views of the network dynamics at different scales.
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The obtained aggregated networks unveil important information about the
contact patterns of the population under study. A first characterisation is provided
by the statistical distributions of nodes’ degrees: in a contact network, the degree
of a node (individual) is given by the number of distinct individuals with whom
that individual has been in contact. In datasets collected through wearable sensors,
the observed degree distributions are typically narrow, with an exponential decay
at large degrees and characteristic average values that depend on the particular
context [30, 31]. Interestingly, contact data obtained through surveys can lead either
to narrow or broad degree distributions, as discussed in [8], and the result might
be influenced by the way in which the survey is designed. When individuals are
asked to report a precise list of persons encountered during the day, the obtained
degree distributions are typically narrow [4, 6, 7], and the data of [8] actually show
a good agreement with sensor data. However, if the respondents have in addition the
possibility to report encounters with “groups” of individuals without specifying the
identity of each group member, the distribution becomes broad [8].

While the number of distinct individuals met is certainly important when
discussing behavioural patterns of humans, the durations and cumulated durations
of face-to-face contacts also carry crucial information, in particular with respect to
social or epidemiological contexts. The distributions of links’ weights is thus a very
relevant characteristic of these networks. Such distributions have been found to be
broad in many different datasets collected either through sensors [19, 22, 24, 28] or
surveys [8]: most pairs of interacting individuals have been in face-to-face proximity
for a short total amount of time, but some cumulated contact durations are very
long. No characteristic interaction timescale can be naturally defined, except for
obvious temporal cutoffs due to the finite duration of the measurements. Strikingly,
and similarly to the case of the durations of single contacts, recent studies have
shown a strong robustness of the functional shape of these distributions in different
contexts and even different data collection methods [22, 28, 30]. The empirically
found distributions seem therefore to be a robust property of human behaviour and
can be used directly for modelling purposes in various contexts.

While statistical distributions of node and link features display a strong robust-
ness, the detailed structures of aggregated networks of contacts are much more
diverse depending on the context. For instance, aggregated networks of interactions
during a typical day at a small conference are rather “compact” with a close-
knit structure [31], as participants are typically engaged in interacting with known
individuals as well as in meeting new persons. Networks of contacts among
children in a primary school or students in a high school display on the contrary
a strong community structure, shown in Fig. 3.2, as a consequence of the grouping
of individuals in classes [30, 33]. A similar structure has been observed in an
office building, where workers from the same department have more contacts than
with workers from other departments, even during lunch hours [34]. In hospitals,
different structures emerge due to the different roles of individuals: as shown in
[35, 36], nurses tend to form a rather dense group of nodes in the aggregated
network. The network of links involving patients and caregivers has, on the other
hand, a particular structure linking each patient to a specific caregiver, with very few
links among caregivers or among patients (see [35, 37] for graphical illustrations).
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Fig. 3.2 Primary school contact network, aggregated over 1 day. Only links that correspond to
cumulated face-to-face proximity in excess of 5 min are shown. The color of nodes indicates the
grade and class of students. Grey nodes represent teachers. The network layout was generated by
using the force atlas graph layout implementation available in Gephi [32]

3.4.1.2 Contact Matrices

It is often convenient to go one step further in the aggregation of contact data when
the population under study is structured, i.e., when individuals can be classified
according to specific characteristics or role (e.g., according to their age class or
professional activity). A convenient summary of their contact patterns is then
provided by contact matrices whose elements give the average number (or duration)
of the contacts that individuals in one given class have with individuals of another
class. Such a representation can be used at different scales: to describe, e.g., the
contact patterns between individuals having different roles in a hospital ward (e.g.,
nurses, doctors, patients) [35, 36], or between children or students of different
classes in schools [30, 33], but also to account for the mixing patterns between
individuals of different age classes in the population of a country, as obtained by
surveys [5].

Of note, the use of contact matrices for modeling contact patterns relies on a set
of restricted homogeneous mixing assumptions within each class and on the repre-
sentativeness of the average mixing behaviour between classes. Such an approach
neglects the strong fluctuations observed in the distributions of the numbers and
durations of contacts between two individuals of given classes [5, 6, 28, 38]. It
neglects also the fact that contact networks are typically sparse, and that the density
of links connecting individuals in given classes depends on the specific classes and
is sometimes very small: many pairs of individuals never have any contact.
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In order to provide a data representation that is not as specific as a high-resolution
temporal network of contacts but does not discard relevant heterogeneities in the
contact patterns, the contact matrix of distributions (CMD) has been introduced
in [38]. This representation, instead of considering only the average of the contact
time between individuals of specific classes, considers the whole distribution of
contact times, typically fitted by a negative binomial distribution. Similarly to the
customary contact matrices, the CMD is not an individual-based representation,
and does not retain the detailed structure of the empirical contact network. It thus
keeps the simplicity of a contact matrix formulation by grouping the individuals into
role classes, but takes into account the heterogeneity of contact durations between
individuals and the sparseness of the contact network. Such a representation is
useful for designing interventions as it can suggest easily generalizable strategies
that target specific classes of individuals [38].

3.4.1.3 Different Types of Contacts

Let us finally note that we have here mostly discussed aggregated networks of
contacts as registered by wearable sensors in different contexts. Contacts are then
gathered only between individuals participating to the data collection, and within the
considered environment. Individuals however have contacts in different situations,
ranging from home to workplaces and transportation means. In this respect, surveys
can help understand and quantify how contacts depend on context. For instance,
the large-scale survey analysed in [8] highlights how contact time decreases
with age and how contacts involving touch tend be of longer duration. It also shows
that home contacts account for the majority of contact hours, while work corre-
sponds to more numerous but shorter contacts. Different occupations correspond
also to different average daily numbers of contacts. Finally, the survey answers show
that the time in contact decreases when the distance from home increases [8].

3.4.2 Longitudinal Structures

Human activity and contact patterns are highly non-stationary. In particular, the
number of contacts among a given population varies strongly in time, obeying
typical circadian rhythms and possibly modulated by the unfolding of scheduled
activities [22]. It is therefore important to assess how statistical properties of
contacts are impacted by and possibly coupled with these activity variations.
Moreover, high-resolution datasets on contacts between individuals are typically
gathered during few days or weeks in a certain context, and assessing the long-term
stability of the data characteristics across different periods is also crucial.
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3.4.2.1 Short-Term Stability

Despite the strong variations in activity, i.e., in the numbers of registered contacts,
the main statistical properties of the contacts have been empirically shown to
be stable [22, 28]. In particular, the contact duration distributions measured over
different time windows coincide, as well as the structure of contact matrices across
different workdays [30, 34, 36]. In fact, even the activity timelines can be remarkably
stable across days when they depend on schedules either externally imposed as in
schools [30] or driven by the organisation of work as in hospitals [36], as illustrated
in Fig. 3.3.

On the other hand, surveys have shown that important differences between
contact matrices describing contact patterns in the population are observed between
work and non-work days [6, 8, 39], as well as, for a given individual, between
periods of well-being and periods of illness [10].
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3.4.2.2 Long-Term Stability

Few datasets afford a comparison between contact patterns observed in a given
context or in similar contexts during different periods. In particular, the comparison
of the data gathered in different hospital wards [23, 35, 36] shows the robustness of
stylised facts such as the central role of nurses and the small number of contacts
between patients. Very few studies report and compare high-resolution contact
networks measured in the same context at different points in time. Fournet and
Barrat [30] compares contact data gathered in the same high school in two different
years, and reports a very strong qualitative and quantitative similarity between
contact matrices for different years.

3.4.3 Mesoscopic Structures and Latent Factor Analysis

In the previous sections we discussed the short-term and long-term stability of some
statistical distributions of interest. The aggregation over time or over node attributes
that is required to compute such distributions projects away many specificities,
structures, and correlations of the original data. Depending on the problem at hand,
these aggregated representations may overlook or confound important structural
features of the network.

For example, a node or group of nodes may belong to different communities at
different points in time: aggregating the network over time will artificially merge the
communities and create a cluster that does not represent the network at any point
in time. Similarly, groups of nodes may exist that share similar activity patterns
over time. This is a common occurrence in environments such as schools, where
an externally imposed schedule of social activities (e.g., class and lunch breaks)
drives and constrains the interactions that are possible at a given time. In this case,
temporal aggregation of the network may retain the topology of interactions but
loses the information on correlated activity patterns, which may play an important
role for, e.g., epidemic processes unfolding over the temporal network [40]. In
general, correlated topological and temporal features of the network may give rise
to structures that are neither local features of individual nodes or edges nor global
structures, such as, for instance, a suitably defined network backbone. Hence, in
the following we will refer to these structures as “mesoscopic structures”. It is
important to remark that meso-scale structures are not limited to the (possibly
hierarchical) community structure of the network: communities are usually defined
as cohesive clusters, whereas the structures under study may also comprise two-
mode communities [41], groups of links with correlated activity patterns, and more.

Detecting mesoscopic structures in high-resolution social network data is an out-
standing challenge that calls for principled approaches and efficient computational
techniques. Recent work focuses on extending well-known community detection
techniques to the case of temporal networks. A common approach is to detect
communities in static networks snapshots obtained by aggregating the temporal
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network over consecutive time intervals. The changes of the community structure
over time are then analysed to relate communities found at different times and
track their evolution. Simple approaches to mine the temporal community structure
of a system are based on a continuity assumption for the (static) community
structure detected at successive time intervals [42–44]. These approaches may
prove useful in specific cases, but fail in the presence of discontinuous activity
patterns, abrupt community formation or dissolution, and in general they cannot
deal with temporal correlations over extended periods of time. Instead of separately
treating the community structure and the temporal evolution of the network, some
studies [45–47] pioneered global approaches to the problem of community detection
in temporal networks.

More recently, we have investigated the use of techniques for latent factor analy-
sis to simultaneously identify mesoscopic network structures and track their activity
over time, without the assumption that the sought structures should be cohesive
clusters. The starting point for this analysis is a mathematical representation of time-
varying network data that treats topology and time on an equal footing: A temporal
network can be naturally represented as a time-ordered sequence of adjacency
matrices, each describing the state of the network at a discrete point in time. The
adjacency matrices can be combined into a three-way tensor T 2 R

N�N�S, where
N is the number of nodes of the network and S the number of network snapshots.
The tensor T encodes the entire information about the temporal network and has
been recognized as a convenient representation both for multi-layer networks and
temporal networks [48].

Once the network and its evolution are represented in a tensor form, we can
use a variety of methods from data mining and machine learning to identify latent
structures. We focused on tensor decomposition techniques that were developed in
diverse domains like signal processing, psychometrics and brain science [49, 50].
In particular, we investigated the use of non-negative tensor factorization [50, 51]
because, like non-negative matrix factorization [52], it is recognized as a powerful
tool for learning parts-based representations. The basic idea is to approximate the
tensor T by a sum of products of lower-dimensional factors, each of which can be
interpreted in terms of groups of nodes and temporal activity patterns. Formally, T
can be approximated by a sum QT of rank-1 tensors:

QT D
RX

rD1

ar ı br ı cr ; (3.1)

subjected to non-negativity constraints on ar, br and cr. The number R of terms in
the decomposition controls the complexity of the model: for small values of R, QT
is a crude approximation of T , whereas for high values of R the decomposition
yields a good approximation but eventually overfits T . The choice of R is usually
set by means of heuristics or quality metrics for the decomposition [53]. The vectors
a1; a2; : : : ; aR, b1; b2; : : : ; bR and c1; c2; : : : ; cR can be arranged into matrices A 2
R

N�R, B 2 R
N�R and C 2 R

S�R. Rows correspond to the nodes of the network,
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Fig. 3.4 Component-node matrix obtained via non-negative tensor factorization, for R D 13.
Rows correspond to network nodes and columns to components, here regarded as mesoscopic
structural features of the network. The matrix is obtained from the factor A by classifying each
node as belonging (light colours) or not belonging (dark blue) to a given component. Node order
has been rearranged to expose the block structure of the matrix. Colours identify components, and
the structures that correspond to school classes are annotated with the corresponding class name.
From [53]

while columns correspond to terms of the decomposition: specifically, the elements
air and bir relate individual nodes to components, while the elements ckr associate
each component with the times k it spans and can be regarded as an activity level of
that component over time. As an illustration, in Fig. 3.4 we display matrix A for a
sample decomposition of the high-resolution school social network of [33], obtained
via non-negative tensor factorization. The method detects both cohesive structures
corresponding to school classes and components that describe mixing patterns of
the classes induced by scheduled social events such as lunch breaks [53].

Overall, this decomposition model can accommodate the description of
mesoscale network structures that mix topological and temporal features in complex
fashions: cohesive communities, overlapping communities, groups of links that are
only active at specific times, abrupt transitions of the community structure, similar
connectivity patterns at distant times, and more. The non-negativity constraints
make the decomposition purely additive, and hence yield terms that are more inter-
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pretable [54] in relation to contextual information or other background knowledge
about the network at hand. We notice that non-negative factorization, because of the
properties summarized above, has been already proposed for community detection
in static networks [55, 56] when dealing with densely overlapping communities.

We finally remark that a central challenge in designing techniques for detecting
mesoscopic structures is the ability to validate the obtained results either by running
the decomposition on synthetic benchmark networks or by using empirical data for
which a ground truth is independently available, (e.g., the case of [53]).

3.5 Modelling Face-to-Face Interactions

The modelling activity concerning time-varying networks of contacts between
individuals is quite recent, mainly because it has followed the availability of time-
resolved datasets.1 For instance, Scherrer et al. [27] have proposed a model of
Markovian graph dynamics, in which each link can appear or disappear with
probabilities depending on the graph state at each time: This model was tuned
to reproduce detailed features of a specific dataset. Another approach consists in
considering a set of agents, defining rules of interactions between these agents,
and studying the statistical properties of the contact network that emerge from
these “microscopic” rules. In particular, the model developed in [58, 59] considers
N agents who can either be isolated or form groups. Each agent is characterized
by his/her coordination number indicating the number of agents interacting with
him/her, and the time at which this coordination number last changed. At each time
step, an isolated agent can create a link with another isolated agent, and an agent
who is part of a group can leave the group or invite an isolated agent to join it.
Each such creation or deletion of links occurs with probabilities that can depend
on the concerned agents’ status. Interestingly, the introduction of memory effects in
the definition of these probabilities is able to generate dynamical contact networks
with properties similar to the ones of empirical data sets [58, 59]. In particular, a
reinforcement principle can be implemented by considering that the probability that
an agent changes his/her state decreases with the time elapsed since his/her last
change of state: This is equivalent to the assumption that the longer an agent is
interacting in a group, the smaller is the probability that s/he will leave the group,
and that the longer an agent is isolated, the smaller is the probability that s/he will
form a new group. As a result, the distributions of contact durations and of time
intervals between successive contacts of an individual are power-law distributed,
and the aggregated contact networks display features similar to the empirically
observed ones [58, 59].

Vestergaard et al. [60] consider a similar model in which, for each pair of agents,
the probabilities of creation and deletion of links between agents depend on the

1See also [57] for more abstract modelling of adaptive networks.
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time elapsed since the last evolution of the involved agents. The model considers
four different “memory mechanisms” inspired by empirical evidence showing that
long-term memory effects akin to self-reinforcing effects are present in the creation
and disappearance of links in contact networks. For instance, more active agents
tend to create more new contacts and are more attractive to other agents initiating
new contacts; moreover, one of the mechanisms captures the fact that one tends
to interact more often with close acquaintances. While all these memory effects
are combined in empirical data, the modeling framework of [60] makes it possible
to explore their individual roles both analytically and numerically. The model
analysis shows how each memory mechanism by itself can lead to the emergence
of some heterogeneity in the temporal characteristics of the contact networks, as
quantified by broad distributions of, e.g., contact durations or inter-contact times.
Interestingly however, the whole empirical phenomenology is retrieved only when
all four memory mechanisms are introduced into the model.

Another model of interacting agents is put forward in [61, 62]: agents perform
here random walks in two dimensions, and two agents are considered as in contact if
they are within a certain distance d of each other. The main ingredient of the model
is that each agent i is characterised by an intrinsic “attractiveness” ai 2 Œ0; 1� that
can be interpreted as due, for instance, to social status. When an agent is in contact
with other agents, s/he can either perform a random walk step or keep the interaction
by staying immobile, and the probability to maintain the contact is proportional to
the attractiveness of the most attractive neighbour. Agents can also be active (i.e.,
can have contacts) or inactive with certain probabilities, to mimic the fact that in
empirical datasets, individuals can leave the premises and stop having contacts, or
come back and start again interacting. The mechanism is illustrated in Fig. 3.5 and
leads to heterogeneous distributions of contact durations, of inter contact times and
of aggregated contact durations very similar to empirical data (see Fig. 3.6).

3.6 Conclusions and Open Problems

Face-to-face interactions are a crucial element in the fabric of social connectivity.
Their properties and their dynamics entangle many complex aspects that comprise
the free agency of individuals, social coordination, human mobility and dynamics
under spatial constraints, the interplay of stochasticity and deterministic activity
patterns, social network structure, organizational structure, multi-layer and time-
varying social networks, and more. On top of this, face-to-face interactions mediate
and constrain important dynamical processes, such as information diffusion and
epidemic spread of infectious agents that are transmissible during a face-to-face
interaction. The research agenda on face-to-face interactions, of course, cannot
be fully decoupled from domain-specific aspects, but—as it is usually the case
for many complex systems—it is possible to discover and exploit summarized
data representations, statistical regularities, stylised facts, and minimal models that
reproduce a set of observations across diverse contexts.
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Fig. 3.5 Illustration of the mechanism of interaction of [61]. Each circle represents an agent.
Left: Dark agents are active, grey (light) agents do not move nor interact. Agents interact if they
are within a distance d, and are then connected by a link. Right: Each agent is characterized
by a number representing attractiveness. The probability for the central individual to move is
p D 1�max.0:1; 0:6/ D 0:4 since the attractiveness of the inactive agent is not taken into account.
Reprinted figure with permission from Michele Starnini, Andrea Baronchelli, and Romualdo
Pastor-Satorras, Phys. Rev. Lett. 110, 168701 (2013). Copyright 2013 by the American Physical
Society [61]

The research agenda we envision, thus, starts by building an “atlas” of human
contacts, which is incrementally assembled by adding map after map of human
encounters, obtained by measuring face-to-face interactions in a variety of social
contexts, at different points in time, at different scales, and using different proxies
to assess individual interactions. The availability of these empirical datasets allows
to make progress in the direction of the following goals:

• To learn which proxy is best suited to measure a given type of close-range
interaction in a given context, and how different proxies relate to one another
when used to quantify the same face-to-face interactions. We illustrated some of
these points in Sect. 3.2.

• To uncover statistical regularities, as discussed in Sect. 3.3. The ultimate goal is
not to empirically quantify all interactions in any given environment, but rather to
learn what should be measured and what we do not need to measure every time.

• To design summarised data representations such as the contact matrices and
aggregated networks discussed in Sect. 3.4 that, ideally, retain only the essential
information and generalise well to other environments or social contexts.

• To devise minimal dynamical models, like those described in Sect. 3.5, that
reproduce a set of important stylised facts and observed statistical properties
under minimal assumptions. Models like these are precious to generate synthetic
but realistic interaction networks, and to gain insight into the deep mechanisms
that are responsible for the observed behaviors.

All of the above points are aimed at achieving parsimonious representations of the
empirical data and parsimonious mathematical models for selected observables.
However, it is important to remark that whereas simple generative models can
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Fig. 3.6 Comparison of the model of [61] with empirical data. Main figure: distribution P.w/ of
links’ weights (i.e., aggregated contact durations between pairs of individuals) in the aggregated
contact network. Inset: average strength s of nodes of degree k in the aggregated network, i.e.,
average total time in contact (s) of agents having had contacts with k other agents. The datasets
correspond to contacts gathered by the SocioPatterns collaboration [21] in a hospital (“hosp”),
conferences (“ht” and “sfhh”) and in a primary school (“school”). Reprinted figure with permission
from Michele Starnini, Andrea Baronchelli, and Romualdo Pastor-Satorras, Phys. Rev. Lett. 110,
168701 (2013). Copyright 2013 by the American Physical Society [61]

reproduce some or even many of the observed statistical distributions, the rich multi-
level structure that is visible in face-to-face interaction data cannot emerge from
such models: when aiming at realistic scenarios, both in a data mining perspective
and in a mathematical modeling perspective, there are specificities of the system at
hand that we cannot ignore. Because of this, is it important to develop and validate
techniques for detecting structures and correlated activity patterns of face-to-face
interactions, as discussed in Sect. 3.4.3. Many highly relevant ideas and methods
rooted in the domains of data mining and machine learning can be brought to bear
on network science. The design of mathematical models that naturally incorporate
the observed longitudinal structures, mesoscopic structures, and correlated activity
patterns is an outstanding problem.

In this chapter we often discussed, explicitly or implicitly, epidemic processes
over face-to-face interaction networks. This disciplinary focus arises from two
reasons:

• A need for simplicity. Biological contagion processes unfold over face-to-face
interaction in a mechanistic fashion. To describe their dynamics we need not take
into account complex cultural attributes of the individuals that may play a crucial



3 Face-to-Face Interactions 53

role when dealing with, e.g., information spreading over face-to-face encounters.
Moreover, when dealing with airborne infectious agents, the network of close-
range encounters in space is generally regarded to be the relevant network for
the epidemic process. The same does not hold for, e.g., information diffusion,
as face-to-face encounters are just one of many information exchange modalities
among humans and the relevant network structure for this process is likely to be
a multi-layer network.

• Moving from understanding to control. Controlling and mitigating epidemic
processes on face-to-face interaction networks is a challenge that combines
data-intensive approaches and mathematical models, with a potentially huge real-
world impact. Nosocomial infections alone are a huge burden, both financially
and in terms of individual health outcomes, and they occur in a context, the
hospital, where it is comparatively easy to measure face-to-face interactions
and put them in relation with infection surveillance and microbiological data.
In general, there is an opportunity to use knowledge on high-resolution social
networks to design mitigation strategies and targeted interventions. In [63],
for example, we investigated targeted class-closure strategies for mitigating the
epidemic of a flu-like disease in schools.

Despite the recent important advances that we have in part described in this
chapter, many other open problems and challenges remain [64]. They include
further measurements of face-to-face interactions at different scales and in different
contexts, with in particular the comparison and integration of different measurement
strategies and the development of means to compensate for missing data due to sam-
pling issues and to the finiteness of the population studied. A crucial challenge, in
the context of understanding infectious disease dynamics over face-to-face contact
networks, regards also the combination of contact data with virological data to better
understand the links between contacts and infection events and to better assess the
relative importance of different routes of transmission of various infectious diseases.
Another important open problem lies in measuring, understanding, and modeling
the reactive aspects of social contact in relation to disease status. This entangles the
biological contagion dynamics and behavioural/cultural aspects, greatly increasing
the complexity of the dynamics [10, 65, 66].

Let us finally note that, in order to make progress in the research agenda
described in this section, continued data gathering efforts using various strategies
and in contexts as diverse as possible remain essential, as well as the availability of
the corresponding datasets for the research community [21].
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