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Abstract

We use thek-core decomposition to develop algorithms for the analysis
of large scale complex networks. This decomposition, based on a re-
cursive pruning of the least connected vertices, allows to disentangle the
hierarchical structure of networks by progressively focusing on their cen-
tral cores. By using this strategy we develop a general visualization algo-
rithm that can be used to compare the structural properties of various net-
works and highlight their hierarchical structure. The low computational
complexity of the algorithm,O(n + e), wheren is the size of the net-
work, ande is the number of edges, makes it suitable for the visualization
of very large sparse networks. We show how the proposed visualization
tool allows to find specific structural fingerprints of networks.

1 Introduction

In recent times, the possibility of accessing, handling and mining large-scale networks
datasets has revamped the interest in their investigation and theoretical characterization
along with the definition of new modeling frameworks. In particular, mapping projects of
the World Wide Web and the physical Internet offered the first chance to study topology
and traffic of large-scale networks. Other studies followed describing population networks
of practical interest in social science, critical infrastructures and epidemiology [1, 2, 3].
The study of large scale networks, however, faces us with an array of new challenges. The
definitions of centrality, hierarchies and structural organizations are hindered by the large
size of these networks and the complex interplay of connectivity patterns, traffic flows and
geographical, social and economical attributes characterizing their basic elements. In this
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context, a large research effort is devoted to provide effective visualization and analysis
tools able to cope with graphs whose size may easily reach millions of vertices.

In this paper, we propose a visualization algorithm based on thek-core decomposition
able to uncover in a two-dimensional layout several topological and hierarchical properties
of large scale networks. Thek-core decomposition [4] consists in identifying particular
subsets of the graph, calledk-cores, each one obtained by recursively removing all the
vertices of degree smaller thank, until the degree of all remaining vertices is larger than or
equal tok. Larger values of the indexk clearly correspond to vertices with larger degree
and more central position in the network’s structure.

This visualization tool allows the identification of real or computer-generated networks’
fingerprints, according to properties such as hierarchical arrangement, degree correlations
and centrality. The distinction between networks with seemingly similar properties is
achieved by inspecting the different layouts generated by the visualization algorithm. In
addition, the running time of the algorithm grows only linearly with the size of the net-
work, granting the scalability needed for the visualization of very large sparse networks.
The proposed (publicly available [5]) algorithm appears therefore as a convenient method
for the general analysis of large scale complex networks and the study of their architecture.

The paper is organized as follows: after a brief survey onk-core studies (section 2), we
present the basic definitions and the graphical algorithms in section 3 along with the basic
features of the visualization layout. Section 4 shows how the visualizations obtained with
the present algorithm may be used for network fingerprinting, and presents two examples
of visualization of real networks.

2 Related work

While a large number of algorithms aimed at the visualization of large scale networks have
been developed (e.g., see [6]), only a few consider explicitly thek-core decomposition.
Vladimir Batageljet al.[7] studied thek-core decomposition applied to visualization prob-
lems, introducing some graphical tools to analyse the cores, mainly based on the visualiza-
tion of the adjacency matrix of certaink-cores. To the best of our knowledge, the algorithm
presented by Bauret al. in [8] is the only one completely based on ak-core analysis and
directly targeted at the study of large information networks. This algorithm uses a spectral
layout to place vertices having the largest shell index. A combination of barycentric and
iteratively directed-forces allows to place the vertices of eachk-shell, in decreasing order.
Finally, the network is drawn in three dimensions, using thez axis to place each shell in a
distinct horizontal layer. Note that the spectral layout is not able to distinguish two or more
disconnected components. The algorithm by Bauret al. is also tuned for representing AS
graphs and its total complexity depends on the size of the highestk-core (see [9] for more
details on spectral layout), making the computation time of this proposal largely variable.
In this respect, the algorithm presented here is different in that it can represent networks in
which k-cores are composed by several connected components. Another difference is that
representations in 2D are more suited for information visualization than other representa-
tions (see [10] and references therein). Finally, the algorithm parameters can be universally
defined, yielding a fast and general tool for analyzing all types of networks.

It is interesting to note that the notion ofk-cores has been recently used in biologically
related contexts, where it was applied to the analysis of protein interaction networks [11] or
in the prediction of protein functions [12, 13]. Further applications in Internet-related areas
can be found in [14], where thek-core decomposition is used for filtering out peripheral
Autonomous Systems (ASes), and in [15] where the scale invariant structure of degree
correlations and mapping biases in AS maps is shown. Finally in [16, 17], an interesting
approach based on thek-core decomposition has been used to provide a conceptual and



structural model of the Internet; the so-called medusa model for the Internet.

3 Graphical representation

Let us consider a graphG = (V,E) of |V | = n vertices and|E| = e edges; ak-core is
defined as follows [4]:

-A subgraphH = (C,E|C) induced by the setC ⊆ V is ak-coreor a core of orderk iff
∀v ∈ C : degreeH(v) ≥ k, and H is the maximum subgraph with this property.

A k-core ofG can therefore be obtained by recursively removing all the vertices of degree
less thank, until all vertices in the remaining graph have at least degreek. Furthermore,
we will use the following definitions:

-A vertex i hasshell indexc if it belongs to thec-core but not to(c + 1)-core. We denote
by ci the shell index of vertexi.

-A shell Cc is composed by all the vertices whose shell index isc. The maximum value
c such thatCc is not empty is denotedcmax. Thek-core is thus the union of all shellsCc

with c ≥ k.

-Each connected set of vertices having the same shell indexc is aclusterQc. Each shell
Cc is thus composed by clustersQc

m, such thatCc = ∪1≤m≤qc
max

Qc
m, whereqc

max is the
number of clusters inCc.

The visualization algorithm we propose places vertices in2 dimensions, the position of
each vertex depending on its shell index and on the index of its neighbors. A color code
allows for the identification of shell indices, while the vertex’s original degree is provided
by its size that depends logarithmically on the degree. For the sake of clarity, our algorithm
represents a small percentage of the edges, chosen uniformly at random. As mentioned, a
central role in our visualization method is played by multi-components representation ofk-
cores. In the most general situation, indeed, the recursive removal of vertices having degree
less than a givenk can break the original network into various connected components,
each of which might even be once again broken by the subsequent decomposition. Our
method takes into account this possibility, however we will first present the algorithm in
the simplified case, in which none of thek-cores is fragmented. Then, this algorithm will
be used as a subroutine for treating the general case (Table 1).

3.1 Drawing algorithm for k-cores with single connected component

k-core decomposition. The shell index of each vertex is computed and stored in a vector
C, along with the shellsCc and the maximum indexcmax. Each shell is then decomposed
into clustersQc

m of connected vertices, and each vertexi is labeled by its shell indexci and
by a numberqi representing the cluster it belongs to.

The two dimensional graphical layout. The visualization is obtained assigning to each
vertexi a couple of polar coordinates (ρi, αi): the radiusρi is a function of the shell index
of the vertexi and of its neighbors; the angleαi depends on the cluster numberqi. In
this way,k-shells are displayed as layers with the form of circular shells, the innermost
one corresponding to the set of vertices with highest shell index. A vertexi belongs to the
cmax − ci layer from the center.

More precisely,ρi is computed according to the following formula:

ρi = (1− ε)(cmax − ci) +
ε

|Vcj≥ci
(i)|

∑
j∈Vcj≥ci

(i)

(cmax − cj) , (1)



Vcj≥ci(i) is the set of neighbors ofi having shell indexcj larger or equal toci. The pa-
rameterε controls the possibility of rings overlapping, and is one of the only three external
parameters required to tune image’s rendering.

Inside a given shell, the angleαi of a vertexi is computed as follow:

αi = 2π
∑

1≤m<qi

|Qm|
|Cci
|

+ N
(
|Qqi
|

2|Cci
|

, π · |Qqi
|

|Cci
|

)
, (2)

whereQqi
andCci

are respectively the clusterqi and ci-shell the vertex belongs to,N
is a normal distribution of mean|Qqi

|/(2|Cci
|) and width2π|Qqi

|/|Cci
|. Since we are

interested in distinguishing different clusters in the same shell, the first term on the right
side of Eq. 2, referring to clusters withm < qi, allows to allocate a correct partition of
the angular sector to each cluster. The second term on the right side of Eq. 2, on the other
hand, specifies a random position for the vertexi in the sector assigned to the clusterQqi .

Colors and size of vertices. Colors depend on the shell index: vertices with shell index
1 are violet, and the maximum shell index vertices are red, following the rainbow color
scale. The diameter of each vertex corresponds to the logarithm of its degree, giving a
further information on vertex’s properties. The vertices with largest shell index are placed
uniformly in a disk of radiusu, which is the unit length (u = 1 for this reduced algorithm).

3.2 Extended algorithm for networks with many k-cores components

The algorithm presented in the previous section can be used as the basic routine to define
an extended algorithm aimed at the visualization of networks for which somek-cores are
fragmented; i.e. made by more than one connected component. This issue is solved by
assigning to each connected component of ak-core a center and a size, which depends on
the relative sizes of the various components. Larger components are put closer to the global
center of the representation (which has Cartesian coordinates(0, 0)), and have larger sizes.

The algorithm begins with the center at the origin(0, 0). Whenever a connected component
of ak-core, whose centerp had coordinates(Xp, Yp), is broken into several components by
removing all vertices of degreek, i.e. by applying the next decomposition step, a new center
is computed for each new component. The center of the componenth has coordinates
(Xh, Yh), defined by

Xh = Xp+δ(cmax−ch)·up ·%h ·cos(φh) ; Yh = Yp+δ(cmax−ch)·up ·%h ·sin(φh) , (3)

whereδ scales the distance between components,cmax is the maximum shell index andch

is the core number of componenth (the components are numbered byh = 1, · · · , hmax in
an arbitrary order),up is the unit length of its parent component,%h andφh are the radial
and angular coordinates of the new center with respect to the parent center(Xp, Yp). We
define%h andφh as follows:

%h = 1− |Sh|∑
1≤j≤hmax

|Sj |
; φh = φini +

2π∑
1≤j≤hmax

|Sj |
∑

1≤j≤h

|Sj | , (4)

whereSh is the set of vertices in the componenth,
∑

j |Sj | is the sum of the sizes of all
components having the same parent component. In this way, larger components will be
closer to the original parent component’s centerp. The angleφh has two contributions.
The initial angleφini is chosen uniformly at random1, while the angle sector is the sum of
component angles whose number is less than or equal to the actual component numberh.

1Note that if φini is fixed, all the centers of the various components are aligned in the final
representation.



Algorithm 1

1 k := 1 andend := false
2 whilenot end do
3 (end, C)←make core k
4 (Q, T )←compute clusters k − 1, if k > 1
5 S← compute components k
6 (X, Y )←compute origin coordinates cmp k (Eqs. from 3 to 4)
7 U←compute unit size cmp k (Eq. 5)
8 k := k + 1
9 for each nodei do
10 if ci == cmax then
11 setρi andαi according to a uniform distribution in the disk of radiusu (u is the core

representation unit size)
12 else
13 setρi andαi according to Eqs. 1 and 2
14 (X ,Y)←compute final coordinates ρ α U X Y (Eq. 6)

Table 1: Algorithm for the representation of networks usingk-cores decomposition

Finally, the unit lengthuh of a componenth is computed as

uh =
|Sh|∑

1≤j≤hmax
|Sj |
· up , (5)

whereup is the unit length of its parent component. Larger unit length and size are therefore
attributed to larger components.

For each vertexi, radial and angular coordinates are computed by equations 1 and 2 as
in the previous algorithm. These coordinates are then considered as relative to the center
(Xh, Yh) of the component to whichi belongs. The position ofi is thus given by

xi = Xh + γ · uh · ρi · cos(αi); yi = Yh + γ · uh · ρi · sin(αi) (6)

whereγ is a parameter controlling the component’s diameter.

The global algorithm is formally presented in Table 1. The main loop is com-
posed by the following functions. First, the function{(end, C)←make core k}
recursively removes all vertices of degreek − 1, obtaining thek-core, and stores
into C the shell indexk − 1 of the removed vertices. The boolean variableend
is set to true if the k-core is empty, otherwise it is set tofalse. The function
{(Q, T )← compute clusters k − 1} operates the decomposition of the(k − 1)-
shell into clusters, storing for each vertex the cluster label into the vectorQ, and fill-
ing table T , which is indexed by the shell indexc and cluster labelq: T (c, q) =
(
∑

1≤m<q |Qm|/|Cc|, |Qq|/|Cc|). The possible decomposition of thek-core into con-
nected components is determined by function{S ← compute components k}, that
also collects into a vectorS the number of vertices contained in each component. At the
following step, functions{(X, Y )←compute origin coordinates cmp k} and
{U ←compute unit size cmp k} get, respectively, the center and size of each com-
ponent of thek-core, gathering them in vectorsX, Y andU . Finally, the coordinates of
each vertex are computed and stored in the vectorsX andY.

Algorithm complexity. Batagelj and Zversnik [18] present an algorithm to perform the
k-core decomposition, and show that its time complexity isO(e) (wheree is the number
of edges) for a connected graph. For a general graph it isO(n + e), wheren is the number
of nodes, which makes the algorithm very efficient for sparse graphs wheree is of ordern.
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Figure 1: Structure of a typical layout in two important cases: on the left, allk-cores are
connected; on the right, somek-cores are composed by more than one connected compo-
nent. The vertices are arranged in a series of concentric shells corresponding to the various
k-shells. The diameter of each shell depends on both the shell index and, in case of mul-
tiple components (right) also on the relative fraction of vertices belonging to the different
components.

3.3 Basic features of the visualization’s layout

The main features of the layout’s structure obtained with the above algorithms are visible
in Fig.1 where, for the sake of simplicity, we do not show any edge.

The two-dimensional layout is composed of a series of concentriccircular shells. Each
shell corresponds to a singleshell indexand all vertices in it are therefore drawn with the
same color. A color scale allows to distinguish differentshell indices: the violet is used
for the minimum shell indexkmin, then we use a graduated rainbow scale for higher and
higher shell indices up to the maximum valuekmax that is colored in red. The diameter
of eachk-shell depends on theshell indexk, and is proportional tokmax − k (In Fig.1,
the position of each shell is identified by a circle having the corresponding diameter). The
presence of a trivial order relation in the shell indices ensures that all shells are placed in
a concentric arrangement. On the other hand, when ak-core is fragmented in two or more
components, the diameters of the different components depend also on the relative number
of vertices belonging to each of them, i.e. the fraction between the number of vertices
belonging to that component and the total number of vertices in that core. This is a very
important information, providing a way to distinguish between multiple components at a
given shell index. Finally, the size of each node is proportional to theoriginal degreeof
that vertex; we use a logarithmic scale for the size of the drawn bullets.

4 Network fingerprinting

Thek-core decomposition peels the network layer by layer, revealing the structure of the
different shells from the outmost one to the more internal ones. The algorithm provides
a direct way to distinguish the network’s different hierarchies and structural organization
by means of some simple quantities: the radial width of the shells, the presence and size
of clusters of vertices in the shells, the correlations between degree and shell index, the
distribution of the edges interconnecting vertices of different shells, etc.

1) Shells Width: The thickness of a shell depends on the shell index properties of the
neighbors of the vertices in the corresponding shell. For a given shell-diameter (black
circle in the median position of shells in Fig.2), each vertex can be placed more internal or
more external with respect to this reference. Nodes with more neighbors in higher shells are
closer to the center and viceversa: in Fig.2, nodey is more internal than nodex because it
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Figure 2: Left: each shell has a certain radial width. This width depends on the correlation’s
properties of the vertices in the shell. In the second shell, we have pinpointed two nodes
x andy. Nodey is more internal thanx because a larger part of its neighbors belongs to
higherk-shells compared tox’s neighbors. The figure on the right shows the clustering
properties of nodes in the samek-shell. In eachk-shell, nodes that are directly connected
between them (in the original graph) are drawn close one to the other, as in a cluster. Some
of these sets of nodes are circled and highlighted in gray. Three examples of isolated nodes
are also indicated; these nodes have no connections with the others of the same shell.

has three edges towards higher index nodes, whilex has only one. The maximum thickness
of the shells is controlled by theε parameter (Eq. 1).

2) Shell Clusters:The angular distribution of vertices in the shells is not completely ho-
mogeneous. Fig.2 shows that clusters of vertices can be observed. The idea is to group
together all nodes of the same shell that are directly linked in the original graph and to
represent them close one to another. Thus, a shell is divided in many angular sectors, each
containing a cluster of vertices. This feature allows to figure out at a glance if the shells
are composed of a single large connected component rather than divided into many small
clusters, or even if there are isolated vertices (i.e. disconnected from all other nodes in the
shell, not from the rest of thek-core!).

3) Degree-Shell index Correlation:Another property that can be studied from the obtained
layouts is the correlation between the degree of the nodes and the shell index. Both quan-
tities are centrality measures and the nature of their correlations is a very important feature
characterizing a network’s topology. The nodes displayed in the most internal shells are
those forming the central core of the network; the presence of degree-index correlations
then corresponds to the fact that the central nodes are most likely high-degree hubs of the
network. This effect is observed in many real communication networks with a clear hier-
archical structure, such as the Internet at the Autonomous System level or the World Wide
Air-transportation network [5]. On the contrary, the presence of hubs in external shells is
typical of less hierarchically structured networks such as the World-Wide Web or the In-
ternet Router Level. In this case, star-like configurations appear with high degree vertices
connected only to very low degree vertices. These vertices are rapidly pruned out in the
k-core decomposition even if they have a very high degree, leading to the presence of local
hubs in external shells, as in Fig. 3.

4) Edges: The visualization shows only a homogeneously randomly sampled fraction of
the edges, which can be tuned in order to get the better trade-off between the clarity of
visualization and the necessity of giving information on the way the nodes are mainly con-
nected. Edge-reduction techniques can be implemented to improve the algorithm’s capacity
in representing edges; however, a homogeneous sampling does not alter the extraction of
topological information, ensuring a low computational cost. Finally, the two halves of each
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Figure 3: Correlations between shell index and degree. On the left, we report a graph
with strong correlation: the size of the nodes grows from the periphery to the center, in
correspondence with the shell index. In the right-hand case, the degree-index correlations
are blurred by large fluctuations, as stressed by the presence of hubs in the external shells.

edge are colored with the color of the corresponding extremities to emphasize the connec-
tion among vertices in different shells.

5) Disconnected components:The fragmentation of any givenk-core in two or more dis-
connected components is represented by the presence of a corresponding number of circular
shells with different centers (Fig. 1). The diameter of these circles is related with the num-
ber of nodes of each component and modulated by theγ parameter (Eq. 6). The distance
between components is controlled by theδ parameter (Eq. 3).

In summary, the proposed algorithm makes possible a direct, visual investigation of a series
of properties: hierarchical structures of networks, connectivity and clustering properties in-
side a given shell; relations and interconnectivity between different levels of the hierarchy,
correlations between degree and shell index, i.e. between different measures of centrality.

Numerous examples of the application of this tool to the visualization of real and computer
generated networks can be found on the web page of the publicly available tool [5]. For
example, the lack of hierarchy and structure of the Erdös-Ŕenyi random graph is clearly
identified. Similarly the time correlations present in the Barabási-Albert network find a
clear fingerprint in our visualization layout. Here we display another interesting illustra-
tion of the use and capabilities of the proposed algorithm in the analysis of large sparse
graphs: the identification of the different hierarchical arrangement of the Internet network
when visualized at the Autonomous system (AS) and the Router (IR) levels2. The AS
level is represented by collected routes ofOregon route-views[19] project, from May 2001.
For the IR level, we use the graph obtained by an exploration of Govindan and Tangmu-
narunkit [20] in 2000. These networks are composed respectively by about11500 and
200000 nodes.

Figures 4 and 5 display the representations of these two different maps of Internet. At
the AS level, all shells are populated, and, for any given shell, the vertices are distributed
on a relatively large range of the radial coordinate, which means that their neighborhoods
are variously composed. The shell index and the degree are very correlated, with a clear
hierarchical structure, and links go principally from one shell to another. The hierarchical
structure exhibited by our analysis of the AS level is a striking property; for instance, one
might exploit it for showing that in the Internet high-degree vertices are naturally (as an
implicit result of the self-organizing growth) placed in the innermost structure. At higher
resolution, i.e. at the IR level, Internet’s properties are less structured: external layers, of

2The parameters are here set to the valuesε = 0.18, δ = 1.3 andγ = 1.5.



lowest shell index, contain vertices with large degree. For instance, we find 20 vertices with
degree larger than 100 but index smaller than 6. The correlation between shell index and
degree is thus clearly of a very different nature in the maps of Internet obtained at different
granularities.

Figure 4: Graphical representation of the AS network. The three snapshots correspond to
the full network (top left), with the color scale of the shell index and the size scale for the
nodes’ degrees, and to two magnifications showing respectively a more central part (top
right) and a radial slice of the layout (bottom).

5 Conclusions

Exploitingk-core decomposition, and the corresponding natural hierarchical structures, we
develop a visualization algorithm that yields a layout encoding a considerable amount of
the information needed for network fingerprinting in the simplicity of a 2D representation.
One can easily read basic features of the graph (degree, hierarchical structure, etc.) as well
as more entangled features, e.g. the relation between a vertex and the hierarchical position
of its neighbors. The present visualization strategy is a useful tool to discriminate between
networks with different topological properties and structural arrangement, and may be also
used for comparison of models with real data, providing a further interesting tool for model

Figure 5: Same as Fig. 4, for the graphical representation of the IR network.



validation. Finally, we also provide a publicly available tool for visualizing networks [5].
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