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Many complex systems, including networks, are not static but can
display strong fluctuations at various time scales. Characterizing
the dynamics in complex networks is thus of the utmost impor-
tance in the understanding of these networks and of the dynamical
processes taking place on them. In this article, we study the
example of the US airport network in the time period 1990–2000.
We show that even if the statistical distributions of most indicators
are stationary, an intense activity takes place at the local (‘‘micro-
scopic’’) level, with many disappearing/appearing connections
(links) between airports. We find that connections have a very
broad distribution of lifetimes, and we introduce a set of metrics
to characterize the links’ dynamics. We observe in particular that
the links that disappear have essentially the same properties as the
ones that appear, and that links that connect airports with very
different traffic are very volatile. Motivated by this empirical study,
we propose a model of dynamical networks, inspired from previ-
ous studies on firm growth, which reproduces most of the empir-
ical observations both for the stationary statistical distributions
and for the dynamical properties.

critical infrastructures � dynamics of infrastructures �
nonequilibrium processes

Despite the presence of stable statistical regularities at the
global level, many systems exhibit an intense activity at the

level of individual components, i.e., at the ‘‘microscopic’’ level.
An important illustration of this fact was recently put forward by
Batty (1) in the case of city populations. Indeed, even if the
population Zipf plots display negligible changes in time, the
same city can have very different ranks in the course of history.
Similarly, many other systems, in particular occurring in human
dynamics studies, present simultaneously stationary statistical
distributions and strong time fluctuations at the microscopic
level, with activity bursts separated by very heterogeneous time
intervals (2–5). These systems thus challenge us with the fun-
damental puzzle that consists in reconciling an important dy-
namical activity occurring at the local level on many time scales
and the emergence of stable distributions at a macroscopic level
that can be maintained even when the external conditions are
highly nonstationary (6). For instance, the dynamics of the rank
is not consistent with processes, such as preferential attachment
(7), where the rank is essentially constant in time.

These issues naturally apply to the case where complex systems
are structured under the form of large networks. In most recent
studies, these networks have been considered as static objects
with a fixed topology. However, their structure may in principle
evolve, links may appear and disappear. Such topological f luc-
tuations have important consequences: Many dynamical pro-
cesses take place on complex networks (8–11), and a nontrivial
interplay can occur between the evolutions of the topology and
of these dynamical processes. The structure of the network
strongly influences the characteristics of the dynamical processes
(11), and the topology of the network can simultaneously be
modified as a consequence of the process itself. In this frame-
work, recent studies have been devoted to simple models of

coevolution and adaptive networks (12–16). Another illustration
of the importance of taking into account the dynamics of the
network is given by concurrency effects in epidemiology (17).
Indeed, although a contact network is usually measured at a
certain instant or aggregated over a certain period, the actual
spread of epidemics depends on the instantaneous contacts. In
such contexts, it is thus crucial to gain insights into the dynamics
of the network, possibly by putting forward convenient new
measures and to propose possible models for it.

These considerations emphasize the need for empirical ob-
servations and models for the dynamics of complex networks,
which are up to now quite scarce. In this article, we study the case
of the US airport network (USAN) where nodes are airports and
links represent direct connections between them. It is indeed
possible to gather data on the time evolution of this network
(www.bts.gov) (see also ref. 18 for a study of the yearly evolution
of the Brazilian airport network), which represents an important
indicator of human activity and economy. Moreover, air trans-
portation has a crucial impact on the spread of infectious
diseases (19, 20), and it would be interesting to include its
dynamical variations in large-scale epidemiological modeling.
We first present empirical measures on the dynamics of the
USAN. In particular, we provide evidence for the large-scale
statistical regularity of many indicators, and we also define
convenient metrics that enable us to characterize the small-scale
dynamical activity. We then propose a model, based on simple
but realistic mechanisms, which reproduces most empirical
observations.

Empirical Observations: Stable Statistical Distributions
in a Fluctuating System
We analyze data available from the Bureau of Transportation
Statistics (www.bts.gov). These data give the number of passen-
gers per month on every direct connection between the US
airports in the period 1990–2007. We limit ourselves to the
period 1990–2000 during which the data collection technique is
consistent. We obtain 12 � 11 � 132 weighted, undirected*
networks where the nodes are airports, the links are direct
connections, and the weights represent the number of passengers
on a given link during a given month. We denote by w the weight
of a link, by k the degree (number of neighbors) of a node, and
by s its strength, equal to the sum of the weights of the issuing
links (21) (in the air-transportation case, the strength gives thus
the total traffic handled by each airport).
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Fig. 1 displays the cumulative distributions of degrees, weights,
and strengths at 4 different times. These distributions are broad,
as already shown in previous studies (21–25) highlighting the
strong heterogeneities present in the air transportation network
for both the topology and the traffic, leading to interesting
behavior for various quantities such as the optimal paths (26).
Fig. 1D moreover shows the dependence of the strength s of an
airport on its number of connections k, with a clear nonlinear
behavior denoting a strong correlation between weights and
topology (21, 23). Interestingly, Fig. 1 clearly shows that the
distributions of degrees, weights, and strengths measured at
different times are identical (we have obtained the same distri-
butions at other dates). These distributions are therefore sta-
tionary even if, as we will show later, nontrivial dynamics occur
continuously.

The first and simplest evidence for the presence of a dynamical
evolution in the network is displayed in Fig. 2A, which shows the
total traffic T(t) (equal to the sum of the weights of all links) as
a function of time. When the seasonal effects are averaged out,
the data can be fitted, as often assumed in economics, by an
exponential growth T(t) � T(0)exp(t/�) with � � 312 months
(� � 25 years). Note that the data can also be fitted linearly,
because of the large value of �. We also observe similar growth
with seasonal f luctuations of the total number N(t) of connected
airports, and of the total number L(t) of links (Fig. S1). The fits
give the same growth rate for N(t) and L(t) (approximately half
the growth rate of T(t)), and the average degree �k� � 2L(t)/N(t)
has small f luctuations (�3) around a constant value (�15), as
shown in Fig. 2B, over the 10 years period under study, whereas
the average weight �w� grows exponentially with a typical time of
order 2� (Fig. S1).

Dynamics at the Microscopic Level
We now study in detail the dynamics at the microscopic level, i.e.,
the evolution of single links. We denote by wij(t) the weight of the
link between nodes i and j at time t (in months) and by

r ij� t� � log� wij� t � 1�

wij� t� � [1]

the growth rate from one month to the next. Fig. 2C shows the
distributions of rij(t) for all links present in the network both at

t and t 	 1, for all months in the 11 years dataset under study
(period January 1990 through December 2000), and for 3 single
months (t � May 1993, May 1995, and May 1997). The fact that
the distributions can be superimposed leads to the conclusion
that the distribution of rij is independent of time. This distribu-
tion, however, depends on the link’s properties. As shown in Fig.
2C Inset, the standard deviation � of the conditional distributions
P(r�w) as a function of w decreases as � 
 w�0.4, a behavior
similar to the one observed for firm growth (27). The weights’
evolution from one month to the next can thus be modeled by

wij� t � 1� � wij� t��1 � � ij� [2]

where the multiplicative noise � � er � 1 is a random variable
whose distribution does not depend on time but does depend on
the link weight. The distribution of � is broad (Fig. S2), which
indicates that most of the increments are small but that sudden
and large variations of the weights can be observed with a small
but nonnegligible probability.

Links can be created or suppressed between airports, and in
fact the number of link creation events is 4 � 104 for the 11 years
period under study, for a total number of links in the 132
networks close to 3 � 105. This result immediately raises the
question of the lifetime � of links. As shown in Fig. 3A, the
distribution of � is very broad, with a power law behavior P(�) 

��� with � � 2.0 � 0.1. Some comments are in order. First, we
consider in this distribution only the links that appear and
disappear during the period under study. This is necessary
because we cannot know the real lifetime of a link that is already
present at the start of the period or still present at the end.
Second, although the most probable value for � is small, which
implies that new links are the most fragile, the distribution
extends over all available time scales: links of an arbitrary age
may disappear. This indicates a nontrivial dynamics with ap-
pearance/disappearance of both ‘‘young’’ and ‘‘old’’ links. This
strong heterogeneity of lifetimes is in line with other results
about human activity (3), where it has been shown to have a
strong impact on dynamical processes (28). It is therefore
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Fig. 1. Characteristics of the US airport network measured at 4 different
dates: January 1992, June 1996, December 1998, and September 2000. (A–C)
Cumulative distributions of degrees (A), weights (B), and strengths (C). (D)
Strengths versus degrees for the year 2000 (circles, raw data; squares, average
strength for each degree value). The dashed line is a power law with exponent
1.6. These results are quantitatively similar with published studies on static
snapshots of the World Airport Network and the North American Airport
Network (21–23).
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Fig. 2. Dynamics of the U.S. airport. (A) Total traffic on the US airport
network versus time. The symbols represent the annual traffic and the dashed
line is an exponential fit with time scale � � 312 months. (B) Average degree
�k�, approximately constant and of order 15 (dashed line). (C) Distribution of
the monthly growth rates r � log(w(t 	 1)/w(t)). The full line corresponds to
the distribution obtained over the 11 years under study. Symbols correspond
to 3 single months (May 1993, May 1995, and May 1997). The Inset shows the
standard deviation � of the conditional distributions P(r�w) as a function of w,
showing that the distribution of the growth rates become narrower for larger
weights. The line represents a power law w�0.4.
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important to characterize and incorporate it into models of
dynamically evolving complex networks (29).

Most links appearing at a certain point disappear and reappear
again at later times: A substantial part of the dynamics is due to
links appearing and disappearing several times, rather than to
uncorrelated phenomena of appearance and disappearance. We
have thus measured the number of times each link appears and
disappears, and the durations �t of links absence. Fig. 3A
displays the distribution of these absence durations, showing a
large heterogeneity of the absence periods. The number of times
a given link appears and disappears is exponentially distributed
(Fig. S3): Most links appear and disappear less than 5 times
during the 11 years period of study.

These results show that, behind the stability of the statistical
characteristics of the USAN, incessant microscopic rearrange-
ments occur. We now propose a systematic way to characterize
the corresponding fluctuating connections, whose importance
stem from the fact that they induce changes in the topology of
the network. Each link (i, j) can be characterized by a certain
number of quantities such as its weight wij, the strengths of its
extremities si and sj, etc. It is usual to consider the distributions
of these quantities over the whole network, and we will consider
these distributions as reference (see Fig. 1). In addition, we
propose to focus at each time t on the links that appear (or
disappear), to study the distributions of these links’ character-
istics, and to compare them with the reference distributions. For
instance, if Nt(w) is the number of links with weight w at time t,
and Nt

d(w) is the number of such links that disappear between t
and t 	 1, we measure the fraction of links of weight w that
disappear at time t,

fd�w� �
N t

d�w�

N t�w�
. [3]

We also define the number Nt
a(w) and fraction fa(w) of links of

weight w that appear at t. Similarly, fd and fa can be measured for
other links characteristics as we will investigate. A priori, all
these quantities depend on the measurement time t. We have
already seen that the reference distributions are stationary (Fig.
1). Strikingly, we observe that the fractions fd and fa display as
well a stationary behavior (see Fig. S4 for an example), even if

they clearly highlight a strong dynamical evolution. In the
following, we will therefore drop any t index and measure fd and
fa averaged over the whole period under study. In all cases, we
also observe a strong similarity between fd and fa, partly because
most disappearing links had appeared some time before, and vice
versa, and to the large number of links with lifetime of order a
few months, during which no strong evolution occurs (see the
above discussion on the lifetime and the absence intervals).

The measure of fd(w) and fa(w) (Fig. S5) indicate that most
links have a small weight just before they disappear or just after
their birth, which is not a surprise. However, fd and fa are broad,
extending on several orders of magnitude of w values: Appearing
and disappearing connections occur with nonnegligible proba-
bilities even at strong weights. A more detailed analysis shows the
presence of 2 regimes in fd(a): for links with w 
 102 passengers
per month, fd and fa present rather large values close to 0.8. For
w � 102, these fractions decrease slowly: Also, links with large
weights can appear or disappear. We also observe that for w �
103 there are more links that appear than that disappear, an
effect that is consistent with the increase of the total traffic.

As previously mentioned, a similar analysis can be carried out
for various links’ characteristics; particularly relevant quantities
include the traffic of the airports located at both ends of the link.
In the following we denote by smax(l) � maxl � (i,j)(si, sj) and
smin(l) � minl � (i,j)(si, sj) the larger and smaller traffic of the
extremities of a link l � (i, j). A measure of the importance of
the link for i and j is given by w/smin and w/smax. For instance, if
w/smin is small, the link carries only a small fraction of i’s and j’s
traffic; on the contrary, a large w/smax indicates that the link is
important for both its extremities. The study of fd(a)(w/smin) and
fd(a)(w/smax) (Fig. S6) shows that most links that disappear/appear
display small values of these ratios, of order w/smin 
 10�3 and
w/smax
10�4. This means that most of these links have a small
importance for the airports to which they are attached. For larger
values of w/smin(max), the ratios fd and fa decrease, from �0.7 to
�10�2, and surprisingly increase again (from �10�2 to �10�1)
for w/smin � 10�1 and w/smax � 10�2. This phenomenon corre-
sponds to links that are very important for some airports, the
extreme case being airports with a single connection (these
airports have thus usually a small strength).

Finally, we also consider the ratio smax/smin of the traffic of the
links extremities. This quantity indicates indeed how similar the
airports connected by the link are, in terms of traffic. We plot in
Fig. 3B the fractions fd(a)(smax/smin) of links that disappear
(appear) as a function of smax/smin. On this figure we also show
the reference probability distribution P(smax/smin) that displays a
broad behavior: Most links connect airports of similar impor-
tance, but the ratio smax/smin varies over 6 orders of magnitude,
and a nonnegligible fraction of links connect very different
airports. Interestingly, fd(a)(smax/smin) displays 2 different re-
gimes. For smax/smin 
 103, small values of fd are obtained: Links
that connect airports of similar, or not too dissimilar, sizes are
rather stable. In the opposite case when smax/smin � 103, the
fraction fd increases rapidly to reach another plateau, at values
of order 0.7–0.8. This last regime corresponds to links connect-
ing airports with very different traffic, which turn out to be the
most fragile and to have a short lifetime.

We can now summarize the results of our empirical observa-
tions, obtained through the analysis of the tools introduced in
Eq. 3 (i) The links that disappear have essentially the same
properties as the ones that appear. (ii) The disappearing/
appearing links have a weight that is low on average but broadly
distributed: large weights links may appear or disappear with a
nonnegligible probability. (iii) Most disappearing links have
small weights with respect to the traffic of their extremities, but
links appear or disappear in the whole range of w/s. (iv) Links
that connect airports with very different traffic are very volatile.
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Fig. 3. Links’ dynamical properties. (A) Lifetime distribution of links (in
months). Links that existed at the beginning of the measure (January 1990)
and still present at the end (December 2000) are discarded. The full line is a
power law fit with an exponent �2.0 � 0.1. We also show the distribution of
time �t during which a given link is absent from the system. (B) Fraction fd

(open circles) of disappearing links and fa (pluses) of appearing links as a
function of the ratio smax/smin of the strengths of their extremities. The scale is on
the left-hand y axis. We also show the logarithmically binned reference distribu-
tion P(smax/smin) (line above the shaded area, scale on the right-hand y axis).

Gautreau et al. PNAS Early Edition � 3 of 6

PH
YS

IC
S

http://www.pnas.org/cgi/data/0811113106/DCSupplemental/Supplemental_PDF#nameddest=SF3
http://www.pnas.org/cgi/data/0811113106/DCSupplemental/Supplemental_PDF#nameddest=SF4
http://www.pnas.org/cgi/data/0811113106/DCSupplemental/Supplemental_PDF#nameddest=SF5
http://www.pnas.org/cgi/data/0811113106/DCSupplemental/Supplemental_PDF#nameddest=SF6


(v) The lifetime of links is broadly distributed and covers all
available time scales.

The set of measures we have presented, although not exhaus-
tive, is able to give a clear characterization of the dynamics of the
network under study†. They are also easily applicable to any
network undergoing topological changes, and can be generalized
to include other links characteristics.

The results of the empirical analysis may moreover serve as
guidelines in the elaboration of a model for dynamically f luctu-
ating networks. In particular and in contrast with most models
found in the literature, topological modifications of the network
result here from the stochastic evolution of weights.

Model for Dynamical Networks
Using the results of the empirical analysis of the airport network
as guidelines, we now propose a model for dynamically f luctu-
ating networks able to reproduce the main features observed for
the USAN, and that highlights important features of dynamical
networks modeling. We consider simple ingredients that can
easily be extended with more detailed rules, and can therefore
serve as a modeling basis in many other fields where the
dynamics of weights and links is essential. In this model, topo-
logical modifications of the network result from the stochastic
evolution of weights.

We start from ideas developed in refs. 27, 31, and 32 to model
firm growth through a process based on multiplicative growth of
subunits together with fusion/creation rules. In our framework,
we consider airports (nodes) and connections (links) instead of
firms and subunits. The equivalent of a firm’s size is then given
by the traffic of the airport as measured by its strength, and the
subunits sizes correspond to the traffic on each link. An essential
difference distinguishes our model from the firm growth model
where the various firms undergo independent evolutions: Here,
each node is connected to many others by links whose weights
evolve randomly, so that the evolution of the airports sizes are
correlated.

Let us present the details of the modeling framework. We start
(at time t � 0) from an initial network composed of N0 and L0
links of unit weights, with L0 � N0 (we have checked that the
initial conditions do not influence the results). At each time step
t, we first compute for each link (i, j) with weight wij(t) a random
increment

�wij� t� � wij� t�� , [4]

where we chose for simplicity � as a random variable drawn from
a distribution independent from time and from the pair (i, j), and
that may a priori take values in ]�1, 	�[. For ��� � 0, the total
traffic will on average grow exponentially. For the sake of
simplicity we will choose for � a Gaussian distribution (truncated
at �1), with variance ��

2 (We have also run simulations with
broad distributions of � for � � 0, with the same results.). The
weights’ increments govern the evolution of the network’s to-
pology: Depending on the values of �wij, the nodes i and j can
either update the weight of (i, j), delete it or create new links
toward other nodes. More precisely, each airport i has a thresh-
old value ss(i), which sets a criterium of viability for a connection:
If a link’s weights drops below this threshold, the airport i does
not consider the link anymore as interesting and removes it. For
simplicity, we take thresholds independent from time and uni-
form: ss(i) � 1.0 for all i. The detailed evolution rules are as
follows:

1. If �wij(t) 
 0, i and j test each the viability of the connection
(i, j). If wij(t) 	 �wij(t) 
 max(ss(i), ss(j)), the link disappears
and its weight is uniformly redistributed over the other
connections of i and j. In the opposite case, wij(t) 	 �wij(t) �
max(ss(i), ss(j)), the link’s weight is simply updated: wij(t 	
1) � wij(t) 	 �wij(t).

2. If the weight increment �wij(t) is positive, we assume that i and
j have contributed equally to it and can decide each on how
half of it should be used: If �wij(t) � ss(i), with probability pf
node i will use its part �wij(t)/2 of the increment to create a
new link (i,�) with weight wi� � �wij(t)/2. With probability 1 �
pd, � is an existing airport chosen at random, and with
probability pd it is a new node. pd therefore governs the rate
of growth of the number of nodes. With probability 1 � pf,
node i simply increases the weight wij of �wij(t)/2. Node j then
chooses independently either to create a new link (j,k), or to
increase the weight wij by an amount equal to �wij(t)/2.

3. If 0 
 �wij(t) 
 ss(i), node i increases the weight of (i, j) of
�wij(t)/2. The same procedure is applied to node j.

Rules 1–3 express the concept that the evolution of the traffic
governs the topological modifications of the network. If a weight
becomes too small, the corresponding connection will be
stopped. However, if it grows too fast, new connections can be
created. The quantity pf determines the rate of new connections.
If pf is close to 1, as soon as an increment �w is large enough a
new link will be created, which in turn will limit the growth of
weights because they are used to create new connections. In the
opposite case of small pf, the number of links will grow very
slowly but the weights will reach more easily large values. At each
time step, the total traffic T(t) is multiplied on average by 1 	
��� leading to an exponential growth T(t) � exp(t/d) with d �
1/�ln(1 	 �)�. The number of nodes and links also grow in time,
and their simultaneous growth, controlled by pf and pd, results in
an average degree �k�, which fluctuates around a constant value,
function of the parameters pf, ��, ���, and pd (see Fig. S7). For
instance, for larger pd, N(t) grows faster and �k� is smaller.

The model rules can easily be modified to incorporate other
elements, such as preferential attachment mechanisms or ran-
dom distributions of the threshold values ss(i). Although we will
focus here on the simplest version as described above, we have
also considered variants (i) in which the link’s relevance is tested
if �wij 
 max(ss(i), ss(j)) (instead of the condition �wij 
 0), or
(ii) where the weight of deleted links is redistributed at random,
or (iii) only 1 new link can be created, either from i or j. The
conclusion is that the qualitative features are not modified,
showing that the simulation results presented below are robust
with respect to such changes. We have also simulated the case
pd � 0 in which no new nodes are inserted, N(t) � N0. In this case,
the global increase of traffic leads at large time to a fully
connected network, but during a long time, it remains sparse (�k�


 N(t)) and the same results are again obtained in this regime.

Figs. 4 and 5 summarize some results of our numerical
simulations of the dynamical network model. Although the
network evolves with many links creations and deletions, the
distributions of degrees, weights, and strengths display a remark-
able stability, as shown in Fig. 4 for N(t) growing from 104 to 105.
All these distributions are broad, consistently with empirical
observations, and the nonlinear behavior of the strength versus
degree is reproduced as well. Interestingly, this behavior (a
power law with an exponent of the order 1.4; see Fig. 4D)
emerges here as a result of the stochastic dynamics without any
reference to preferential attachment mechanisms combined with
spatial constraints (23) or with link additions between nodes
(33, 34).

Although many network models are able to produce broad
degree and strength distributions, the focus of this article lies in
the small-scale dynamical aspects. We show in Fig. 5A that the

†Note that a straightforward other set of measures concerns the degrees of the links’
extremities, see also (30) for the definition of interesting measures combining weights and
degrees. We have focused here on traffic properties, which are particularly relevant in the
airport network case.
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lifetime distribution of the links is broad, as in the USAN case,
and we report in Fig. 5B the behavior of fd(smax/smin). Strikingly,
our model reproduces the empirical behavior shown in Fig. 3B,
with 2 different plateaus at small and large smax/smin. Other
properties of the appearing or disappearing links coincide in the
model with the empirical results, for example, most disappearing
links have a small weight, or the nontrivial shape of fd(a)(w/
smin(max)), with a decreasing fd for w/s � 0.01, and an increase at
w/s � 0.1 (Fig. S8).

In summary, the simple assumptions on which our model is
based yields stationary nontrivial emergent properties such as
broad distributions and nonlinearities, together with an active
local dynamics of links occuring on all time scales, and whose
characteristics reproduce the empirical findings concerning the
USAN�s microscopic dynamics.

Discussion
The question of the dynamical evolution of networks is crucial
in the study of many dynamical processes and complex systems.
If the time scales governing the dynamics of the network and of
the process taking place on it are comparable, one can indeed
expect a highly nontrivial behavior, which in principle could be

very different from the static network case. In this article, we
have used as a case study the US airline network, and we have
shown that it exhibits stationary distributions despite the inces-
sant creation and deletion of connections on broadly distributed
time scales. We have introduced a set of measures in a systematic
way to characterize this dynamics. Finally, we have proposed a
model based on simple assumptions that reproduces the main
empirical features, both for stationary and local dynamical
properties.

The coexistence of stationary distributions and strong micro-
scopic activity taking place at very different time scales occurs
in many different systems and our model can provide a frame-
work that can easily be extended and serve as a basis for further
and more detailed modeling. For instance, we have observed
that a bimodal distribution of the thresholds ss(i) for the deletion
of a link results in the following picture: Nodes with small ss
typically have a large degree, but are connected to weak links,
whereas nodes with large ss reach a smaller number of stronger
connections. This behavior does not correspond to infrastruc-
ture networks such as the USAN but could describe social
behavior where individuals with many connections do not have
intense (i.e., with large weight) relations. In these perspectives,
the present work should stimulate further studies on the coex-
istence of dynamics at different scales and on the impact of
network dynamics on different processes.
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