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MOTIVATION In many biological processes, such as the cell cycle, molecules are produced and translo-
cated, interact with each other, and are destroyed following a strict temporal order to ensure proper execu-
tion of molecular events. An increasing amount of time-resolved data is becoming available trying to cap-
ture these ordered molecular states or phases of a biological system. To understand or predict these
phases would yield crucial insight into the temporal organization of such systems.
SUMMARY
The temporal organization of biological systems is key for understanding them, but current methods for
identifying this organization are often ad hoc and require prior knowledge. We present Phasik, a method
that automatically identifies this multiscale organization by combining time series data (protein or gene
expression) and interaction data (protein-protein interaction network). Phasik builds a (partially) temporal
network and uses clustering to infer temporal phases. We demonstrate the method’s effectiveness by recov-
ering well-known phases and sub-phases of the cell cycle of budding yeast and phase arrests ofmutants.We
also show its general applicability using temporal gene expression data from circadian rhythms in wild-type
and mutant mouse models. We systematically test Phasik’s robustness and investigate the effect of having
only partial temporal information. As time-resolved,multiomics datasets becomemore common, thismethod
will allow the study of temporal regulation in lesser-known biological contexts, such as development,
metabolism, and disease.
INTRODUCTION

Many biological systems go through successive phases, or

states, over multiple time and space scales. Examples include

biological rhythms,1–3 cell differentiation,4 or sleep phases in

the brain,5 just to name a few. These phases, and their order in

time, are often crucial for the functioning of these systems and

can even determine their fate.

A particularly important example of such a process is the cell

cycle; precise timing of molecular events is crucial for proper

execution of cell division. The cell progresses through 4 macro-

scopic phases before eventually dividing into two cells (Fig-

ure 1A). These cell cycle phases were first determined at the

cellular scale by analyzing the proliferation of bean root cells.6

The cycle starts with a first gap phase (G1), in which the cell
Cell Rep
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grows and needs to reach a certain size to enter the next phase,

where DNA is synthesized (S), followed by a second gap phase

(G2) and finally mitosis (M), in which the duplicated chromosome

set is divided and equally distributed into two daughter cells.

These 4 phases can be further divided into sub-phases, or phys-

iological processes. For example, mitosis is composed of pro-

phase, metaphase, anaphase, and telophase.

In the past 70 years, extensive cell cycle research identified

the molecular events driving the behavior of the cell in each of

these 4 phases (see reviews by Koch and Nasmyth,7 Murray,8

Nasmyth,9,10 and Vodermaier7–11). In particular, the transcrip-

tionally controlled cyclins and the cyclin-dependent kinases

were found to regulate a multitude of cell cycle events. A cellular

destruction machinery complements these proteins by degrad-

ing cell cycle regulators at specific times in the cell cycle. A set
orts Methods 3, 100397, February 27, 2023 ª 2023 The Authors. 1
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The 4 phases of the cell cycle with some important checkpoints and events Figure 1. Schematics of the temporal system

of the cell cycle and how to extract its phases

using temporal network clustering

(A) The cell cycle consists of a succession of phys-

iological processes mediated by PPIs, leading to

division of the cell. The ordering of these interactions

is crucial and is ensured by molecular checkpoints

(yellow). The cycle is divided into 4 main phases:

Gap1 phase (G1), synthesis phase (S), Gap2 phase

(G2), and mitosis (M).

(B) Multiscale phase inference with Phasik: sche-

matic of the method. (1) Edge time series are inte-

grated into a static PPI network to build (2) a partially

temporal network, shown in snapshot representa-

tion. (3) Pairwise distances between snapshots are

used to (4) cluster snapshots hierarchically. (5) The

clusters obtained: each row corresponds to a fixed

number of clusters. Each snapshot is shown as a dot

whose color represents the cluster to which it be-

longs. Clusters can be interpreted as time intervals

because there is a 1:1 correspondence between

snapshots and time points. Each cluster can then be

interpreted according to the underlying biological

processes.
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of core cell cycle proteins thus regulates the cell cycle and its

phases by interacting with each other in a precisely timed

manner. These interactions can be of different types, stable

and long term or transient (leading, for instance, to protein phos-

phorylation or ubiquitination), or represent a regulatory relation-

ship. They drive progression of the cell cycle and ensure that one

phase is complete before the cell enters the next phase by acting
2 Cell Reports Methods 3, 100397, February 27, 2023
as so-called molecular checkpoints. Not

fulfilling a checkpoint can stop progression

of the cell cycle and change the fate of

the cell.

The complexity of interactions between

proteins is often encoded in a network rep-

resentation.12 In such biological networks,

nodes represent proteins, and edges

represent protein-protein interactions

(PPIs).13,14 The cell cycle, for instance,

has been represented as a network

of PPIs in the Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway

resource.15 These network representations

are, however, static; they do not include

any information about the time-varying in-

teractions between cell cycle regulators.

Nonetheless, over the past few years,

temporal information about biological sys-

tems has become more widely available

in the form of time series recordings thanks

to high-throughput techniques such as

RNA sequencing and high-throughput pro-

teomics. This has opened the door to

investigation of the temporal dynamics of

various systems. In addition, mathematical

models of specific biological systems have
been proposed, based on a priori knowledge. These models

typically describe the dynamics of gene expression levels16 or

protein concentrations,17 either as continuously evolving vari-

ables or using binary values.18

To incorporate such temporal information into the representa-

tionofPPIs, a natural framework is that of temporal networks.19,20

In a temporal network of PPIs, nodes represent proteins, and
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interactions between them are represented by time-varying

edges. Temporal network theory has been used successfully in

areas ranging from social interactions21–23 to neuroscience.24,25

However, despite calls to use it more in biology,26 it is still under-

used to study, e.g., PPI networks. Existing studies mostly inte-

grate gene expression data frommicroarrays or RNA sequencing

to a static PPI network27 to identify active subnetworks28 and

functional modules.29–32

Here, we go further and take full advantage of the temporal

network framework. We developed an automated pipeline to

investigate the temporal organization of the cell cycle across a

range of timescales, starting from time series data of PPIs. To

this end, we built a representation of the cell cycle as a temporal

network of PPIs by incorporating time series data, obtained from

a mathematical model of the cell cycle, into a static network of

PPIs. We then built on a recent method introduced by Masuda

and Holme33 to infer phases by clustering snapshots of the tem-

poral network. We finally validated these phases against ground

truth biological knowledge. For this, we chose to apply our pipe-

line to infer the phases of the cell cycle of budding yeast, one of

the best-described cyclic systems to date. Within this pipeline,

we present in particular three main methodological advances:

(1) we analyze the phase inference results at multiple temporal

scales, revealing several additional sub-phases in the cell cycle,

(2) we systematically analyze the robustness of the results with

respect to changes in the clustering methods and noise, and

(3) we investigate the effects of missing or partial temporal infor-

mation on the detection of phases because a number of models

or biological datasets contain temporal information only on sub-

sets of the proteins or genes of interest. In addition, we show that

biological phases can also be inferred by using gene expression

time series instead of temporal PPI data to build the temporal

network. Finally, to test our method and demonstrate its general

applicability, we applied it to identify phase arrests of cell cycle

mutants in yeast. We also analyzed temporal data of the circa-

dian rhythm in the mouse liver, in wild-type as well as Per1/2

and Bmal knockout mouse models, and identified the circadian

rhythm in the wild type and an ultradian rhythm in the knockout

mouse liver.34 We made our code user friendly and readily avail-

able for others to use for other biological systems (https://gitlab.

com/habermann_lab/phasik).

RESULTS

The Phasik workflow
The workflow of our analysis consists of two main steps: (1)

building a temporal network representation of the cell cycle

and (2) inferring cell cycle phases from it. This workflow, which

we call Phasik, is illustrated in Figure 1B. We first describe this

general workflow in the specific case of the yeast cell cycle using

time series from an ordinary differential equation (ODE) model.

This well-known system allows us to show that we can correctly

recover known biological results.
Figure 2. Partially temporal PPI network of the cell cycle

(A) Static representation of the temporal network, containing 83 nodes and 159 ed

represents the phase of their peak activity. Edges lacking temporal information a

(B) Edge times series of core cell cycle PPIs.
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Building a temporal network representation of the cell
cycle
To build a temporal PPI network that represents the yeast cell cy-

cle, we combined a static PPI network built from KEGG pathway

data15 (Figure 2A), with temporal interaction data based on the

mathematical model of the cell cycle as described by Chen

et al.17 (Figure 2B). The static PPI network consists of 83 proteins

(nodes) and 159 PPIs (edges). To obtain a temporal network, we

first acquired time series of protein concentrations by numerical

integration of the ODE model of Chen et al.,17 with a time step of

1 min over a full cycle of 101 min. For each edge A-B between

proteins A and B in the static PPI network, we then defined its

weight wAB(t) at time t as the product of the concentrations of

the two proteins to quantify their co-presence at that time.35

Such a time-varying weight could be defined only for the edges

connecting two proteins, which are described by the ODE

model. In addition, the ODE model contains a few special vari-

ables representing the concentration of protein complexes;

these quantities could also be directly used as evolving edge

weights for the edges between the proteins forming these com-

plexes (STARMethods). Finally, we normalized each weight time

series by its maximum value over the cell cycle so that all weights

vary between 0 and 1.

Because theODEmodel provides overall temporal information

only for a subset of nodes and, thus, edges in the static PPI

network, the resulting representation is a partially temporal

network containing static edges for which no temporal informa-

tion is available and temporal edges whose weights evolve in

time. The weights of the static edges are set to a constant value

of 1.

This procedure yielded time-varying weights for only 34 of the

159 edges (21%) of the PPI network. Several examples of the

time series of edge weights obtained from the ODE model are

shown in Figure 2B (Figure S1A shows all time series, and Video

S1 shows an animation of the temporal cell cycle network), and

the temporal edges are highlighted with colors in Figure 2A (with

the color representing the phase during which the weight is

largest).

Overall, the PPI temporal network can be seen as a series of n

network snapshots (Figure 1B), each corresponding to a time

step at which the edge weights are observed. The time between

successive snapshots equals the temporal resolution used in the

ODE numerical integration. Importantly, this general procedure

can also be used to build a temporal network from other types

of data, such as gene expression data from RNA sequencing

(RNA-seq), and for other biological systems, as will be demon-

strated below.

Inferring phases from a temporal network
Because biological phases and processes are driven by specific

PPIs, it is expected that each phase could be related to a

specific structure or ‘‘state’’25,33 of the temporal PPI network.

A large similarity between snapshots of the temporal network
ges. For visualization purposes, the 34 temporal edges are shown in a color that

re shown in gray.

https://gitlab.com/habermann_lab/phasik
https://gitlab.com/habermann_lab/phasik
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at different times could indicate that the system is in the same

phase at these times, and low similarity between successive

times could indicate a change of phase.21,25,33

This idea can be taken further and formalized to infer phases

by performing a clustering of the snapshots of the temporal

PPI network. Such inference involves three steps,33 illustrated

in Figure 1B. Given a temporal network, (1) we compute the dis-

tances between each pair of snapshots and encode them in a

distance matrix; (2) using this distance matrix, we apply a (hier-

archical) clustering algorithm on the snapshots, and (3) we

extract the clusters after choosing the desired number of clus-

ters. Each cluster of snapshots can then be traced back to the

set of time steps corresponding to those snapshots and inter-

preted as a phase of the cycle (STAR Methods). Finally, when

the corresponding biological knowledge is available, the inferred

phases can be comparedwith ground truth knowledge of the cell

cycle and interpreted biologically. In less known systems,

ground truth is not always available, and our method might yield

new insights and directions for experimentalists to test. In both

cases, it is possible to see which PPIs are most (in)active during

each phase and potentially bring new insight too.

In most clustering algorithms, the number of clusters is fixed a

priori. However, many real systems, including biological ones,

exhibit dynamics on multiple timescales. To explore a range of

timescales and, thus, the potential hierarchy of phases and

sub-phases of the cell cycle, we compute clusterings with vary-

ing numbers of clusters (Figure 1B); the main cell cycle phases

are discovered at a small number of clusters, whereas

sub-phases require more clusters. For example, computing 2

clusters gives us a more coarse-grained version of the temporal

organization than computing 5 clusters.

The phases determined by the clustering algorithm, at a fixed

number of clusters, may be affected by two main technical

choices in the pipeline: (1) the distance measure used to

compute the distance matrix between snapshots and (2) the

specific clustering algorithm considered together with its param-

eters, in particular how the distance between clusters is

measured. Unless stated otherwise, we used (1) the Euclidean

distance and (2) hierarchical clustering with the ‘‘Ward’’ method

of computing the distance between clusters in our analysis.

These settings were chosen as a reference because they pro-

vided the best clusters according to the following criteria: biolog-

ical interpretability, quality of clustering, and robustness of the

method.

We used the average silhouette score to assess the quality of

each clustering.36 This score is a number between�1 (the worst)

and 1 (the best) that indicates how well separated the clusters

are; values near 1 indicate very good separation (hence a mean-

ingful partition of the snapshots), while values near 0 indicate

overlapping clusters. Negative values indicate that one of the

snapshots was not correctly assigned to a cluster. In addition,

we quantitatively investigated the robustness of the clusterings

(at a fixed number of clusters) with respect to the parameter

choices by computing similarity scores between clusterings.

To do this, we used the adjusted Rand index, which can take

values between�1 and 1. A value of 1 indicates that two cluster-

ings are identical (up to permutation of the labels), and a value of

0 indicates random cluster assignments. Negative values can
occur when two clusterings are less similar than expected for

random cluster assignments (STAR Methods).

Inferring the multiscale phases of the cell cycle
We inferred phases of the budding yeast cell cycle from the tem-

poral cell cycle network, illustrated in Figure 2 (animated in Video

S1), using the Phasik workflow described above. First, we

computed the distance matrix, as described above for snap-

shots observed at a temporal resolution of 1 min (Figure 3A). A

visual inspection of this matrix revealed prominent dark blue

diagonal blocks corresponding to highly similar successive

snapshots of the temporal network, thus indicating a marked

temporal structure of the system. Second, we applied hierarchi-

cal clustering and computed clusterings ranging from 2–11 clus-

ters. The resulting partitions of the cell cycle timeline are shown

in Figure 3B. Figure 3C displays the average silhouette that

measures the quality of each clustering as a function of the

number of clusters. This quality score was around 0.5–0.6 in all

cases, indicating that no partition should be discarded from

this criterion. In fact, the roughly constant value of the silhouette

rather indicates that many timescales are relevant in the system.

The largest values of the average silhouette were obtained for

numbers of clusters ranging from 5–9.

To validate the results of the Phasik pipeline, we tookadvantage

of the biological knowledge available for the budding yeast cell cy-

cle and checked that the starting and ending times of each cluster

corresponded to the timings of known biological phases and

events. We used the timings of the primary cell cycle phases

G1, S, G2, and M, determined relative to the budding yeast cell

modeled in Chen et al.17 In addition, we used the timings of the

following checkpoints and physiological events as they were

described in the same study: ‘‘bud,’’ indicating bud emergence;

‘‘ori,’’ indicating the start of DNA synthesis; ‘‘spn,’’ indicating

completion of chromosome attachment to the spindle and align-

ment of chromosomes on themetaphase plate; and ‘‘mass,’’ indi-

cating the start/end of a cycle. Timings of the START checkpoint

and the ‘‘E3’’ event (a short excitation period associated with a

sharp decrease in SBF [SCB-binding factor] complex concentra-

tion) were determined by a stability analysis in Lovrics et al.37

Visual inspection of the distancematrix of the temporal cell cy-

cle network, returned by Phasik, indicated 4 major clusters

roughly corresponding to the G1, S, G2, and M phases of the

cell cycle (Figure 3A) as well as a small cluster at the very begin-

ning of the cycle. Application of the clustering algorithm allowed

us to perform amore detailed and precise analysis of the clusters

at each number of clusters (Figure 3B) and to discuss them in

relation with the evolution of the edge weights shown in

Figures S1A. For 2 clusters, the algorithm detected a phase

corresponding to the G1/S phases, starting at the START check-

point, when the cell commits to entering the cell cycle, and

ending at the E3 excitation peak before entering the next phase,

and a second phase corresponding to the G2 and M phases of

mitosis, which persists until the START checkpoint. Themain de-

terminants for this clustering are the abrupt increase (START)

and decrease (E3) of the activity of edges SWI4-SW6 and

SWI6-MBP1. These two edges correspond molecularly to the

activity of the SBF and MBF (MCB binding factor) complexes,

respectively, which are known to initiate at the START
Cell Reports Methods 3, 100397, February 27, 2023 5
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Figure 3. Cell cycle phases inferred for a

range of timescales from the temporal cell cy-

cle PPI network

(A) Distance matrix using Euclidean distance.

(B) Clusters inferred for 2–11 clusters.

(C) Quality of clustering for clusters in (B), quantified

by their average silhouette. Values close to 1 indi-

cate well-separated clusters. Similar values of about

0.6 indicate that no number of clusters can be

readily discarded.

(D) Most clustering methods resulted in clusters

similar to the ‘‘Ward’’ method used in (B) and (C), as

shown by the adjusted Rand indices.
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checkpoint. They are known to be activated by the CDC28-CLN3

complex early in the cycle and are required for activation of gene

expression of cyclins CLN1 and CLN2.

For 3 clusters, the separation between phases G1 and S was

detected at the physiological event of ‘‘bud’’. Several molecular
6 Cell Reports Methods 3, 100397, February 27, 2023
events can be linked to this separation:

emergence of the CDC28-CLB6 and

SWI6-CLB6 edge weights, which persist

until the E3 event, as well as short

peaks of the weights of CDC28-CDC6

and CDC6-CBL6. Moreover, the weight of

CLB6-SIC1 decreases. The weights of

CLN1-SIC1 and CDC28-SIC1 seem to be

restricted to the G1 phase.

For 4 clusters, the four phases G1, S, G2,

and M were clearly detected, although

the transition of the G2/M phases was

obtained at the ‘‘spn’’ checkpoint. This

checkpoint coincides with the abrupt

change in edge weights for BUB2-TEM1,

CDC15-TEM1,CDC20-CLB5,CDC20-PDS1,

as well as LTE-TEM1. Biologically, it repre-

sents the moment in metaphase when all

chromosomes should be properly attached

in a bipolar fashion to the mitotic spindle.

When the spindle checkpoint is passed,

the cell progresses into anaphase. Further-

more, the beginning of the G1 phase

(before START) was clustered with the G2

phase, indicating that they are more similar

to each other than to other parts of the cell

cycle. However, this split was not robustly

found with other clustering methods (also

discussed below).

For 5 clusters, the 4 phases G1, S, G2,

and M were identified, with the G1 phase

split in a pre-START (purple in Figure 3B)

and post-START (green) cluster. The clus-

ter corresponding to G2 extends to meta-

phase and the ‘‘spn’’ checkpoint.

For 6 clusters, a small (brown) cluster

appeared at the transition between phases

G1 and S, immediately after the ‘‘bud’’

event, corresponding to a peak in
CDC28-CDC6 and CLB6-CDC6 edge activities. CLB6 is known

to be required for initiation of DNA synthesis by activating

CDC28, as well as the DNA replication protein CDC6.

Both interactions are thus initiating the transition from phase

G1 to S.
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For 7 clusters, a newcluster (pink)wasdetected inG1, right after

the START checkpoint. Several changes in edge activities can be

linked to this new cluster; CDC14-SIC1 and SIC1-SWI4 have

sharpactivitypeaksat thiscluster.Furthermore, theedgeactivities

of BUB2-TEM1, CDC14-CDH1, CDC14-SWI5, CDC15-TEM1,

CDC20-CDH1, and CLB1-SIC1 drop during this phase, and

CDC14-NET1 shows a subtle increase. Finally, there is the transi-

tion of MBP1-SWI6, SWI4-SWI6, CDC28-SIC1, CLN1-SWI4-

CLN1-SWI6, andCLN1-SIC1 from low to high activity contributing

to this new cluster.

For 8 clusters, a new cluster (gray) was introduced at the end

of the M phase, which extends to the beginning of G1. It can be

linked to the late edge activities of CHD1-CLB1 and CDH1-SIC1,

well agreeing with the APC-CDH1 complex degrading CLB1 to

induce mitotic exit. Furthermore, the edge activity of CLB1-

SWI5 and CDC28-SWI5 drops.

For 9 clusters, a new cluster (light green) was found toward the

end of G1 right before the ‘‘bud’’ event, coinciding with the short

and prominent peak in the edge activity of CLB6-SIC1 (Fig-

ure S1A). Biologically, CLB5/6 are already prominently ex-

pressed at this stage and have formed stable complexes with

CDC28. However, until the onset of S phase, they are inhibited

by SIC1. Following destruction of SIC1, replication is initiated.

For 10 clusters, G2 phase (light blue cluster) was properly

separated from M phase at the E3 excitation point. More subtle

edge activity changes most likely contribute to this new cluster:

the transition from high to low CDC28-CLN1, the subtle rise

in CLB1-SIC1 and CLB6-SIC1, and the rise in CLB1-SWI5,

CDC28-SWI5.

For 11 clusters, mitosis was further refined, with detection of a

separate anaphase (red cluster) and telophase (light gray

cluster). This new split coincides with changes in the activity of

edges CDC14-NET1, CDC14-SWI5, CDC20-CLB6, CDC20-

PDS1, CDC20-CLB1, and ESP1-PDS1.

Overall, the computed clusters correspond to knownbiological

processes across a range of timescales, and these clusters were

of a highquality according to their silhouette scores. Note that, for

high numbers of clusters, the clustering obtained presents much

more finely time-resolved pictures of the temporal organization of

thecell cycle thanwith themajor cell cycle phases,with biological

events happening over shorter timescales. A more detailed view

of the silhouette scores is shown in Figure S1B for each case. For

6 or more clusters, negative silhouette values appeared for a few

snapshots. Because the average silhouette score was highest at

5 clusters, and because these seem to be the most biologically

relevant for detecting the basic phases of the cell cycle, we use

this cluster number in the rest of this study.

Testing the robustness of Phasik
We tested the robustness of Phasik’s results against two big

classes of perturbations: changes in Phasik’s method itself (tem-

poral network construction, clustering methods) and changes in

the input data (measurement noise and sampling frequency). We

outline here the main results of these tests and provide all details

in Methods S1. Overall, we found that Phasik’s results were

robust.

First, we tested how the normalization of the edge weights

from the ODE model affected the results. We found that not
normalizing edge weights led to less relevant clusters (see Fig-

ure S2 for details). This is likely to be due to large differences

in protein concentrations (up to a factor of 200). Concentration

changes of proteins with low concentrations, which might be

biologically important, thus have virtually no effect on the clus-

ters. It therefore seems to be important to normalize edge

weights.

We next tested the robustness against variations in the clus-

tering method. Our base method was hierarchical clustering

with Ward linkage. We found similar clusterings for hierarchical

clustering with six other linkage methods as well as with

K-means (Figures 3D and S3A–S3G). We also compared three

distance metrics with our base Euclidean distance; all three

gave nearly identical clustering at each cluster number

(Figures S3H–S3L). Overall, identifying similar clustering with

different clusteringmethods is an indication that the data contain

strong phasic information.

Next, we tested the influence of experimental noise on the re-

sults because experimental data come with noise. To simulate

measurement noise, we added Gaussian noise to the original

edge time series before applying the Phasik pipeline. We did so

for a range of noise strengths and three numbers of clusters (2,

5,and10).The resultswere robustagainstweaknoisebutdropped

in quality above a threshold noise strength (Figure S4). Moreover,

this threshold was higher for lower numbers of clusters, making

them more resistant to noise than clusterings with more clusters.

Finally, the temporal resolution of experimental data is often

limited, contrary to that obtained from simulating ODEs. To test

the effect of coarser time resolutions,weartificially down-sampled

the edge weight time series from our base resolution of 1 min to a

range of coarser resolutions with a maximum of 20min. We found

that clusters were also in good agreement with known phases for

coarser time resolutions (Figures 4A, 4B, and S5). Coarser time

resolutions, however, yielded lower silhouette scores on average

and fewer timepoints to cluster. Combined, these effects suggest

a lower bound on acceptable time resolutions that will depend on

the timescales of interest in the system considered.

How much temporal information is needed to infer
meaningful phases?
Temporal networks are usually considered when temporal infor-

mation is available for all pairs of nodes, and all edges are then

temporal. Here, instead, temporal information is available only

for 21% of the edges, and we set a constant weight to the other

edges of the PPI. Such a situation of partial temporal information

might in fact happen in many systems, in particular in biology,

where experimental measurements of temporal information

about all interactions are often not feasible.

We thus investigated how detection of meaningful phases with

Phasik depends on the amount of temporal information avail-

able. We artificially discarded the temporal information from

selected edges, building temporal networks with increasingly

lower temporal information. We then computed clusters from

these networks and compared them with those obtained with

all available temporal information.

Discarding temporal edge activity for each specific edge re-

sulted in most cases in nearly identical clusters (Figures S6A–

S6C). We thus focused on nodes rather than single edges to
Cell Reports Methods 3, 100397, February 27, 2023 7



Please cite this article in press as: Lucas et al., Inferring cell cycle phases from a partially temporal network of protein interactions, Cell Reports
Methods (2023), https://doi.org/10.1016/j.crmeth.2023.100397

Article
ll

OPEN ACCESS
investigatewhether somenodes aremore important for extracting

meaningfulphases (i.e., theyaremore temporallycentral). This test

is especially meaningful because edge weights were defined

based on time series related to nodes.Webuilt temporal networks

using temporal information restricted to one specific node and its

interaction partners, setting all other edge weights to a constant

value (illustrated in Figure 4C). We then computed the clusters us-

ing Phasik with 5 clusters and compared the result with the one of

the whole temporal network using the adjusted Rand index (Fig-

ure 4D). We performed this procedure for each node present in

the ODE model. In some cases (e.g., CLB6, CDC28, or CLN3),

the similarity to the original clustering remained high. For some

other nodes, however (e.g., CDH1, CDC14, CDC6), very different

clusters were obtained (Figure 4D).

More details on the distance matrices and clusters obtained

are shown in Figures S6D–S6H. When temporal information

was restricted to the edges connected to CDC28, the original 5

clusters were reproduced fairly well (Figure S6D). Likewise,

keeping only temporal edge weights for MBP1 yielded clusters

quite similar to the original ones (Figure S6E). Examples of nodes

whose sole temporal information recovered the original 5 clus-

ters less well included CLB1, which detected the G2 and M

phases better but was unable to detect the G1 and S phases

(Figure S6F), as well as SIC1, which detected only one cluster

over the S, G2, and M phases, whereas G1 was split into 3

distinct clusters (Figure S6G).

We finally investigated whether some features of the nodes

could predict their importance in this procedure, as determined

by their possibility to recover clusters similar to the original ones

when only their activity timeline and the ones of their partners are

known (Figure S6H). We found only very weak correlations be-

tween the adjusted Rand indices in Figure 4D and the number

of edges with temporal information with which a node partici-

pates. Similarly, only very weak correlations were found with

typical measures of centrality for static networks, such as degree

or betweenness centrality, with several nodes having low

centrality but a high adjusted Rand index. Only the eigenvector

centrality showed a slightly larger (but still weak) correlation

with the adjusted Rand index.

Inferring modified cell cycle phases in mutants
In cell cycle mutants, phase behavior is changed, and some

mutant cells stop their cell cycle progression in one of the

phases, for example, G1 (referred to as G1 arrest). Here, we

wanted to test whether Phasik can detect these modified

phases. We simulated mutant time series from the same ODE

model by changing the value of a few key parameters for twomu-

tants: a CLN1/2/3 knockout and a CLB1/2 knockout, which

display G1 andG2 arrest (in theODEmodel, and experimentally),

respectively. We then built a temporal network with the time se-

ries of each of these mutants and computed the associated

clusters.

In the CLN1/2/3 mutant (Figures 5A and 5B), Phasik detected

one main cluster (orange) that starts during G1 and lasts until the

end of the cycle at lower cluster numbers where the average

silhouette is high. This corresponds to the expected G1 arrest.

Note that a later cluster (purple) appears at 5 and more clusters.

This cluster appears because of normalization of the edge
8 Cell Reports Methods 3, 100397, February 27, 2023
time series, which amplifies the very small variations of the

quasi-constant unprocessed time series (see, e.g., SW4-SWI6

in Figure S7). Clustering the temporal network built from the

non-normalized time series does not yield this additional late

cluster (data not shown). In the CLB1/2 mutant, we detected a

slightly prolonged S phase and, at lower numbers of clusters,

one main cluster (blue) stretching from S phase to the end of

the cycle (Figures 5C and 5D). This large cluster persisted up

to 6 clusters, at which point the silhouette score dipped. These

observations suggest that the transition to G2 is not taking place

as expected. In conclusion, Phasik detected the changes in tem-

poral structure corresponding to the phenotypes described for

the respective mutants.

Inferring cell cycle phases from gene expression data
High-quality ODE models as the one we used above17 are so far

only available for a few biological systems and are mostly

restricted to systems with sufficient biological knowledge.

Considering such models is very useful to validate new methods

by showing that they can reproduce known results. However, it is

also important to explore other types of data. We investigating

whether we could also infer cell cycle phases from gene expres-

sion time series data. Such data are more easily available and

provide temporal information for virtually all genes.

We used a time-series RNA-seq dataset described in Kelliher

et al.38 For this study, yeast cells had been first synchronized and

then were released to undergo three full cell cycles, with RNA

samples taken from the culture every 5 min for RNA-seq,

providing RNA levels for all genes. One full cell cycle was

reported to last 75 min. For our study, we only used the first

cell cycle because the time series deteriorates as a result of

de-synchronization of the cells. We downloaded normalized

read counts and then normalized each time series so that values

were between 0 and 1. As previously, we used the same static

PPI network from KEGG, now deriving edge weights from gene

expression data rather than protein concentrations of the nodes,

to build a temporal network. Then, we inferred phases, following

the workflow described above. The resulting temporal network

contained 83 nodes and 159 edges, of which 158 contained tem-

poral information over 16 time points.

Visual inspection of the distance matrix indicated a less clear

temporal structure (Figure 6A) than that of the temporal network

built from theODEmodel. This could be due to a higher noise level

in the data aswell as less clear transitions in gene expression from

one state to the next. When inferring clusters using Phasik (Fig-

ure 6B), we identified 4 stable clusters that roughly correspond

to the 4 cell cycle phases and that persist at higher numbers of

clusters. The average silhouette values were lower than the ones

reported when using the temporal PPI derived from the ODE

model, indicating a worse separation of clusters (Figure 6C).

Relating the resulting cell cycle phases from the temporal

RNA-seq expression data to those inferred from the protein con-

centration data from the Chen et al.17 model was challenging.

Wemainly used evidence of temporal profiles of cell cycle genes

known to be temporally regulated in the cell cycle to assign cell

cycle phases (taken from Koch and Nasmyth7 and Nasmyth7,9

with additional data from Lord et al.39 and Amoussouvi

et al.39,40) (Figure 6D). The phases we inferred from the clusters



Figure 4. Discarding temporal information for phase recovery A limited temporal resultion and a few selected temporal edgeswere sufficient

to recover the original 5 clusters

A limited temporal resultion and a few selected temporal edges were sufficient to recover the original 5 clusters.

(A and B) Biological phases inferred with down-sampled time series, using time points (A) every 5 min and (B) every 15 min. The original time step was 1 min. The

main biological phases were still detected, with 15 min being the minimum time resolution needed to detect shorter phases.

(C) Schematic of discarding temporal edge information.

(D) Similarity of the newly computed 5 clusters to the original 5 clusters for each temporal node (numbers of temporal edges are given in parentheses). Values

closer to 1 indicate clusters close to the original ones.
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Figure 5. Inferring phases, together with the

average silhouette, from cell cycle mutants

for a range of timescales

(A–D) CLN1/2/3 knockout (A and B) and CLB1/2

knockout (C and D). The phase inference detected

the expected G1 arrest in the CLN1/2/3 (A) and the

G2 arrest in CLB1/2 (C). In (A), a late cluster (purple)

appears because of amplification of quasi-constant

time series by the normalization.
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fitted reasonably well to the G1, S, G2, and M phases, especially

for 4 and 5 clusters. Edge weights of the most active edges for 4

and 5 clusters are shown in Table S1. At higher numbers of

clusters, we obtained new clusters that were similar to those

obtained from the temporal network based on protein concen-

tration data; namely, split of the M phase cluster with the pre-

START G1 phase cluster, separation of S phase into an early

and a later phase, separation of G1 phase into early and late,

as well as split of M phase into two separate sub-phases.

Note that the biological entities are different when comparing

Phasik results from RNA-seq (mRNA) data and the ODE model

(protein); first, mRNA is produced prior to proteins, and second,

both can underlie additional regulatory mechanisms influencing

their temporal stability and degradation and, hence, their tempo-

ral expression patterns. It is therefore not unexpected that

phases extracted by Phasik from these two different datatypes

are different because phase inference heavily depends on the

relative temporal expression strength of the nodes in the tempo-

ral network.
10 Cell Reports Methods 3, 100397, February 27, 2023
We also tested Phasik without adding

the temporal network framework to see

its requirement for phase inference

from node time series. Including network

information led to only minor improve-

ments over the ODE time series alone

(Figures S8A and S8B); however, clustering

gene expression data alone yielded sub-

stantially worse clustering (Figures S8C

and S8D). It seems therefore that making

use of the static PPI network enhances

the phase inference of experimental data

such as RNA-seq time series, most likely

by pre-selecting the subset of genes

(nodes) in the network, together with their

interactions.

Phasik identifies a phase shift in
circadian mouse mutants
Circadian rhythms are another example of

well-described, stable cellular oscillators.

Based on a daily 24-h rhythm, life on earth

has evolved mechanisms of adaption to

daily light/dark cycles. The circadian clock,

composed of key clock genes that regulate

gene expression in an �24-h rhythm, is

part of this adaptation mechanism41; in

mammals, the transcriptional regulators
Bmal1 (Arntl) and Clock drive expression of the clock genes

Per1, Per2, Cry1, and Cry2. Their gene products Per and Cry

form a complex and, when translocated to the nucleus, inhibit

their own gene expression. This negative feedback loop leads

to oscillatory gene expression dynamics of the Clock genes

and their downstream targets that determine the daily rhythms

of cellular physiology.

The mammalian circadian clock works at several levels, from

the organism via the suprachiasmatic nucleus (SCN) down to tis-

sue and the cell42; tissues show circadian oscillation in isolation,

and almost all body cells contain a circadian clock.

Aviram et al.34 investigated the circadian clock in isolated

mouse liver in wild-type, Per1/2�/�, and Bmal�/� mutants.

They found a clock-independent ultradian rhythm of gene

expression of �16 h in Per1/2�/� animals that was driven by

the activity of the protein kinase Akt.

We applied Phasik to these RNA-seq datasets to identify

the oscillatory behavior of a temporal network containing the

genes of KEGG circadian rhythm (KEGG: mmu04710) and
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Figure 6. Phase inference from a temporal network

constructed using RNA-seq data

(A) The distance matrix reflects the general coarser resolution

of the data.

(B) The main 4 phases could be robustly inferred and were

similar to those inferred from protein concentration data from

the ODE model.

(C) Average silhouette values were low, indicating lower quality

of the clustering.

(D) Dynamics of RNA expression of key cell cycle genes.
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circadian entrainment pathways (KEGG: mmu04713) and to

observe changes induced upon perturbation of the system in

Per1/2�/� and Bmal�/� mutants.

The wild-type mouse liver showed perfect oscillatory behavior

of the network, with a 24-h rhythm that was apparent from 4 h

onward as a block of 4 consecutive phases that was detectable

up to high cluster numbers (Figures 7A–7C).

In Per1/2�/� livers, this rhythmic pattern was disturbed; there

was a recurring pattern of 2 consecutive phases from 12 h on-

ward, which repeated at 20 and 36 h and was detectable up to

higher cluster numbers (Figures 7D–7F). Finally, theBmal�/� liver

also showed a weak oscillatory phase, repeating at 4 and 20 h,

12 and 28 h (both reflecting a 16-h rhythm), as well as one

12-h rhythm (24 to >36 h) (Figures 7G–7I).

Because Akt signaling has been described to be crucial for this

ultradian rhythm, we also looked at the circadian behavior of the

network of genes from the KEGG phosphatidylinositol 3-kinase

(PI3K)/Akt signaling pathway (KEGG: mmu04151). In wild-type

liver, the temporal network of PI3K-Akt signaling showed similar

circadian patterns as the circadian network, with a clear 24-h

rhythm of 4 consecutive phases (Figures S9A and S9B). In the

Per1/2�/� liver, Phasik temporal network clustering uncovered

at least two consecutive network states showing an ultradian

rhythm, agreeing with results from Aviram et al.34 (20 to >36 h,

24 to >40h; Figures S9C and S9D). Finally, the data fromBmal�/�

livermapped on the PI3K-Akt signaling pathway showed amixed

repetitive network pattern with at least one 16-h rhythm (12

to >28 h; Figures S9E and S9F). While we also saw a potential ul-

tradian rhythm in the Bmal�/� knockout liver, the observed pat-

terns were limited to one single phase. To summarize, Phasik

analysis of circadian gene expression in the wild type could faith-

fully identify 24-h rhythmicity and confirmed an ultradian rhythm

in Per1/2�/� as well as weakly in Bmal�/� mutant liver.

DISCUSSION

Here, we proposed amethod to infer biological phases by repre-

senting temporal protein or gene expression data as a temporal

network and by applying a clustering algorithm to the resulting

series of snapshot networks. We validated our method by

applying it to a well described biological system: the budding

yeast cell cycle.

To build the temporal network, we started from a static PPI

network in which we assigned time-evolving weights to certain

edges, obtained by integrating time series of protein concentra-

tions from an ODE model or from expression data from an RNA-

seq study. We inferred biological phases from the temporal PPI

network for a range of potential timescales by using a clustering
Figure 7. Inferring oscillatory gene expression in the circadian rhythm

(A and B) Distance matrix of the wild-type liver (A) and clusters of temporal netwo

cluster numbers, indicated by colored arrows.

(C) The average silhouette is highest at 4 clusters.

(D and E) Distance matrix of the Per1/2�/� liver (D) and clusters of temporal netw

overlaid 8-h rhythm.

(F) The average silhouette score for (E).

(G and H) Distance matrix of the Bmal�/� liver (G); 16-h rhythmic expression dyn

(I) The average silhouette score for (H).
algorithm with various numbers of clusters. While we used inter-

action data provided by KEGG to build the network and test our

method, we obtained the same results when starting from a

static network downloaded from the STRING database,43 with

the same 83 protein nodes as in KEGG; we tested one network

with only physical interactions and one also including functional

interactions (only high-confidence interactions from databases

or experiments were used).

We tested our method against variations in chosen algorithms

andparameters.Weshowed thatourmethod isable to infermean-

ingful biological phases corresponding to the principal cell cycle

phases G1, S, G2, and M, with a finer resolution in sub-phases

at higher numbers of clusters. Identification of these cell cycle

phases was possible with protein concentration data and gene

expression data. We showed that our approach is robust against

changes indistancemetrics andclusteringmethods and identified

those that performed best for our system of interest. We also

showed that themethodwasgeneral bydetecting cell cycle phase

arrests of mutants inducing G1 or G2 arrest.

We want to note here that, in addition to connectivity-based

(hierarchical) and centroid-based (K-means) clusteringmethods,

other common classes exist, such as density-based (e.g.

DBSCAN [density-based spatial clustering of applications with

noise] and OPTICS [ordering points to identify the clustering

structure], good for outlier removal and clusters of arbitrary

shapes) and distribution-based methods (e.g., Gaussian mixture

models such as DPGMM (Dirichlet process Gaussian mixture

models), good for incorporating covariance information of latent

distributions).44,45 We stress however, that, for our multiscale

analysis, hierarchical clustering makes the most sense because

it allows us to infer phases and sub-phases of processes and,

hence, hierarchical temporal structures.

At each number of clusters, wewere able to match the inferred

phases to described biological phases and processes of the cell

cycle. This may not be surprising because the mathematical

model of Chen et al.17 is based on extensive knowledge of key

cell cycle events. It is remarkable, however, that we obtained

these results even though our network is only partially temporal,

with temporal information missing for nearly 80% of edges. We

stress here that no additional information about cell cycle phases

than the temporal network itself was used to infer these phases

with Phasik.

We checked the contribution of the network framework in our

analysis by clustering node time series directly to infer phases

without using a network. Clustering ODE time series directly re-

turned good clusters even without a network. This seems to be

due to several specificities of the ODE data from this model

because the most relevant proteins for the dynamics of the cell
in mouse wild-type, Per1/2�/�, and Bmal�/� liver

rk snapshots of the wild-type liver (B) showed a perfect 24-h rhythm up to high

ork snapshots of the Per1/2�/� liver (E) showed 16-h periodicity as well as an

amics are also detectable in the Bmal�/� liver (H).
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cycle and whose time evolution was most informative for build-

ing the model had been carefully selected.17 This selection is

similar to use of a network on other datasets, such as RNA-

seq data. Also, the ODE data are virtually noise free. Finally,

the ODE time series include a few time series that actually repre-

sent edges corresponding to some of themost central protein in-

teractions in the cell cycle (and, hence, network elements) and

not nodes. All of these facts make ODE time series data ideal

to detect phases directly without using a network.

Clustering gene expression without network information re-

turned substantially worse clusters. Thus, for unbiased datasets

with a higher noise level, using a network seems to enhance

phase inference by selecting a smaller subset of genes from

the temporal dataset and the subset of biologically relevant

edges between them. This suggests that using a network is

especially useful when using primary experimental time series

data by adding pre-existing biological knowledge in form of a

PPI. For well-curated, processed temporal data such as the

ODE model of Chen et al.,17 which already contain some infor-

mation on interacting components, providing a network in the

form of a PPI in addition seems to be partially dispensable

because this leads only to minor improvements over the ODE

data alone. Our method is intended to be used primarily on

less well-known systems and using unprocessed and noisy

data for which the network framework clearly adds valuable in-

formation. It should be noted that, should a network structure

not be available, the network could also be built from other sour-

ces, such as co-expression of genes. Here, it would be inter-

esting to infer the underlying network directly from time series

data of an oscillatory system, as described here.46

We applied Phasik to a second, highly rhythmic system: the

circadian clock. We used only RNA-seq data of mouse liver

collected every 4 h over a period of 2 days from wild-type,

Per1/2�/�, and Bmal�/� animals. Under wild-type conditions,

we observed clear 24-h circadian rhythm of 2 cellular networks:

circadian rhythm and entrainment and PI3K-Akt signaling.

Ultradian, 16-h phases were observable in Per1/2�/� liver. This

agrees with the observations described in Aviram et al.,34

although Phasik also identified a weak ultradian rhythm in the

Bmal�/� liver.

A peculiarity of the systems we considered is that only partial

temporal information was available. Usual temporal network

studies consider all edges to include temporal information (either

discretized or with evolving weights). Here, we further investi-

gated this point and the specific role of the temporal information

in inferring biologically meaningful phases. First, we showed that

the inferred clusters remained almost unchanged when we dis-

carded the temporal information of any single edge. Second,

we showed that meaningful clusters could still be obtained

even when using temporal information for the edges of some sin-

gle nodes. The results depended on the node selected, suggest-

ing that some nodes carry more important temporal information

than others. For example, MBP1 (2 temporal edges) and CDC28

(8 temporal edges) yielded results comparable with the ones ob-

tained with the original network but CDC14 (2 temporal edges)

did not. Interestingly, we found no correlation between the num-

ber of temporal edges of a node and its ability to recover the 5

clusters of the cell cycle. Furthermore, no correlation with typical
14 Cell Reports Methods 3, 100397, February 27, 2023
static centrality measures could be observed, including degree

and betweenness centrality, and we observed only weak corre-

lation with eigenvector centrality. Third, we showed that the min-

imum sampling frequency was dictated by the timescales of the

phases to be detected but that sampling frequency hadminor ef-

fects on clusters at values above that threshold.Many interesting

open questions remain for theoreticians and experimentalists

concerning partial temporal networks. By understanding which

interactions are most informative about the temporal structure

of a system, experimentalists could focus primarily on those.

For instance, while it is well known that CDC28 is a major driver

of cell cycle events, major drivers might be less well known in

other biological systems. Yet, our method shows that obtaining

even partial temporal information on some components might

be sufficient to gain insights into the temporal structure of a (bio-

logical) process.

To test the Phasik workflow, we used a well-defined time se-

ries of protein concentrations obtained from an ODE model.

These data have a virtually infinite sampling frequency and are

noise free. Moreover, such models typically contain just a hand-

ful of carefully selected proteins to reproduce the dynamics of a

specific biological system. Such complete and high-quality

models are not available for many biological systems because

they require a large body of experimental evidence andmodeling

effort. More accessible temporal data can be obtained by time-

resolved high-throughput measurements of RNA or protein

levels. Such studies have become standard and are technically

easier. However, high-throughput measurements come with

downsides: inherent high noise levels; a coarse temporal resolu-

tion, typically in the range of hours rather than minutes; and, in

the case of RNA-seq, transitions in RNA expression levels from

one state to the next that are much less distinctive than for pro-

teins. While the temporal RNA-seq data from the yeast cell cycle

suffered from all of these issues, we succeeded in inferring the 4

relevant cell cycle phases when using them. Thus, while ODE

models have many advantages over temporal expression data

for the present application, the latter is a more available option

for biological systems in general and can be readily analyzed us-

ing the Phasik workflow.

In conclusion, we proposed a method, Phasik, to infer phases

of biological systems using temporal networks. We inferred

phases and sub-phases of biological systems by modeling

them as a partially temporal networks of PPIs by combining

static networks with protein concentration or gene expression

data and then clustering the temporal network snapshots. We

systematically tested the robustness of the results against varia-

tions in the algorithm and the data used. We showed the general

applicability of Phasik by using it for phase inference on the

budding yeast cell cycle as well as on circadian data from the

mouse. We made our code publicly available for use on other

biological systems of interest (https://gitlab.com/habermann_

lab/phasik).

Limitations of the study
Phasik has several limitations. First, the quality of the results

obtained with Phasik depends on the availability of high-quality

and high-resolution temporal expression data (gene or protein

or a mathematical model) as well as suitable PPI data to build

https://gitlab.com/habermann_lab/phasik
https://gitlab.com/habermann_lab/phasik
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a (partially) temporal network of interest for a specific process.

For many biological systems, these data are currently not avail-

able. Second, we optimized the clustering algorithm and dis-

tance metrics used to get the best clustering for our systems:

cell cycle and circadian rhythm. It should be noted that clus-

tering algorithms could perform differently for other types of

data. Carefully evaluating different methods would therefore

be recommended for other systems. Third, if a system has

only weak inherent temporal structure, then the interpretation

of the results might be difficult. Finally, predicted phases

should be carefully interpreted and experimentally validated;

e.g., by disturbing the system through interfering with the

expression or function of proteins important for the temporal

behavior. The most important protein interactions for each

phase are returned by Phasik and would be good candidates

for further experimental studies.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

S. cerevisiae static cell cycle network KEGG: sce04111 https://doi.org/10.1093/nar/28.1.27

ODE model of S. cerevisiae cell cycle ODE model @ mpf.biol.vt.edu https://doi.org/10.1091/mbc.e03-11-0794

temporal RNA-sequencing of S. cerevisiae cell cycle GEO: GSE80474 https://doi.org/10.1371/journal.pgen.1006453

M. musculus static network of circadian rhythm KEGG: mmu04710 https://doi.org/10.1093/nar/28.1.27

M. musculus static network of circadian rhythm KEGG: mmu04713 https://doi.org/10.1093/nar/28.1.27

M. musculus network of Pi3K/Akt signaling KEGG: mmu04151 https://doi.org/10.1093/nar/28.1.27

temporal RNA-sequencing dataset of M. musculus

circadian rhythm

GEO: GSE171975 https://doi.org/10.1371/journal.pbio.3001492

Software and algorithms

Phasik https://gitlab.com/habermann_

lab/phasik

https://doi.org/10.5281/

zenodo.7378779
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Bianca

Habermann (bianca.HABERMANN@univ-amu.fr).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This paper analyses existing, publicly available data. These accession numbers for the datasets are listed in the key resources

table.

d All original code has been deposited at https://gitlab.com/habermann_lab/phasik and is publicly available. DOIs are listed in the

key resources table.

d Any additional information required to re-analyse the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Building the temporal network: Integrating temporal information to a static network
A temporal network is a networkwhere the edges connecting the nodes can vary over time. In aweighted network, thismeans that the

edge weights are time-varying. We build such a (weighted) temporal network by incorporating time series of edge weights, which

represent the activity of the corresponding interactions, into a static network. Note that we only consider undirected interactions.

In the case of proteins, actual protein-protein interactions are difficult to measure over time. Quantities relative to each protein are

more accessible however, such as protein concentrations or associated gene expression levels. We used these (node) time series to

generate corresponding edge time series. Wemultiplied the time series relative to protein A by that of protein B to obtain a time series

for the interaction A-B. We did so only if this edge A-B exists in the static network. It is also possible that no edge time series for an

edge A-B in the static network exists: this can happen if there are no time series for proteins A or B. In these cases, we set the weight

to a constant value.

Our code to build temporal networks as described is available online (https://gitlab.com/habermann_lab/phasik). Several utility

functions are available to easily integrate node or edge times series, e.g. RNA-seq data, to a static network. Details about the actual

data used are provided below.

Inferring biological phases from a temporal PPI network by clustering snapshots
A temporal network can be seen as a list of snapshots, where each snapshot is the adjacency matrix of the network at a given time.

We expect two snapshots S and S0 at times t and t’ to be similar if the system is in the same state or phase at those times. On the
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contrary, if times t and t’ correspond to different phases, we expect the snapshots at those times to be very different. The underlying

assumption is that the structure of the network is linked to the state that the system is in.

This idea can be formalised by clustering the snapshots of a given temporal network (Masuda andHolme 2019).33 Each snapshot is

a data point and is assigned to a cluster. As an output, we obtain clusters composed of snapshots: if snapshots S and S0 are in the

same cluster, it means that the system is in the same phase at times t and t’. We mainly used hierarchical clustering and k-means

clustering. These were implemented with functions from Scipy47 and Scikit-learn,48 respectively. To compute the distance between

snapshots, we flattened each adjacency matrix and then used Euclidean distance as a vector distance metric, unless stated other-

wise. To compute the distance between clusters in the hierarchical clustering, we used the Ward variance minimisation method, un-

less stated otherwise. The desired number of clusters was set a priori, both in the hierarchical clustering used and in k-means.

Measuring clustering quality
To check the quality of computed clusters, we used the silhouette score,36 which ranges from �1 to 1. For a given data point, the

silhouette score is larger if it is close to other data points in the same cluster (cohesion) but far from data points in other clusters (sep-

aration). The average silhouette score is obtained by averaging over all data points and is a measure of how well separated the

computed clusters are. Low scores indicate clusters of bad quality. To compare clusterings, we used the adjusted Rand index which

ranges from 0 to 1. Its value is 1 when the two sets of clusters are identical, but close to 0 for random cluster assignments.

Building of static PPI network of the cell cycle from KEGG
We built a static PPI network of the budding yeast cycle from the manually curated regulatory network downloaded from the KEGG

database15 (KEGG: sce04111). We built our PPI in two main steps: we first merged duplicate nodes and then converted nodes and

edges of multiple types to nodes of a single type connected by undirected edges of a single type. The final PPI network, shown in

Figure 2A, consists of 83 proteins (nodes) and 159 protein-protein interactions (edges). Note that both protein concentration and

RNA-seq expression data can be mapped to this network. The nodes thus represent both proteins and genes.

In the KEGG network, nodes can be of 5 types: gene, group, compound, map, and ortholog. First, we discarded the 2 compound, 4

map, and 3 ortholog nodes which do not represent genes or proteins, and kept only the 125 gene nodes (e.g. CDC28) and the 27

group nodes (e.g. [CDC28, CLN3], representing sets of gene nodes). We then merged duplicate nodes and removed disconnected

nodes. For group nodes, we distinguished true groups from normal groups: true groups are node groups with components only in-

teracting among themselves except for one edge that connects them to external nodes. This distinction allowed us to treat true

groups as one node (e.g. nodes [SMC1, SMC3,MCD1, IRR1] in the PPI network were replaced by a new node, Cohesin). This resulted

in 83 nodes in the static PPI network. Second, we converted the 88 KEGG relations to edges in the PPI network. KEGG relations are of

3 types: gene-gene, gene-group, and group-group. For gene-gene relations, we simply added an edge between the corresponding

nodes in the PPI network. For relations involving groups, we treated them as gene-gene in case of true groups. In the case of normal

groups, we added an edge between each node of the group and the external node or nodes. Finally, we added edges between each

pair of nodes that are part of the same normal group, and removed self-edges in the PPI network. This resulted in the 159 edges in the

PPI network.

Times series data for edge activities
We used two different datasets and built two different temporal networks by integrating them to the static PPI network presented

above.

Protein concentrations
We used time series of protein concentrations obtained from the reference ODE model of the budding yeast cell cycle.17 This math-

ematical model, based on and validated by extensive experimental data, describes the evolution of the concentration of a selected

number of proteins over the entire cell cycle, based on knowledge about their interactions. We obtained the time series of protein

concentrations by simulating the ODE model from the publicly available script of17 with a time step of 1 min. The cell cycle in that

study lasts 101 min, and hence there are 101 timepoints for one full cycle. The model consists of 46 variables that can be divided

into 3 types: proteins (e.g. CDC6), protein complexes (e.g. the variable C2 represents the complex CLB1-SIC1), and 4 special vari-

ables (MASS, BUD, ORI, SPN) that serve as indicators of specific events along the cycle. Note that some proteins in the static PPI

network are not represented in the ODE model, and vice versa. In addition, similar cyclins are represented by a single variable in the

model, hence, we used CLN1, CLB1, CLB3, and CLB6 to represent CLN1/2, CLB1/2, CLB3/4, and CLB5/6, respectively.

For proteins A and B in the model, we defined the activity wA-B(t) of their interaction at time t as the product of their respective con-

centrations:wA-B(t) = [A](t) x [B](t), if there is an edge A-B in the static PPI network. Some edges in the PPI network are represented by

a single ‘‘protein complex’’ variable in the model: in those cases, we defined the activity of that edge as the concentration of that

single variable. We then normalised each of these times series.

To simulate the mutants CLN1/2/3 and CLB1/2, we used the same ODEmodel as above, and only changed the values of a few key

parameters, following Chen et al. Specifically, we set ksn2’ = ksn2" = 0, Dn3 = 0 for CLN1/2/3 and ksb2’ = ksb2" = 0 for CLB1/2.
e2 Cell Reports Methods 3, 100397, February 27, 2023
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Gene expression from RNA-sequencing data of the cell cycle
To create a temporal cell cycle network based on RNA-sequencing data, we used mRNA counts of a gene expression time series,

normalised to the library size, from.38 We only considered the 15 timepoints of the first full cell cycle, starting at minute 10 in the

dataset.

We defined the activity of a protein interaction A-B over time by the product of the respective RNA counts of the corresponding

genes, as above: wA-B(t) = NA(t) x NB(t). We then normalised each of these times series.

Temporal networks of PPI of the cell cycle
We built two (partially) temporal networks of protein interactions for one full cell cycle of budding yeast: for both, we used the static

PPI network described above, to which we integrated the edge activities from (i) protein concentrations, and (ii) the gene expression

data fromRNA-sequencing. Both contained 83 nodes and 159 edges, but a different number of temporal edges. In both cases, we set

the weight of the other edges that lack temporal information to a constant value of 1.

Building temporal networks for mouse circadian data
We used data from34 (GEO: GSE171975). We downloaded raw read counts, normalized for library sizes and averaged data for each

time point over all replicates. The circadian network was assembled by downloading all genes from the mouse Circadian Rhythm

(KEGG: mmu04710) and Circadian Entrainment (KEGG: mmu04713) networks from the KEGG database, for PI3K-Akt signaling,

we used network (KEGG: mmu04151). Protein-protein interactions connecting network components were in turn downloaded

from the STRING database to create the circadian network, considering only high-confidence interactions from experiment and

database.

QUANTIFICATION AND STATISTICAL ANALYSIS

To assess the quality of a given clustering, we used the average silhouette score (averaged over all data points) as well as the sample

silhouette score for each data point. To compare the similarity between two clusterings, we used the adjusted Rand index. To

quantify the correlation between the adjusted Rand index and network centrality measures, we used the R-squared value. For

more details, see "Measuring clustering quality" in STAR Methods.
Cell Reports Methods 3, 100397, February 27, 2023 e3
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