Collective dynamics of social annotation

Ciro Cattutoa, Alain Baratta,b, Andrea Baldassarrii, Gregory Schehrd, and Vittorio Loretoa,c,1

*aComplex Networks Lagrange Laboratory, Institute for Scientific Interchange, 10133 Turin, Italy; bCentre de Physique Théorique, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6207, Campus de Luminy, Case 907, 13288 Marseille Cedex 9, France; cDipartimento di Fisica, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; and dLaboratoire de Physique Théorique Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8827, Université Paris-Sud, 91405 Orsay Cedex, France

Edited by H. Eugene Stanley, Boston University, Boston, MA, and approved April 17, 2009 (received for review February 2, 2009)

The enormous increase of popularity and use of the worldwide web has led in the recent years to important changes in the ways people communicate. An interesting example of this fact is provided by the now very popular social annotation systems, through which users annotate resources (such as web pages or digital photographs) with keywords known as “tags.” Understanding the rich emergent structures resulting from the uncoordinated actions of users calls for an interdisciplinary effort. In particular concepts borrowed from statistical physics, such as random walks (RWs), and complex networks theory, can effectively contribute to the mathematical modeling of social annotation systems. Here, we show that the process of social annotation can be seen as a collective but uncoordinated exploration of an underlying semantic space, pictured as a graph, through a series of RWs. This modeling framework reproduces several aspects, thus far unexplained, of social annotation, among which are the peculiar growth of the size of the vocabulary used by the community and its complex network structure that represents an externalization of semantic structures grounded in cognition and that are typically hard to access.

Two main aspects of the social annotation process, so far unexplained, deserve special attention. One striking feature is the so-called Heaps’ law (9) (also known as Herdan’s law in linguistics), originally studied in information retrieval for its relevance for indexing schemes (10). Heaps’ law is an empirical law that describes the growth in a text of the number of distinct words as a function of the number of total words scanned. It describes, thus, the rate of innovation in a stream of words, where innovation means the adoption for the first time in the text of a given word. This law, also experimentally observed in streams of tags, consists of a power law with a sublinear behavior (8, 11). In this case, the rate of innovation is the rate of introduction of new tags, and a sublinear behavior corresponds to a rate of adoption of new words or tags decreasing with the total number of words (or tags) scanned. Most existing studies about Heaps’ law, either in information retrieval or in linguistics, explained it as a consequence of the so-called Zipf’s law (12) [see ref. 10 and supporting information (SI)]. It would instead be highly desirable to have an explanation for it relying only on very basic assumptions on the mechanisms behind social annotation.

Another important way to analyze user-driven information networks is given by the framework of complex networks (13–15). These structures are, indeed, user-driven information networks (16), i.e., networks linking (for instance) online resources, tags, and users, built in a bottom-up fashion through the uncoordinated activity of thousands to millions of web users. We shall focus in particular on the particular structure of the so-called cooccurrence network. The cooccurrence network is a weighted network where nodes are tags, and 2 tags are linked if they were used together by at least 1 user, the weight being larger when this simultaneous use is shared by many users. Correlations between tag occurrences are (at least partially) an externalization of the relations between the corresponding meanings (17, 18) and have been used to infer formal representations of knowledge from social annotations (19). Notice that cooccurrence of 2 tags is not a priori equivalent to a semantic link between the meanings/concepts associated with those tags and that understanding what cooccurrence precisely means, in terms of semantic relations of the cooccurring tags, is an open question that is investigated in more applied contexts (20, 21).

On these aspects of social annotation systems, a certain number of stylized facts about, e.g., tag frequencies (6, 8) or the growth of the tag vocabulary (11), have been reported, but no modeling framework exists that can naturally account for them while reproducing the cooccurrence network structure. Here, we ask whether the structure of the cooccurrence network can be explained in terms of a generative model and how the structure of the experimentally observed cooccurrence network is related...
to the underlying hypotheses of the modeling scheme. We show in particular that the idea of social exploration of a semantic space has more than a metaphorical value and actually allows us to reproduce simultaneously a set of independent correlations and line observables of tag cooccurrence networks as well as robust stylized facts of collaborative tagging systems.

User-Driven Information Networks. We investigate user-driven information networks using data from 2 social bookmarking systems: del.icio.us and BibSonomy. Del.icio.us is a very popular system for bookmarking web pages and pioneered the mechanisms of collaborative tagging. It hosts a large body of social annotations that have been used for several scientific investigations. BibSonomy is a smaller system for bookmarking bibliographic references and web pages (22). Both del.icio.us and BibSonomy are broad folksonomies (see www.personalincloud.com/2005/02), in which users provide metadata about preexisting resources and multiple annotations are possible for the same resource, making the ensuing tagging patterns truly “social” and allowing their statistical characterization. A more detailed description of the datasets is given in the SI.

A single user annotation, also known as a post, is a triple of the form \((u, r, T)\), where \(u\) is a user identification, \(r\) is the unique identification of a resource (a URL pointing to a web page, for the systems under study), and \(T = \{t_1, t_2, \ldots \}\) is a set of tags represented as text strings. We define the tag cooccurrence network based on post cooccurrence. That is, given a set of posts, we create an undirected and weighted network where nodes are tags and 2 tags, \(t_1\) and \(t_2\) are connected by an edge if and only if there exists 1 post in which they were used in conjunction. The weight \(w_{t_1 t_2}\) of an edge between tags \(t_1\) and \(t_2\) can be naturally defined as the number of distinct posts where \(t_1\) and \(t_2\) cooccur. This construction reflects the existence of semantic correlations between tags and translates the fact that these correlations are stronger between tags cooccurring more frequently. We emphasize once again that the cooccurrence network is an externalization of hidden semantic links and therefore distinct from underlying semantic lexicons or networks.

The study of the global properties of the tagging system, and in particular of the global cooccurrence network, is of interest but mixes potentially many different phenomena. We therefore consider a narrower semantic context, defined as the set of posts containing 1 given tag. We define the vocabulary associated with a given tag \(t^*\) as the set of all tags occurring in a post together with \(t^*\), and the time is counted as the number of posts in which \(t^*\) has appeared. The size of the vocabulary follows a sublinear power-law growth (Fig. 1), similar to the Heaps’ law (9) observed for the vocabulary associated with a given resource and for the global vocabulary (11). Fig. 1 also displays the main properties of the cooccurrence network, as measured by the quantities customarily used to characterize statistically complex networks and to validate models (14, 15). These quantities can be separated in 2 groups. On the one hand, they include the distributions of single node or single link quantities, whose investigations allow one to distinguish between homogeneous and heterogeneous systems. Fig. 1 shows that the cooccurrence networks display broad distributions of node degrees \(k\) (number of neighbors of node \(t\)), node strengths \(s\) (sum of the weights of the links connected to \(t\)), \(s = \sum w_{rt}\), and link weights. The average strength \(s(k)\) of vertices with degree \(k\) is defined as \(s(k) = 1/N_k \sum w_{kt}\), where \(N_k\) is the number of nodes of degree \(k\). The average strength \(s(k)\) of vertices with degree \(k\) is defined as \(s(k) = 1/N_k \sum w_{kt}\), where \(N_k\) is the number of nodes of degree \(k\), also shows that correlations between topological information and weights are present. On the other hand, these distributions by themselves are not sufficient to fully characterize a network, and higher-order correlations have to be investigated. In particular, the average nearest-neighbor degree of a vertex \(t\) is \(k_{nn}(t) = 1/k \sum_{r \in \mathcal{V}(t)} k_r\), where \(\mathcal{V}(t)\) is the set of \(t\)’s neighbors, gives information on correlations between the degrees of neighboring nodes. Moreover, the clustering coefficient \(c_t = e_t/(k_t(k_t - 1)/2)\) of a node \(t\) measures local cohesiveness through the ratio between the number \(e_t\) of links

\(^1\)http://www.bibsonomy.org
\(^1\)http://del.icio.us
between the \(k_i \) neighbors of \(i \) and the maximum number of such links (23). The functions \(k_{wn}(k) = 1/N_s \sum_{k_i = k} k_{wn,i} \) and \(C(k) = 1/N_s \sum_{k_i = k} C_i \) are convenient summaries of these quantities, that can also be generalized to include weights [see SI for the definitions of \(k_{wn}(k) \) and \(C(k) \)]. Fig. 1 shows that broad distributions and nontrivial correlations are observed. All of the measured features are robust across tags within 1 tagging system and contributions and nontrivial correlations are observed. All of the measured features are robust across tags within 1 tagging system. A power-law decay \(\sim l^{-1.5} \) (dashed line) is observed.

Modeling Social Annotation. The observed features are emergent characteristics of the uncoordinated action of a user community, which call for a rationalization and for a modeling framework. We now present a simple mechanism able to reproduce the complex evolution and structure of the empirical data.

The fundamental idea underlying our approach, illustrated in Fig. 2, is that a post corresponds to a random walk (RW) of the user in a “semantic space” modeled as a graph. Starting from a given tag, the user adds other tags, going from 1 tag to another by semantic association. It is then natural to picture the semantic space as network-like, with nodes representing tags, and links representing the possibility of a semantic link (24). A precise and complete description of such a semantic network being out of reach, we make very general hypothesis about its structure and we have checked the robustness of our results with respect to different plausible choices of the graph structure (24). Nevertheless, as we shall see later on, our results help fixing some constraints on the structural properties of such a semantic space: it should have a finite average degree together with a small graph size. Moreover, the idea that tags that are far apart in the underlying semantic space as network-like, with nodes representing tags, and links representing the possibility of a semantic link (24). A precise and complete description of such a semantic network being out of reach, we make very general hypothesis about its structure and we have checked the robustness of our results with respect to different plausible choices of the graph structure (24). An analytical and numerical investigation shows that sublinear power law-like growths of \(n_{\text{distinct}} \) are then generically observed, mimicking the Heaps’ law observed in tagging systems (Fig. 3 and SI).

Synthetic Cooccurrence Networks. Vocabulary growth is only one aspect of the dynamics of tagging systems. Networks of cooccurrence carry much more information and exhibit very specific features (Fig. 1). Our approach allows one to construct synthetic cooccurrence networks: We associate to each RW a clique formed by the nodes visited (see Fig. 2) and consider the union of the \(n_{\text{RW}} \) such cliques. Moreover, each link \(i \rightarrow j \) built in this way receives a weight equal to the number of times nodes \(i \) and \(j \) appear together in a RW. This construction mimics precisely the construction of the empirical cooccurrence network and reflects the idea that tags that are far apart in the underlying semantic network are visited together less often than tags that are semantically closer. Figs. 3 and 4 show how the synthetic networks reproduce all statistical characteristics of the empirical data (Fig. 1), both topological and weighted, including highly nontrivial correlations between topology and weights. Fig. 4 in particular explores how the weight \(w_i \) of a link is correlated with its extremities’ degrees \(k_i \) and \(k_j \). The peculiar shape of the curve can be understood within our framework. First, the broad distribution in \(l \) is responsible for the plateau \(\sim 1 \) at small values of \(k_j k_i \), because it corresponds to long RWs that occur rarely and visit nodes that will be typically reached a very small number of times (hence small weights). Moreover, \(w_{ij} \approx (k_j k_i)^{0.8} \) at large weights. Denoting by \(f_i \) the number of times node \(i \) is visited, \(w_{ij} \approx f_i f_j \) in a mean-field approximation that neglects correlations. On the other hand, \(k_j \) is by definition the number of distinct nodes visited together with node \(i \). Restricting the RWs to the only processes that visit \(i \), it is reasonable to assume that such sampling preserves Heaps’ law, so that \(k_j \approx f_j^\alpha \), where \(\alpha \) is the growth exponent for the global process. This leads to \(w_{ij} \approx (k_j k_i)^{0.8} \) with \(\alpha = 1/\alpha \). Because \(\alpha = 0.7–0.8 \), we obtain a close to 1.3–1.5, consistently with the numerics.

Strikingly, the synthetic cooccurrence networks reproduce also other, more subtle observables, such as the distribution of cosine similarities between nodes. In a weighted network, the similarity of 2 nodes \(i_1 \) and \(i_2 \) can be defined as

\[
\text{sim}(i_1, i_2) = \frac{\sum I \sum I w_{1j} w_{2j}}{\sqrt{\sum I w_{1j}^2 \sum I w_{2j}^2}}
\]

which is the scalar product of the vectors of normalized weights of nodes \(i_1 \) and \(i_2 \). This quantity, which measures the similarities between neighborhoods of nodes, contains semantic information that can be used to detect synonym relations between tags or to uncover “concepts” from social annotations (20). Fig. 5 shows the histograms of pairwise similarities between nodes in real and synthetic cooccurrence networks. The distributions are very similar, with a skewed behavior and a peak for low values of the similarities. In the SI, we report the similarity distributions for other tags and provide a more detailed discussion on their properties.
Fig. 3. Synthetic data produced through the proposed mechanism. (A) Growth of the number of distinct visited sites as a function of the number of RWS performed on a Watts–Strogatz network (see SI) of size 5×10^4 nodes and average degree 8, rewiring probability $p = 0.1$. Each RW has a random length l taken from a distribution $P(l) \sim l^{-1.2}$. The dotted line corresponds to a linear growth law, whereas the continuous line is a power-law growth with exponent 0.7. (Inset) Frequency-rank plot. The dashed and dotted line have slope -1.3 and -1.5, respectively. (B and C) Properties of the synthetic cooccurrence network obtained for $n_{RW} = 5 \times 10^4$ to be compared with the empirical data of Fig. 1.

Whereas the data shown in Figs. 3 and 4 correspond to a particular example of underlying network (a Watts–Strogatz network, see ref. 23 and SI), taken as a sketch for the semantic space, we investigate in the SI the dependence of the synthetic network properties on the structure of the semantic space and on the other parameters, such as n_{RW} or the distribution of the RW lengths. Interestingly, we find an overall extremely robust behavior for the diverse synthetic networks, showing that the proposed mechanism reproduces the empirical data without any need for strong hypotheses on the semantic space structure. The only general constraints implied by the mechanism proposed here are the existence of an underlying semantic graph with a small diameter and a finite average degree (RWs on a fully connected graph would not work, for instance) and a broad distribution of post lengths. This lack of strong constraints on the precise structure of the underlying semantic network is actually a remarkable feature of the proposed mechanism. The details of the underlying network will unavoidably depend on the context, namely on the specific choice of the central tag i^*, and the robustness of the generative model matches the robustness of the features observed in cooccurrence networks from real systems. Of course, given an empirical cooccurrence network, a careful simultaneous fitting procedure of the various observables would be needed to choose the most general class of semantic network structures that generate that specific network by means of the mechanism introduced here. This delicate issue goes beyond the goal of this article and raises the open question of the definition of the minimal set of statistical observables needed to specify a graph.

Conclusions

Investigating the interplay of human and technological factors in user-driven systems is crucial to understand the evolution and the potential impact these systems will have on our societies. Here, we have shown that sophisticated features of the information networks stemming from social annotations can be
captured by regarding the process of social annotation as a collective exploration of a semantic space, modeled as a graph, by means of a series of RWs. The proposed generative mechanism naturally yields an explanation for the Heaps’ law observed for the growth of tag vocabularies. The properties of the cooccurrence networks generated by this mechanism are robust with respect to the details of the underlying graph, provided it has a small diameter and a small average degree. This mirrors the robustness of the stylized facts observed in the experimental data, across different systems.

Networks of resources, users, and metadata such as tags have become a central collective artifact of the information society. These networks expose aspects of semantics and of human dynamics, and are situated at the core of innovative applications. Because of their novelty, research about their structure and evolution has been mostly confined to applicative contexts. The results presented here are a definite step toward a fundamental understanding of user-driven information networks that can prompt interesting developments, because they involve the application of recently developed tools from complex networks theory to this new domain. An open problem, for instance, is the generalization of our modeling approach to the case of the full hypergraph of social annotations, of which the cooccurrence network is a projection. Moreover, user-driven information networks lend themselves to the investigation of the interplay between social behavior and semantics, with theoretical and applicative outcomes such as node ranking (i.e., for search and recommendation), detection of nonsocial behavior (such as spam), and the development of algorithms to learn semantic relations from a large-scale dataset of social annotations.

ACKNOWLEDGMENTS. We thank A. Capocci, H. Hilhorst, and V. D. P. Servedio for many interesting discussions and suggestions. This research has been partly supported by the TAgora project funded by the Future and Emerging Technologies program of the European Commission under Contract IST-34721. V.L. is part of the research network A Topological Approach To Cultural Dynamics, supported by the Sixth Framework Programme of the European Union (project no. 043415).