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Temporal networks of face-to-face interactions between individuals are useful proxies of the dynamics of
social systems on fast timescales. Several empirical statistical properties of these networks have been shown to
be robust across a large variety of contexts. To better grasp the role of various mechanisms of social interactions
in the emergence of these properties, models in which schematic implementations of such mechanisms can
be carried out have proven useful. Here, we put forward a framework to model temporal networks of human
interactions based on the idea of a coevolution and feedback between (i) an observed network of instantaneous
interactions and (ii) an underlying unobserved social bond network: Social bonds partially drive interaction
opportunities and in turn are reinforced by interactions and weakened or even removed by the lack of interactions.
Through this coevolution, we also integrate in the model well-known mechanisms such as triadic closure, but
also the impact of shared social context and nonintentional (casual) interactions, with several tunable parameters.
We then propose a method to compare the statistical properties of each version of the model with empirical face-
to-face interaction data sets to determine which sets of mechanisms lead to realistic social temporal networks
within this modeling framework.
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I. INTRODUCTION

Social systems evolve at many different spatiotemporal
scales, from individual decision-making or interactions to the
history of civilizations. The study of social networks, where
individuals are represented by the nodes of the networks and
links (ties) are summaries of their social interactions, has
proven to be a valuable framework to understand the structure
and evolution of these interactions [1–3]. To this aim, em-
pirical data on social interactions have largely been collected
through surveys [4,5] or direct observation [6,7].

Recent technological developments have made data avail-
able at high temporal and spatial resolutions [8–15], providing
unique proxies of social relationships and making it possible
to describe social networks of face-to-face interactions at the
spatial scale of a single place such as a conference, a school, or
a workplace, at timescales ranging from one minute to several
days, even if such proxies do not include information about
possible discussions or even physical contact, nor about which
partner initiated the interaction [7].

The resulting data are typically represented as temporal
networks [16,17], where we associate a node to each social
agent and draw an edge between i and j at time t if i and
j were interacting at time t : this has allowed researchers
to study the statistical properties of a number of relevant
observables such as the duration of interactions or the time
elapsed between consecutive interactions. The resulting dis-
tributions are typically broad with robust functional shapes
across contexts [9,12,15]. Aggregating the interactions along
the temporal dimension can also make structures at larger
timescales visible: aggregated interaction networks typically
exhibit a small world topology, a high clustering coefficient,
and broad distributions of edge weights (the edge weight
being defined as the aggregated duration of interactions along

that edge), with similar shapes in different social contexts
[12].

The robustness of these properties has motivated the search
for models of temporal networks that could reproduce the ob-
served statistical distributions at diverse timescales [18–22],
with a dual aim: On the one hand, understanding which social
mechanisms lead to the emergence of these properties and, on
the other hand, producing synthetic realistic data sets that can
be of use to study dynamical processes on temporal networks.

The main social mechanisms implemented in such models
include (i) reinforcement processes, where the probability for
two nodes to interact with each other increases after each
interaction, leading to broad distributions of contact durations
and edge weights in the aggregated network [18,20,21]; (ii)
triadic closure, which states that a node is more likely to
interact with a neighbor of a neighbor and has been shown
to account for the high clustering coefficient of the aggregated
network; and (iii) memory loss process, which can be random
or target unused social ties [22,23], and contributes to the
emergence of community structure in the aggregated network
of social systems [22,24,25].

In this paper, we extend the modeling of temporal networks
of face-to-face interactions in two main directions. On the one
hand, we go beyond the commonly considered observables
mentioned above, as they do not cover the entire complexity of
the empirical networks’ structures. We do not intend to answer
the question of which list of observables would fully char-
acterize a social system represented as a temporal network,
as this question is not fully answered even for static network
representations [26]. However, we extend the set of commonly
used observables: We consider the distributions of the node
activity duration and interduration, and of the duration of
newly established edges, as well as structural patterns such as
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the size of connected components in the instantaneous graph
of interactions, and spatiotemporal patterns like egocentric
temporal networks (ETNs) [27], which have recently been
shown to be useful building blocks to decompose a temporal
network [28].

On the other hand, we propose a modeling framework
based on a core hypothesis: the existence of an underlying
(not observable) directed temporal network called the social
bond graph B, which coevolves with the observed temporal
network of interactions denoted G. The weight of an edge in
B, Bi j (t ), represents how much i is inclined to interact with j
at time t (B is thus directed as the inclination of i toward j can
differ from the inclination of j towards i), while the undirected
temporal edge Gi j (t ) is simply 1 if i and j interact at t and 0
otherwise. The evolutions of B and G follow two feedback
mechanisms. First, B(t ) guides the interactions that will take
place at t , i.e., influences the edges of G(t ). Second, interac-
tions have an impact on social bonds through a reinforcement
mechanism [23]: If an interaction occurs between i and j, then
Bi j increases. Moreover, we take into account that the time and
energy spent to maintain the tie with an individual is taken
from a finite interaction capacity and is thus time not spent
with others [29,30]. Therefore, if i and j do not interact but i
interacts with another agent k at t , Bi j decreases [23].

We integrate this framework within a well-known frame-
work for temporal network modeling, the activity driven (AD)
model [31]: In this model, nodes representing social agents are
endowed with an intrinsic activity quantifying their propen-
sity to form edges at each time step. The initial model [31]
has been refined to introduce memory of past interactions
[activity driven with memory (ADM) model], as well as tri-
adic closure and renewal of agents [21,22,32]. Here, through
the coevolution of the instantaneous network of interaction G
and the social bond network B, we modify the implementation
of these mechanisms and integrate additional ones, namely, (i)
the possible disappearance of a directed social bond when it
becomes too weak; (ii) the influence of social context (e.g.,
two social agents belonging to the same group of discussion,
having common neighbors, are more likely to interact with
each other); (iii) the distinction between intentional and casual
interactions driven by the context.

To investigate which of the proposed mechanisms are rele-
vant for the study of social systems, we test several variations
of the resulting models. We put forward a systematic way
to compare them with empirical data sets by computing the
distance between model generated and empirical distributions
for a given collection of observables. We use this method to
optimize the parameters for each model version, and then to
rank versions according to their distance to empirical data.

II. FRAMEWORK

A. Interaction and social bond graphs

Our framework consists of laws of evolution for two tem-
poral networks, an interaction graph G, and a social bond
graph B. We recall that a weighted temporal network g can
be defined in discrete time as

g : N × V 2 −→ R+

(t, i, j) �−→ gi j (t ),

where V is the set of nodes and gi j (t ) is the weight of the edge
(i, j) at time t . We denote by N = |V | the number of nodes.

The interaction graph G is an undirected and unweighted
temporal network in discrete time, with finite duration T .
The N nodes of G represent social agents, and Gi j (t ) = 1 is
interpreted as the fact that i and j are interacting at time t (else,
Gi j (t ) = 0). We denote by E (t ) the set of such active edges
of G at t . The social bond graph B is a directed and weighted
temporal network, on the same N nodes and same time stamps
as G: the weight Bi j (t ) stands for the social affinity of i toward
j at t . The egonet of i at time t is defined as the set of neighbors
of i in B at time t , i.e., γi(B(t )) = { j|Bi j (t ) > 0}.

We note here that we consider only positive interactions
for both G and B. While negative (hostile) interactions do
occur in social networks, and negative social bonds exist as
well, they are indeed typically difficult to observe concretely
[33]. In fact, negative social bonds are often deduced from
an avoidance of interactions (i.e., two individuals interacting
less than expected by chance) [33–36], an assumption that has
been shown to be able to provide support to social theories
such as the social balance theory [34,35]. Here, therefore, we
do not distinguish between an absence of interaction or of a
social bond and a negative one.

The evolutions of G and B are dependent on each other
along the following lines. First, interactions taking place at
t depend on interactions at the previous time: indeed, two
agents belonging to the same group of discussion are more
likely to interact in a close future. This can be formalized,
for instance, by the existence of common neighbors in G
at the previous time step, giving rise to an influence of
G(t − 1) on G(t ).

Agents also choose their partners based on a long-term
memory of their previous interactions. In particular, the more
two nodes have interacted with each other in the past, the more
likely they are to interact in the future. Hypothesizing that the
edge weights of B can encode this memory effect, it follows
that the social bond weights at t also influence G(t ) (a node
will more likely choose a partner with whom it has a high
affinity).

Reciprocally, the social bond graph is updated according
to the interaction graph, following the reinforcement process
of Ref. [23]: The weight Bi j increases if i and j interact with
each other and stays the same or decreases if they do not:

Gi j (t ) > 0 ⇒ Bi j (t + 1) > Bi j (t )

Gi j (t ) = 0 ⇒ Bi j (t + 1) � Bi j (t ).

We initialize Bi j as being 0 for all times before the first
interaction between i and j on G: ∀t ∈ N,∀i, j ∈ V, Gi j (τ ) =
0,∀τ � t ⇒ Bi j (τ ) = 0,∀τ � t , thus assuming that no pre-
existing social bonds exist between the nodes.

In summary, G(t ) is determined both by G(t − 1) and B(t ),
and, in return, B(t + 1) is determined by G(t ) and B(t ) (see
Fig. 1).

B. Social mechanisms

We use the framework described above to model several
social mechanisms.

The first mechanism is a short-term reinforcement process
with a long-term memory, through the coevolution of G and

024301-2



MODELING FRAMEWORK UNIFYING CONTACT AND … PHYSICAL REVIEW E 107, 024301 (2023)

FIG. 1. Sketch of the dependencies between the interaction graph
G and the social bond graph B. Edges having a higher weight in
social bond graph B(t ) are more likely to activate, i.e., to be part
of interaction graph G(t ). The computation of B(t + 1) is done in
two steps: First, B is updated by the feedback of which edges were
active in G(t ): unused ties decay while used ties strengthen. The
output of this first step is denoted by B(t + 1

2 ) because it refers to
an intermediary step between B(t ) and B(t + 1), which is obtained
from B(t + 1

2 ) by a pruning process, consisting of removing weak
unused social ties. The arrow from G(t − 1) to G(t ) is of a different
nature than the arrow from B(t ) to B(t + 1

2 ). The latter accounts for
the inertia of the social bond graph, as B can only encounter gradual
change from one time to the next (implementing long-term memory).
On the contrary, the arrow from G(t − 1) to G(t ) does not ensure
that G(t ) will be similar to G(t − 1); it simply describes a short-term
social context memory through the fact that the more two nodes share
partners in G(t − 1), the more likely they are to be partners in G(t ).

B: Social agents remember with whom they have interacted
and reinforce their social ties with their partners at each inter-
action, while unused ties weaken. In addition, we assume that
weakened ties may vanish: at each time step Bi j has a certain
probability to be reset to zero. To capture the realistic assump-
tion that a node tends to shorten unfruitful partnerships to save
time or energy, this probability increases as Bi j decreases.

The second mechanism we consider is the cyclic closure
in the social bond graph B. This mechanism captures the
fact that, when a social agent initiates a new partnership, it
may give priority to the partners of its partners. Through this
mechanism, the existing social bonds thus drive the
interactions on G.

The third mechanism grasps the fact that two nodes be-
longing to the same group of discussion are more likely to start
interacting together, whether or not they know each other [37].
This can be translated by an increased probability of interac-
tion in G(t ) between nodes that were in the same connected
component of G(t − 1) or, more simply, between nodes that
had common neighbors in G(t − 1).

The fourth mechanism is a dynamic triadic closure driven
by the current context, accounting for the fact that if a node
interacts simultaneously with two different nodes, these nodes
are likely to also be interacting with each other. It is important
to note that this mechanism leads to interactions that are
contextual and may thus be of a fundamentally different social
significance than intentional ones. In particular, we will take

FIG. 2. Social mechanisms. We focus on node i for two consec-
utive time steps t − 1 and t , so we do not represent all the ties of B.
(i) Reinforcement: i interacts with j at t − 1, leading to a reinforce-
ment of the social affinity of i toward j: Bi j (t ) > Bi j (t − 1). (ii)
Cyclic closure: At t − 1, i decides to interact with a new partner.
First, i picks a known partner j and then a known partner l of j. The
tie Bil is created at t . (iii) Weakening: While k is part of the egonet
of i, i does not interact with k at t − 1. This results in a weakening
of the social affinity of i toward k: Bik (t ) < Bik (t − 1). (iv) Social
context: The social affinity of i toward m at t is temporarily increased
by their common partners in G(t − 1). (v) Dynamic closure: Once
the intentional interactions have all been drawn at t , (m, i, l ) is an
open triangle in G(t ), which is likely to close because m and l are
interacting with the same agent.

into account that contextual and intentional interactions on
G(t ) might not influence the evolution of the social bonds in
B in the same way.

The four mechanisms are summarized in Fig. 2.

C. Model implementation

Let us now translate the mechanisms described into micro-
scopic rules of evolution. To this aim, we focus on the AD
model in discrete time [21,22,31]: Each node is endowed with
an intrinsic activity parameter ai, which gives its probability to
be active at each time step. The difference between an active
node and an inactive node is that only active nodes can emit
intentional interactions.

1. Creation of the temporal edges of G(t )

At each time t , each active node i makes mi attempts of
intentional interactions in a way depending on the interactions
at the previous time step [G(t − 1)] and of the current social
bond graph (B(t )). At each such attempt:

(i) With probability pg, i will extend its egonet, i.e., create
an interaction with a node j with whom it has no social bond
[Bi j (t ) = 0]. In this case, i chooses an interaction partner
either uniformly at random (with probability pu) or, with
probability 1 − pu, by triadic closure driven by the social bond
graph B (second mechanism above): i creates an interaction in
G(t ) with a neighbor j of a neighbor k in B(t ). Moreover,
the choices of k and j are driven by (i) the weights in the
social bond graph, Bik (t ) and Bk j (t ), and (ii) the possible exis-
tence of a recent common social context (third mechanism).
Specifically, the first neighbor k is chosen with probability
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FIG. 3. Dynamic triadic closure. After computation of the in-
tentional interactions in G(t ), we identify its open triangles. Here
(i, k, j) is such an open triangle with edges (i, k) and (k, j) (black
straight lines). Closing the triangle means either i decides to interact
with j (probability pi j) or vice versa (probability pji). pi j depends
both on how close i and j are in the current social context (ci j) and
how close they are relatively to their common partner of discussion
(bik and bk j): If i gives a lot of attention to k, and k a lot of attention
to j, then it is likely that i and j will interact.

P(i −→ k) ∝ Bik (t ), i.e., using the social affinity (indepen-
dently from a social context). The choice of j as a neighbor of
k can be interpreted as a recommendation from k to i; there-
fore, we include here the influence of a social context recently
shared by k and j, and j is chosen among all neighbors of k
with probability:

P̃(k −→ j) ∝ ck j (t − 1)Bk j (t ). (1)

The coefficient ck j (t ) is defined as

ck j (t ) = 1 + |γk (G(t )) ∩ γ j (G(t ))|, (2)

representing the boosting of the social affinity by the potential
sharing of common neighbors in the previous time step [γ�(g)
denotes the set of neighbors of a node � in a graph g].

(ii) With probability 1 − pg, i does not extend its egonet,
i.e., interact with one of its neighbors in B. This neighbor j
is chosen with probability P̃(i −→ j) ∝ ci j (t − 1)Bi j (t ), i.e.,
proportionally to i’s affinity toward j, boosted by the potential
existence of common neighbors in G at the previous time step
(first and third mechanisms).

In addition to these intentional interactions, casual, contex-
tual interactions can occur (fourth mechanism). To take this
into account, we implement here a variation of the dynamic
triadic closure, namely, we consider that for each open triangle
in G(t ) made up of two intentional interactions, e.g., (i, k)
and (k, j), i and j interact with each other with probability
Pc(i, k, j) in a contextual, nonintentional manner. For the open
triangle (i, k, j) to close, either i or j has to propose the
contextual interaction. Denoting the probability that i decides
to close the triangle by pi j , we have

Pc(i, k, j) = 1 − (1 − pi j )(1 − p ji ). (3)

In our implementation (Fig. 3), pi j takes also into account
whether or not i is in the active state: as only active nodes can
emit interactions, pi j = 0 if i is inactive. Moreover, we assume
that it depends both on the instantaneous social affinity bik

of i toward k and the instantaneous social affinity bk j of k
toward j. We define this instantaneous social affinity of a node
� toward a node m as follows: If m is part of the egonet of �,

FIG. 4. Sketch of the Hebbian-like process describing the evolu-
tion of the directed social bond weights from B(t − 1) to B(t ) due
to the interactions in G(t − 1). Active edges are reinforced, inactive
ties starting from an interacting node are weakened, and ties starting
from a noninteracting node are unchanged.

then we simply define b�m as P̃(� −→ m), i.e., b�m ∝ c�m(t −
1)B�m(t ); if instead B�m is zero, we use b�m = pg (probability
that � grows its egonet). We thus use

pi j (t ) = pcbik (t )bk j (t )ci j (t − 1)

1 + pcbik (t )bk j (t )(ci j (t − 1) − 1)
, (4)

where 0 � pc � 1 is a free parameter (we use ci j measured at
t − 1 as previously, as it is the social context of the previous
time step that influences the link creation at t). This form
ensures that pi j grows with pcbikbk jci j (i.e., is influenced by
the social affinities and by the context) and remains between
0 and 1.

2. Evolution of the social bonds of B(t )

The interaction graph at t , G(t ), is thus composed of the
intentional and contextual interactions of all active nodes at t .
We denote the set of intentional interactions by I (t ), and the
set of contextual ones by C(t ). These interactions determine
the change in the social bond graph from time t to the next
time step t + 1. The corresponding update (first mechanism)
consists of two steps: a Hebbian-like process and a pruning
process. During the Hebbian process, edges of B(t ) are either
reinforced, weakened, or let invariant, according to the rule
introduced in Ref. [23]: if a node i interacts with j but not k,
then Bi j and Bji may be reinforced, but Bik is weakened (see
Fig. 4). If i has no interaction at all, its social bonds are not
changed.

As a refinement of the reinforcement rule [23], we in-
troduce a distinction between contextual and intentional
interactions. To this aim, we denote by R(t ) the set of social
ties that will be strengthened between t and t + 1, and by W (t )
the set of ties that cannot be weakened (among the ties starting
from nodes that have an interaction in G(t ), as the nodes with
no interaction at t are not affected).

We choose R and W depending on the roles we give to
intentional and contextual interactions. A first possibility is to
put all interactions on an equal footing; then all active edges
are reinforced independently on whether they were intentional
or contextual, i.e., R = W = I ∪ C. If we consider only inten-
tional interactions as relevant, and contextual interactions as
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TABLE I. Choices for the update of B.

Interpretation R W

All interactions are equivalent I ∪ C I ∪ C
Context interactions are neutral I I ∪ C
Context interactions are noise I I

noise, then edges from C are not taken into account in the
process: R = W = I . Finally, if we consider that contextual
interactions are neutral, they should give rise neither to a
reinforcement nor to a weakening, i.e., R = I and W = I ∪ C.
These possible choices are summarized in Table I.

To precisely define the process, we need to specify at which
rate a given tie strengthens or weakens. We denote strengthen-
ing rates by α and weakening rates by β. To keep the weights
of social ties bounded between 0 and 1 [23], we also consider
rates in [0,1], and we assume them constant. While these rates
are also uniform in Ref. [23], we consider here that they can
be different for different individuals or different ties. We write
the general evolution rules as

∀(i, j) ∈ R

{
Bi j (t + 1) = Bi j (t ) + αi j (1 − Bi j (t ))
Bji(t + 1) = Bji(t ) + α ji(1 − Bji(t )) (5)

and

∀i ∈ R̃,∀k, (i, k) /∈ R ∪ W, Bik (t + 1) = (1 − βik )Bik (t ),
(6)

where R̃ denotes the set of nodes involved in the links of R:
R̃ = {i|∃ j, (i, j) ∈ R}.

Note that in the original ADM model [22], the social bond
weights are not bounded and simply increase by 1 at each
interaction.

To obtain B(t + 1), we include an additional step, namely,
a pruning of the social bonds, to take into account the fact that
weak social bonds might vanish (in the original ADM instead,
node disappearance is implemented uniformly at random [22],
i.e., with no relation to the actual social bonds).

To quantify how weak a directed tie (i, j) is, we compare
the probability P(i −→ j) ∝ Bi j that i selects j among all its
neighbors to interact with, with this same probability if all
ties starting from i had the same weight. Denoting by dout

i the
number of out-links of i in B(t ), a homogeneous partition of i’s
interest toward its neighbors would correspond to Phom(i −→
j) = 1/dout

i . Therefore, we use as the probability to remove
the directed tie (i, j):

∀i ∈ R̃,∀ j, (i, j) /∈ R ∪ W,

Pd (i j) = exp
(−λdout

i P(i −→ j)
)
, (7)

where λ is a tunable parameter. Pd (i j) is thus large if P(i −→ j)
is smaller than its homogeneous counterpart, and decreases
exponentially when the importance of j for i increases.

3. Model versions

Even within the model implementation described in the
previous paragraphs, we can define various versions of the
model, with for instance different values or distributions of
the parameters. Therefore, we first define a baseline version
(version V1) with the following features:

(1) ai is drawn from a power law of exponent −1 with
bounds amin and amax.

(2) mi is drawn from a uniform law in �1, mmax�.
(3) αi j = βi j ≡ αi depends only on i, and αi is drawn from

a power law of exponent −1 with bounds 0.001 and 1.
(4) The social context at the previous time step is

taken into account through ci j (t − 1) = 1 + |γi(G(t − 1)) ∩
γ j (G(t − 1))|.

(5) Contextual interactions are neutral (R = I , W = I ∪ C,
see Table I).

(6) The remaining free parameters are pg, pu, pc, λ.
We then implement variations with respect to the baseline

by changing in each case only one of the mechanism imple-
mentations, as summarized in Table II. We call these versions
adjacent versions because they differ from the baseline in
one aspect only. We tested 12 adjacent versions, numerated
from 2 to 13. Version 14 corresponds to the original ADM of
Ref. [22], with the following properties:

(1) The egonet growth rate is not constant. Instead of
having a fixed probability pg of growing its egonet, each node
i grows it with a probability depending on its egonet size:
pg(i) = c

c+dout
i

, where c ∈ N is a model parameter.
(2) The recent social context is not taken into account: the

direct influence of G(t − 1) on G(t ) is cut off, i.e., ci j (t ) = 1.
(3) No contextual interactions are considered, i.e., pc = 0.
(4) B has a linear reinforcement process Bi j (t + 1) =

Bi j (t ) + 1 for each (i j) in G(t ), and weakening of unused
social bonds is not considered.

(5) A node pruning process: instead of removing social
ties, we remove social agents with a constant probability pd .
After removing the social agent i, we reinsert it into the system
to keep the number of agents constant, but with Bi j = 0 ∀ j.

This version is thus actually a composite version (i.e., ob-
tained by combining adjacent ones) because it differs from the
baseline in more than one aspect.

III. COMPARISON WITH EMPIRICAL DATA SETS

We consider as references several publicly available empir-
ical data sets describing face-to-face interactions in different
contexts [14,38–40], namely, two scientific conferences, two
schools and a workplace (see Table III and Supplemental
Material, SM [41]). As our aim is to evaluate which hypothe-
ses made on some social mechanisms yield realistic temporal
networks, we will thus evaluate how close are the temporal
networks G generated by each model version to each reference
empirical data set. Note that we compare G and not B, as the
empirical data sets correspond to instantaneous interactions.

The properties of the temporal networks generated by each
model version naturally depend on the version parameters.
Some can be extracted or estimated directly from the reference
data set: the number of nodes N , the duration T , and the
observed minimum and maximum node activities, amin

obs and
amax

obs . The other parameters are, however, a priori unknown
and tunable. To limit the number of free parameters, we fix
the bounds for the power law followed by the strengthening
and weakening rates of the social bonds, αi j and βi j (with
αmin = 0.001 and αmax = 1). The list of remaining free pa-
rameters for each model version is given in Table IV.
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TABLE II. Model versions. Version 1 is the baseline version, while version 14 is the original ADM. The symbol − means identical to
the baseline version. In the row “Additional interactions,” we precise the role of the interactions obtained through the dynamic triadic closure
mechanism. The indication “none” means that this mechanism does not exist, i.e., pc = 0. In the row “Hebbian process,”, symbol αi alone
means three things. First, the Hebbian process used is an exponential process. Second, αi j = βi j = αi and, third, αi is drawn independently for
each i from the same power law of exponent −1. Similarly, in the row “node activity,” symbol ai means that ai is drawn from a power law of
exponent −1 independently for each node. On the contrary, an unscripted symbol, like a or α, means that the same value is assigned to every
node. We put an additional symbol βi or βi j when the decay rate is drawn independently from the strengthening rate. However, αi, βi, αi j , βi j

are all drawn from power-law distributions with the same exponent −1. In the row titled mi, the symbol U (�1, mmax�) means that mi is drawn
independently for each i from the uniform law on the set of integers {1, 2, . . . , mmax}.

Version number

Social mechanisms 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Social context yes – – – no – – – – – – – – No
Additional
interactions

neutral – – – – equivalent noise none – – – – – None

Egonet growth constant – – variable – – – – – – – – – variable

Social bond graph update
Hebbian process αi linear – – – – – – α αi, βi αi j , βi j – – linear
(R,W ) (I, I ∪ C) – – – – (I ∪ C, I ∪ C) (I, I ) (I, I ) – – – – – (I, I )
Pruning process social tie – social agent – – – – – – – – – – social agent
mi U (�1, mmax�) – – – – – – – – – – – constant constant
Node activity ai – – – – – – – – – – a – –

Our procedure is thus the following: We first define a set of
observables of interest, and a comparison method (a distance)
between the outcome of each model version and each refer-
ence data set. For each reference and version, we then use
a genetic algorithm to find the parameter values minimizing
their difference. Note that these optimal parameter values can
be different for different references.

For each observable O, we can then gather the comparison
between each model M and each empirical reference E into
a distance tensor D[O]M,E , and subsequently rank all model
versions by giving them a score for each observable: the
higher the score, the closer the model observable with respect
to the empirical ones. Combining the ranks for all observables
then yields a global ranking of models.

A. Observables

As face-to-face interactions are local in space and time,
it seems natural to study observables related to small spa-
tiotemporal scales, like nodes, edges, or small subgraphs. The
simplest observables related to such an object ob are

(1) its activity duration: number of consecutive time steps
ob exists in the temporal graph;

(2) its interactivity duration: number of consecutive time
steps ob is absent from the temporal graph;

TABLE III. Sizes of the empirical data sets considered in this paper.

Name Nodes Time stamps Temporal edges

Conferences conf16 138 3 635 153 371
conf17 274 7 250 229 536

Schools utah 630 1 250 353 708
highschool3 327 7 375 188 508

Workplace work2 217 18 488 78 249

(3) its aggregated weight: number of times ob has been
present in total in the temporal graph; and

(4) its newborn activity: number of consecutive time steps
ob exists just after its first occurrence in the temporal graph.

If ob is not a trivial subgraph like nodes or edges, its size
can also be an observable of interest.

Let us now recall some useful definitions:
a. Event (see also Fig. 5.): An event is the combination of

an edge (i, j), a starting time t0, and a stopping time t f such
that (i, j) is inactive at t0 − 1 and t f + 1, and is active ∀t such
that t0 � t � t f .

b. Bursty period [19]: Two events are defined as adjacent
if they are defined on the same edge and if the delay between
them is less than a given time lapse �t . A bursty period is a
maximal collection of adjacent events (see Fig. 5).

c. Aggregated network: The aggregated network on the
whole temporal interval �1, T � is the weighted undirected
graph A such that Ai j is the aggregated weight of the edge
(i, j), i.e., the number of time steps such that Gi j (t ) = 1.

d. Aggregation level: We define the interaction graph ag-
gregated at level n, G(n), as follows: (i, j) ∈ G(n)(t ) ⇐⇒
(i, j) ∈ G(�nt, n(t + 1)�). Note that G(n) is unweighted and
undirected. We have G(1) = G, and G(T ) is an unweighted
aggregated network on the all-temporal interval. Observables
of G(n) are called the observables at aggregation level n.

e. Egocentric temporal network [27,28]: An ETN (see
Fig. 6) corresponds to a representation of the diversity of the
interaction partners of a given node (the ego, in red in Fig. 6)
at d consecutive times. In Fig. 6, each ETN reads from left to
right (time flow direction). Green circles represent neighbors
of the red node. A horizontal edge is drawn between two
circles iff they correspond to the same node at different times.
The duration of an ETN is called its depth. A (d, n)−ETN is
an ETN of depth d and aggregation level n.

f. ETN vector: An ETN vector is a vector V , where the
component Vi is the aggregated weight of the ETN i.
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TABLE IV. Free parameters of the models.

Free parameters Related versions Parameter nature Parameter bounds Related mechanisms

pu all except 4 and 14 probability 0.001 − 1 egonet growth
pg all except 4 and 14 probability 0.001 − 1 egonet growth
pc all except 4 and 14 probability 0.001 − 1 dynamic triadic closure
pd 3,14 probability 0.001 − 1 node pruning
a 12 probability amin

obs − amax
obs interaction proposal

amin all except 12 probability amin
obs − amax

obs interaction proposal
amax all except 12 probability amin

obs − 1 interaction proposal
α 9 rate 0.001 − 1 Hebbian process
λ all except 3 and 14 intensity 0.01 − 10 edge pruning
c 4,14 integer 1 − 4 egonet growth
m 13,14 integer 1 − 4 interaction proposal
mmax all except 13 and 14 integer 1 − 4 interaction proposal

We can now define the set of observables we will use to
characterize and compare the temporal networks. The observ-
ables related to (temporal) subgraphs are (see Table V)

(1) aggregated weights for edges, (2,1)-ETN and (3,1)-
ETN;

(2) size of connected components of the interaction graph;
(3) activity and interactivity duration for nodes and edges;
(4) newborn activity for edges; and
(5) number of events per bursty period (Fig. 5).
In addition, we also consider
(1) the clustering coefficient of the aggregated network;
(2) the degree assortativity in the aggregated network; and
(3) the (3, n)-ETN vector including the weights of ETNs

computed in the aggregation levels n from 1 to 10: this allows
us to take into account various timescales in a single observ-
able.

B. Comparison method

1. Distance tensor

We want to quantify how close a synthetic temporal net-
work and a reference empirical data set are, with respect to a
given observable. To be able to aggregate across observables
and obtain a global distance and score, we consider for each
observable a distance bounded between 0 and 1. Moreover, we
need to consider different metrics for observables for which

FIG. 5. Number of events per bursty period. The sketch repre-
sents the activation timeline of a pair of nodes (i, j). A grey rectangle
represents an event for (i, j), i.e., a maximal period of uninterrupted
interaction between i and j. A bursty period is a maximal collection
of events that follow each other in time by a delay less than a given
threshold, taken here to be three time steps. We draw a green junction
between two consecutive events if they belong to the same bursty
period, i.e., if they are separated by �t � 3 time steps, and a red
junction if �t > 3. In the example shown, we obtain two distinct
bursty periods, with three events in the first and two in the second.

we have either (i) a distribution (e.g., activity durations or
aggregated weights), (ii) only one numerical value for each
network (e.g., the clustering coefficient), or (iii) only one
vectorial realization (e.g., ETN vectors).

a. Point observables. Let us first consider an observable O
for which we have only one realization per data set O(D) ∈ R,
where D is the data set. Then we take as metric:

D[O]D,D′ = |O(D) − O(D′)|
2 max(|O(D)|, |O(D′)|) . (8)

This metric is bounded between 0 and 1, and reaches its
maximum value only when O(D) = −O(D′).

(a) conf16

(b) utah

FIG. 6. Ten most frequent (3,1)-ETN in two empirical data sets.
(a) Data set “conf16” (scientific conference) and (b) data set “utah”
(primary school in Utah). Although those two social contexts are very
different, their ETNs are quite similar.
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TABLE V. Subtemporal graph observables. A (d, n)-ETN is an ETN of depth d and aggregation level n. At the crossing between the
activity duration row’ and the events column, we wrote an asterisk because the observable we used with events as objects and activity duration
as type is called the number of events per bursty period.

Object

Observable type Nodes Edges Events (2,1)-ETN (3,1)-ETN Connected components of G(t )

Aggregated weight × × ×
Activity duration × × ×∗

Activity interduration × ×
Newborn activity ×
Size ×

b. Observables with multiple realizations per data set. If
O(D) is a variable whose distribution P can be sampled,
we need to consider a distance between the synthetic and
empirical distributions. However, O(D) and O(D′) may yield
distributions not equally sampled, possibly on different sup-
ports. We choose here to obtain distributions of equal size
by completing the least sampled distribution with zeros, and
compare them with the Jensen-Shannon divergence (JSD),
which is bounded between 0 and 1. For two discrete distri-
butions p and q:

JSD(p, q) = 1

2
(KL(p||m) + KL(q||m))

m = 1

2
(p + q)

KL(p||m) =
∑

i

pi log2

(
pi

mi

)
. (9)

We thus consider the metric:

D[O]D,D′ = JSD(P[O(D)], P[O(D′)]). (10)

c. Vector observables. Now let us consider that O(D) ∈
Rd , with some d ∈ N. In our context, this corresponds to the
ETN vectors. As we are interested in the relative frequencies
of the ETNs, we use the cosine similarity:

sim(O(D),O(D′)) = O(D) · O(D′)
||O(D)|| ||O(D′)|| . (11)

In fact, in the case of (3, n)-ETN, we have a family of
n vectors {vp}p=1,··· ,n: the ith component of vp is the ratio
between the number of occurrences of motif i at aggregation
level p and the number of occurrences of the most frequent
motif at aggregation level p.

We thus define the similarity between the two families of n
vectors as the product of cosine similarities between each pair
of vectors at the same level of aggregation,

Sim(v1, . . . , vn; v′
1, . . . , v

′
n) =

n∏
p=1

sim(vp, v
′
p), (12)

and the distance between the two families is 1 − Sim.

2. From distances to a score

Our goal is to understand which model versions are best
able to reproduce empirical properties observed in a series
of data sets. For each model version, and each observable,
we thus define a score by comparing the minimal distances

between synthetic and empirical data with the distance be-
tween empirical data sets themselves. To this aim, given an
observable O and a model version V , we

(1) compute for each empirical data set E its distance
δ[O]V,E to the set of model instances, i.e., the minimal dis-
tance minD D[O]D,E over all instances D of the model V;

(2) compute the median of the distances between V and all
empirical data sets,

minter
O (V ) = median(δ[O]V,E ), (13)

where the index E runs over the empirical data sets;
(3) compute the characteristic distance between empirical

data sets themselves,

mintra
O = median(D[O]E,E ′ ), (14)

where the indices E, E ′ both run over the empirical data sets
(E �= E ′);

(4) compute the interquartile range of distances between
empirical data sets, Q3 − Q1; and

(5) deduce the score of the model version V for observable
O:

scoreO(V) = mintra
O − minter

O (V )

Q3 − Q1
. (15)

This procedure is illustrated in Fig. 7. A higher score
corresponds to the fact that the model version has instances
with statistical properties closer to the empirical ones for the
chosen observable.

Note that, while this procedure is intended to provide a
score to models, we can also apply it to each empirical data
set. The interpretation is then not a “score” but quantifies how
close a data set is to the other ones.

C. Results

We first illustrate that our approach providing a score using
the proximity tensor is compatible with a qualitative direct
appreciation of the distributions. We then detail the genetic
tuning of the free parameters. This allows us to identify the
best model belonging to the class investigated here. We then
investigate in more detail the interplay between observables
and the role of each mechanism in our model, i.e., which
observables change when a given mechanism or hypothesis
is changed.
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FIG. 7. Computing the score of a model. The evaluated data sets
consist of all versions of the models presented in Table II and the
empirical data sets presented in Table III. For each data set, a differ-
ent score is computed for each observable. The higher the score of a
model, the closer the distribution the associated observable is from
the distributions in the empirical data sets. Said otherwise, a higher
score means more realistic statistical properties for the associated
observable.

1. Illustration

Figure 8 displays the distribution of several observables for
two empirical data sets corresponding to different contexts
and three model versions. This illustrates how, for each ob-
servable that can be sampled, a higher score is associated with
a distribution closer to the empirical ones.

For point observables (the clustering coefficient and degree
assortativity of the fully aggregated network), the score asso-
ciated with a point observable does not necessarily reflect the
degree of proximity with an empirical reference (not shown):
this is due to the fact that these point observables are highly
variable from one empirical data set to another.

It is more difficult to check the accordance between a
high score for the ETN vector observable and realistic motifs
because we can visualize only a few motifs. As an illustration,
however, we display in Fig. 9(a) the five most frequent motifs
at aggregation level 5 of the utah data set and the instances
associated with this reference of the models with highest and
lowest ETN scores. The utah instance of the version with the
highest ETN score has exactly the same five most frequent
(3,5)-ETN as the utah reference, while this is not the case of
the instance of the version with the lowest score.

FIG. 8. Illustration of the scores for several observables and models. The figure displays in each panel the distribution of an observable
(cc_size: size of connected components) for two data sets (the conference, conf16, and the school, utah) and three model versions: the original
ADM (V14), the adjacent version with the highest average score (V9), and the version with the lowest average score (V12). The three models
were optimized with respect to the utah reference. The score is computed in each case by Eq. (15): a higher score is associated with a
distribution closer to the empirical one. In the top left panel, utah has a low score because the cc_size observable is the only distribution which
is not similar for all empirical references.
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(a) best adjacent version

(b) empirical reference ‘utah’

(c) worst adjacent version

(d) ETN autosimilarity

FIG. 9. Interpretation of the score of the ETN vector observable.
(a)–(c) Five most frequent ETN of depth 3 at aggregation level 5
for two models tuned with respect to the empirical reference, utah.
The model with the highest score (V9) has the same motifs as the
reference, but not the worst version (V12). (d) ETN autosimilarity
for three models (the best V9, the worst V12, and the original ADM
V14) and two empirical references. The ETN autosimilarity of a
given data set at aggregation level n is the cosine similarity between
the motifs observed in this data set at level n and the motifs observed
in this data set at level 1. Empirical references are highly autosimilar
with respect to this measure. For models, a higher score for the ETN
vector corresponds to a higher ETN autosimilarity.

Figure 9(d) moreover shows the ETN autosimilarity for
three model versions and two references. We define the ETN
autosimilarity of a data set at a given depth d and aggrega-
tion level n as the ETN similarity (defined in Sec. III B 1 c)
between the (d, n) and (d, 1)-ETN vectors of this data set.
The empirical references are highly autosimilar, i.e., their
ETN autosimilarity is close to 1 for various levels of aggre-
gation. We also display in the figure the ETN autosimilarity
of three model versions (V9, V12, and V14), using in
each case the instance tuned to be as close as possible to
the reference utah. The higher the score of a model ver-
sion, the closer its ETN autosimilarity curve to the utah
reference.

2. Tuning the models’ parameters by a genetic algorithm

For each model version and each reference data set, we
want to obtain the parameter values that yield temporal net-
works instances as close as possible to the reference. Recall
that given a reference data set and a model version, there are
three types of parameters: (i) frozen parameters that depend
only on the version, like the bounds for the power laws of
strengthening and decay rates αi j , βi j ; (ii) readable parameters
that depend only on the reference, like N , T , amin

obs and amax
obs ;

and (iii) free parameters that depend both on the version and
the reference, which we tune to get as close as possible to the
reference data set, e.g., pc or mmax (see Table IV for the list of
parameters).

To tune the free parameters, we use a genetic algorithm
(described in the SM), with a fitness set to the distance be-
tween the reference data set and the instance of the temporal
network generated by the model. However, computing the dis-
tances for all observables is computationally costly while, in
a genetic algorithm, the fitness computation should be fast as
it is computed at each iteration and for each genetic sequence.
Therefore, we choose here to use as fitness only the distance
relative to the ETN vector with the first ten levels of aggrega-
tion, i.e., the (3, n)-ETN for n = 1, . . . , 10. This observable is
indeed computationally efficient and covers various time and
spatial scales.

We find that this is enough for the model to improve
on other observables too: we illustrate this point in the SM
by comparing random instances with tuned instances along
several observables. Some distributions remain different from
their empirical counterparts, in particular, the distributions of
sizes of connected components (cc_size), which, however,
also differ between data sets. A better agreement and better
scores might be obtained at the cost of an increased compu-
tational effort by including additional features in the genetic
algorithm fitness. Overall, how to keep the computational
effort of the genetic algorithm low while obtaining a good
similarity between model and data statistics on a large range
of observables remains an open interesting question. We have
also checked that the fitness is positively correlated with the
score of every observable, which means that, despite these
limitations, the genetic tuning does what it was intended to:
obtain instances with closer statistical properties from em-
pirical references than random instances in every observable.
In the SM, we also investigate how the values of the tuned
parameters are distributed across versions and references.

3. Most realistic model within the ADM class

To compare the models, we first compute for each ob-
servable a ranking of the model versions using their score,
computed using the distances between each instance obtained
by the genetic tuning and the corresponding reference data
set. To then determine the best model among the 14 versions
presented above, it is necessary to define a global score for
each model version. We consider two possible strategies:

(1) the global score of a model (or data set) is given by its
rank averaged over all observables and

(2) the global score of a model (or data set) is given by its
score summed over all observables and the global rank is just
the rank according to the global score.
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(a) averaging the ranks

(b) averaging the scores

(a) averaging the ranks

FIG. 10. Global ranking of models 1 to 14 according to two pos-
sible ranking strategies. In each panel, the y coordinate is arbitrary:
empirical data sets have been placed at y = 0 while artificial data sets
are aligned at y = 1. The global ranking is obtained by sorting the
models by increasing order of the x coordinate (hence inverse global
score). In each panel, the best version as well as the original ADM are
highlighted as red dots. The best version in the other ranking strategy
is displayed as a yellow dot. Blue vertical dashed lines indicate
either the crossover or the gap between empirical and artificial data
sets. (a) The x coordinate is given by the model rank averaged over
all observables. The best version is baseline V1, almost ex aequo
with version 9. (b) The x coordinate is given by the opposite of
the averaged score, shifted by the maximum averaged score to take
positive values. Version 9 (αi j = βi j = α) is here the best one. In
both panels, the original ADM is ranked rather low. There is either
an overlap (a) or a small gap (b) between models and empirical data
sets. Thus, the class of models considered here is able to generate
synthetic data sets with statistical properties close to real data sets.

Note that other global ranks could be obtained by at-
tributing different weights to the score or rank for different
observables. We choose here, however, not to favor an observ-
able over another. The resulting rankings are shown in Fig. 10.
The original ADM performs very low in both rankings, and
the two best versions are the baseline version and version 9,
i.e., with αi j = βi j = α. We also show in the SM the rankings
of all model versions for each observable separately: despite a
rather large variability between rankings, the baseline version
remains within the five first ranks for six observables, and
version 9 for eight observables.

In the next subsections, we investigate this global result
in more detail to understand, in particular, how each model
performs with respect to each observable, and the impact of
the various mechanisms on the models’ performances.

(a) Similarity matrix between observables

(b) Similarity network of observables

(a) Similarity matrix between observables

FIG. 11. Similarity between observables. (a) Similarity matrix
obtained by computing the Kendall similarity between the associated
rankings of our model versions (note that the results might be differ-
ent if considering a different ensemble of models). The observables
are quite independent from each other (low absolute values for the
similarity for almost all observables pairs). Strong negative couplings
are observed only between the point observables and some distri-
bution observables. The ETN vector is either positively or weakly
coupled to every other observable, in accordance with the conclusion
of Sec. III C 2: improving on motifs generally means improving on
other observables. (b) The matrix is turned into a weighted network
by taking as edge weight the absolute value of the Kendall similarity.
A community detection algorithm based on modularity optimization
detects three groups of observables (colored according to the group
they belong to). The thickness of an edge is proportional to its weight
and we filter out small weights for visualization purposes.

4. Similarity between observables

First, we need to investigate the fact that the observables
we have chosen to characterize our social temporal networks
are not independent. In particular, when modifying a mod-
eling hypothesis or a parameter value, several observables
may be modified in a correlated way. Understanding these
correlations can help better interpret the effect of varying the
modeling hypotheses. We thus define a similarity between two
observables as the Kendall tau between the rankings of the
models using these observables. The resulting similarity ma-
trix between observables is shown in Fig. 11. We then extract
groups of correlated observables by converting this matrix
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TABLE VI. Outcome of hypotheses on the sign of the three
group scores. For each version, we indicate the sign of scores I–III.
Many versions have a score similar to the basis version. Improvement
is only observed for group II, and comes often with a loss over the
two other groups.

No. Difference with version 1 �sI �sII �sIII

2 linear process 0 + 0
3 node pruning 0 + −
4 varying egonet growth – – 0
5 ci j (t ) = 1 0 + –
6 R = W = I ∪ C 0 0 –
7 R = W = I 0 + 0
8 pc = 0 0 + 0
9 α 0 + 0
10 αi, βi 0 0 0
11 αi j , βi j 0 + –
12 a – – –
13 m 0 + 0

into a weighted undirected network: the nodes of this network
are the observables and the weight wOO′ is the absolute value
of the Kendall similarity between rankings of observables O
and O′. The network is shown in Fig. 11, on which we use
the community detection algorithm of the software GEPHI

[42], based on modularity maximization, to obtain the three
following groups:

(1) Group I (blue): node activity interduration, edge
weight, size of connected components, ETN vector, and (2,1)-
ETN weight

(2) Group II (orange): node, edge and newborn edge ac-
tivity duration, degree assortativity, and (3,1)-ETN weight

(3) Group III (green): edge activity interduration, events
activity duration, and clustering coefficient

5. Impact of hypotheses on model performances

To have more precise information about how hypotheses
impact each observable, depending on the group it belongs to,
we define for each model version its score relative to a group
of observables as follows:

(1) For each observable in the group (I, II, or III), we
compute the score of the model version as well the score of
the baseline version V1.

(2) We compute the difference between the score of the
version and the score of the baseline version.

(3) We sum the differences obtained for each observable
in the group.

Figure 12 shows the resulting group scores for the various
versions. We also indicate the relative contribution of each
observable inside the group to the group score. Finally, we
summarize in Table VI which hypotheses lead to an improve-
ment or a worsening with respect to the baseline version.

Figure 12(a) indicates that the baseline version seems to
be optimal for observables from group I and III, since no
version exhibits improvement on either group. However, eight
out of 12 adjacent versions show an improvement for group
II. The most common signature is 0,+, 0: five versions show
no change in groups I and III and an improvement in group II.

(a) Score variation for each group of observables

(b) Contribution of each observable to each group score

FIG. 12. Score variation resulting from the change of hypothesis
with respect to the baseline model. For each version, we compute
the difference between its score and the score of the baseline (V1).
In (a), these differences are summed over all observables of each of
the groups identified in Fig. 11. The sum over group I (respectively,
II and III) is called score I (respectively, II and III) and is denoted
by �sI (respevtively, �sII and �sIII). (a) Score differences for each
adjacent model version. Blue dots correspond to score I, red dots
to scores II, and green dots to score III. The horizontal dashed line
indicates the line of no changes in score. (b) Differences in score
for each observable, represented as horizontal arrows. A difference
is positive when the arrow points to the right and negative when it
points to the left. Vertical blue dashed lines correspond to �s = 0.
The arrow length is proportional to the difference in score, rescaled
so the longest arrow spans an arbitrary length of 0.5 unit. The edge
weight and the size of connected components (cc_size) are the only
observables on which a significant improvement is observed with
respect to the baseline version.

In terms of mechanisms, updating the social bond graph
with a linear Hebbian process with no decay (V2) improves
over the exponential Hebbian process of the baseline version,
but if we use an exponential Hebbian process with a uniform
value αi j = βi j = α (V9), then we get still better results. Thus,
to recover a more realistic social system, agents should all
update their social ties in the same way, i.e., with the same
homogeneous parameter α. The observation for the intrinsic
activity ai is the opposite: imposing a uniform value ai = a
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(V12) leads to a drastic loss in score for all groups. Hetero-
geneity in the intrinsic activities seems to be necessary to
recover a realistic social system. On the other hand, a uniform
number of emitted interactions (V13) leads to an improve-
ment. Actually (see SM), the value for m or mmax returned by
the genetic tuning is 1 in most cases: a higher value probably
causes the nodes to have a too large instantaneous degree, i.e.,
agents interact with more other agents than what is realistic,
leading to unrealistic ETN motifs.

Figure 12(a) also yields interesting insights concerning the
update of the social bond graph and the contextual interac-
tions. A uniform node pruning (V3) leads to poor performance
in group III observables quite as equivalent as the gain over
group II. Not taking into account the social context, i.e.,
putting ci j = 1 (V5) also leads to opposite changes: we gain
over group II and lose over group III. Regarding contextual
interactions, considering them leads to a significant improve-
ment under the condition that they are treated as pure noise
(V7). Having no contextual interaction at all (V8) also leads
to an improvement, but of smaller amplitude. Thus, adding
noise in our system makes it more realistic, which can be
understood by the fact that many interactions have in fact little
social significance and occur only due to context.

Figure 12(b) gives more detailed information by indicating
the relative contribution of each observable to the group score.
In particular, some observables always give a negligible con-
tribution to the score of the group they belong to. This is in
part due to the fact that some observables are shared across
all versions, i.e., their realizations are similar in all versions.
This is the case of ETN2 weight and ETN3 weight, whose
distribution always match almost perfectly the empirical case
(after genetic tuning).

Other observables are shared across almost all versions,
like node activity and node interactivity, which are similar
for all versions except version 12, characterized by ai = a
(however, for this version the loss in score relatively to those
two observables is negligible compared to the loss relative to
the other ones).

Overall, the eight major observables, which are mainly
responsible for the observed group scores, are

(1) in group I: size of connected components, edge weight,
ETN3;

(2) in group II: edge activity, edge newborn activity; and
(3) in group III: edge interactivity, clustering coeff, edge

events activity.
All observables relative to edges are major observables.

However, the fact that an observable contributes a lot to the
score of its group does not mean that it is necessarily relevant:
as the point observables are not shared across empirical refer-
ences, we must be careful when we score a model relatively
to them. For instance, if we considered that only relevant
observables should be robust over empirical social systems,
then the clustering coefficient and the degree assortativity
should not be used to score and rank models. Why some
observables contribute more than others might also depend
on how shared they are between references: If an observable
has almost the exact same realizations in every empirical
reference, then the associated interquartile range will be al-
most zero, which can lead to high variations in the score for
models [cf. Eq. (15)].

It is finally important to note that, except for the original
ADM (V14), the model versions considered differ from the
baseline version by one hypothesis only. The question arising
naturally is the following: If we accumulate modifications
with respect to the baseline version, do variations in score
accumulate accordingly? If so, Table VI could be used to
design even more realistic models by combining the hypothe-
ses that lead to improvements: For each mechanism, we can
check whether the variation from the baseline leads to an
improvement or not, and combine the variations that do. We
explore this avenue in the SM for several composite versions.
The relation between the score of a composite version and the
scores of its adjacent components is, however, nontrivial, and
the best version remains V9 even when taking into account the
composite versions.

IV. DISCUSSION

In this paper, we have presented a general framework
allowing us to design various models by controlling their qual-
itative aspects. We have considered a modeling framework
based on the idea of a coevolution of an observed interac-
tion network and an underlying and unobserved social bond
network. Within the overall framework of the AD model with
memory [22,31], we hypothesized that social bonds partially
drive the observed interactions, together with an influence of
the current social context, and that interactions impact social
bonds [23]: The corresponding strengthening and weakening
of social bonds take into account the fact that an interaction
reinforces a social bond, and that resources (time, energy) are
needed to maintain a social bond, so the absence of interaction
weakens it. Instead of the usual exploration of a parameter
space for a given set of mechanisms, we have then considered,
within this framework, an exploration of a hypotheses space,
corresponding to representations of several possible social
mechanisms. Parameters corresponding to each hypothesis are
then tuned by a genetic algorithm to maximize the similarity
between model instances and a given empirical data set. While
such similarity can be defined a priori in many ways, we find
that using only the ETN vector to quantify it and tune the
parameters leads to an improvement for many other observ-
ables, indicating that many statistical properties of a social
temporal network are related to its ETN motifs [28]. We recall
that the ETN vector is given by the list and frequencies of
ETN motifs at various levels of aggregation (1 to 10 in our
case), which thus encodes several spatiotemporal scales. This
procedure allows us to define a score for each model, relative
to each observable considered and globally, and to deduce
which mechanisms lead to more realistic artificial temporal
networks. In particular, many of the model versions consid-
ered perform better than the original AD model with memory.
Once tuned, each model version can produce synthetic data
sets of arbitrary sizes and durations and with realistic proper-
ties, which can be used, for instance, as support for numerical
simulations of dynamical processes on temporal networks.

Our paper entails a number of limitations that are worth
discussing. First, the list of observables we consider to rank
models is somewhat arbitrary: we investigated observables
of different types (point, with multiple realizations, vector)
and dealing with various scales, but other observables could
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be thought of, while some might be removed from the list
because of their variability among the empirical references
(e.g., clustering coefficient). Second, the scoring mechanism
may also be improved. Indeed, a higher score is not always
clearly associated with a value of the observable closer to the
empirical value. Future work will thus address the issue of
building another ad hoc score measure with a clearer interpre-
tation.

The use of a series of statistical properties to determine
whether a model is producing realistic temporal networks
can also be discussed. Indeed, empirical data sets show large
activity variations, i.e., in the number of interactions per
time stamp. These variations can be driven by changes in
population size or in intrinsic activity [43], either due to
imposed schedules or to spontaneous bursts. Such patterns
cannot be recovered in the class of models we have explored,
for which the number of interactions per time stamp is sta-
tionary with small fluctuations. Exploring other classes of
models would be necessary to account for the large empir-
ical variations. The methodology considered in this paper
could, however, then still be used to cover such extended
classes. In particular, our results suggest that the full explo-

ration of the hypotheses space is not necessary, as properties
of composite models could be predicted from their adjacent
components.

Despite these limitations, the partial exploration we per-
formed allowed us to determine models with a much higher
degree of realism than the original ADM, and also to show the
interest of modeling several social mechanisms, such as taking
into account the social context, considering casual interac-
tions (dynamic triadic closure) and updating the underlying
social bond ties through an exponential Hebbian process with
both strengthening and weakening mechanisms. The class of
models we have considered could also be extended, e.g., by
adding group memberships or by considering various types
of Hebbian processes: delayed or anti-Hebbian processes, or
allowing negative interactions and possibly negative social
bonds [35,36].
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