Chapter 1

Data Summaries and Representations:
definitions and practical use

Alain Barrat and Ciro Cattuto

1.1 Introduction

Complex networked data have become available in a variety of contexts, describing
a variety of systems with growing abundance of details, such as, for instance, the
multiple nature of links between individuals in social networks, or the temporal evo-
lution of these links. The availability of such rich datasets describing for instance
behavior and interactions of individuals or socio-economic entities is bringing forth
both new opportunities and challenges. Data come from heterogeneous sources, at
different scales and resolutions, with variable amounts of details or metadata and
sometimes temporal resolution. Data alone however, even in huge quantities, do not
easily transform into knowledge or predictive models. The richness, level of detail
and diversity of data sets raise crucial challenges concerning data analysis, repre-
sentation and interpretation, the extraction of structures from data and the practical
use of data, be it to compare different systems, explore their temporal evolution, or
for the integration of data into data-driven models of interest in contexts such as
epidemiology or computational social sciences.

Data need thus to be summarized and represented in simpler forms. To this aim,
one needs to understand which characteristics of any dataset under investigation
are crucial to retain, which ones on the other hand are too specific to be of gen-
eral interest. A data representation will encapsulate the relevant information, while
discarding the unnecessary details. Data representations can be more or less sum-
marized or coarse-grained with respect to the original data. For any dataset, one can
define a number of representations retaining different amounts of information on
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the characteristics of the data, and the choice of the most useful representation will
depend on the specific goal and on its specific use.

In this chapter, we consider for definiteness the concrete case of temporal net-
works. We recall several commonly used data summaries and levels of represen-
tation of temporal networks as well as novel data representations that have been
developed through the Multiplex project. We focus in particular on the case of tem-
poral networks of contacts between individuals and show in a series of concrete use
cases how different representations can be used to characterize and compare data,
or to feed data-driven models of epidemic spreading processes.

1.2 Data and representations of data

1.2.1 Datasets, common summaries and representations

Let us consider a dataset describing a temporal network, i.e., a set of nodes rep-
resenting for instance individuals, and of links that appear and disappear between
these nodes. This is the case of the numerous datasets of face-to-face contacts be-
tween individuals collected by the SocioPatterns collaborations or by other groups
in a number of countries and contexts including schools, hospitals, scientific confer-
ences, museums, etc. Each such dataset is typically of the following detailed nature:
For each pair of individuals i and j, the dataset contains a list of ¢ “events”, i.e.,
i and j were detected to be in close-range face-to-face proximity, where ¢; Y
to the starting time and ti(je’a> to the ending time of the time interval number a. Note
that in a number of temporal networks, such as networks of communications be-
tween individuals, the durations of the events are neglected, so that each event is
composed only of one timestamp. While this representation contains all the avail-
able data, and hence retains all the available information, it entails some disadvan-
tages. On the one hand, the visualization of time-evolving networks is challenging,
making it difficult to grasp its structures and features. On the other hand, a spe-
cific dataset is often unique, and differs from other similar datasets describing for
instance the same system at another time, or similar systems. Examining the full
dataset without using the lens of coarse-grained representations or summaries can
then inhibit the search for commonalities and robust patterns or properties. For in-
stance, the detailed face-to-face contacts that occur in a specific school on a specific
day are certainly unique, but bear some important similarities with the contacts of
another day in the same school, even if they do not repeat in the same way every
day. Using summaries and representations makes it possible to highlight similarities
and pinpoint important differences between similar datasets.

successive time intervals ((z )) during which

(s.0) refers
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Statistics.

The first type of data representation that is customarily used consists in building
statistics for several quantities of interest. For instance, the temporal evolution of
the number of events per unit time can inform us on circadian patterns in the data,
on the possible recurrence of moments of high and low activity. The evolution of
the number of events involving each individual, as well as of the number of distinct
other individuals with whom an event is shared, can also reveal interesting patterns.

Moreover, the list of contact time intervals yields for each pair of individuals

i and j a list of contact durations (Ati(jl), e ,At}p), with Ati(f) = ti(]-e’a) - ti(js’a) for
a =1,---,£. The distributions of these contact durations, as well as of the time
intervals between contact events, have been found to be broad in many datasets:
most contact durations and intervals between successive contacts are very short, but
very long durations are also observed, and no characteristic timescale emerges. This
bursty behavior is a well known feature of human dynamics and has been observed
in a variety of systems driven by human actions, with important consequences on
processes unfolding on temporal networks.

While these properties are of course of interest, they certainly do not reveal
enough to fully characterize a dataset. Strikingly, a number of temporal network
characteristics are in fact defined through the use of another more coarse-grained
representation, which is widely used and sometimes implicitly considered: the tem-
porally aggregated networks.

Aggregated networks.

The sequence of events between the nodes of a temporal network during a given time
window defines an aggregated network, which is a static summary of the temporal
network. Taking once again the example of temporal contact networks, each node
of the aggregated network is an individual, and a link between two nodes i and
J denotes the fact that the corresponding individuals have been in contact at least
once during the time window under consideration. The bare structure of this graph
encodes information on the overall topological structure of the temporal network,
but not on its temporal properties. In order to retain some temporal information, it
is customary to summarize the temporal activity of individual edges i-j by suitably
defined weights for the edges. Several notions of weight w;; for the edge i-j can
be defined on the basis of the list of contact durations, yielding weighted contact
networks that describe different aspects of the empirical sequence of contacts:

P

e edge presence: w;; measures the contact occurrence (the superscript p stands

for “presence”), with wfj =1 if at least one contact between i and j has been
established, and O otherwise;

e frequency of occurrence: the frequency wl'-'j = [ indicates how many distinct con-
tact events have been registered between i and j, disregarding the length of each
contact (the superscript n is for “number”);
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e cumulative time in contact: the cumulative duration of the contact w}; = ¥, Ati(]‘-l)
gives the sum of the durations of all contacts established between i and j.

The time window considered for aggregation can range from the finest time res-
olution of the data up to the entire duration of the data set. In many contexts, it is
natural to consider a specific temporal aggregation scale (i.e., daily), but different
aggregation levels typically provide complementary views of the network dynamics
at different scales.

The aggregated network representation carries both advantages and limitations.
An important interest of aggregated networks lies in their static nature: this makes
them amenable to the usual characterization tools of network analysis and visual-
ization: degree distributions, clustering, assortativity, etc. The comparison of their
structures across contexts can unveil important information about the contact pat-
terns of the population, as we will see later on concrete examples. Moreover, the
assignment of weights to links allows to keep track of important characteristics such
as the heterogeneity of the number and durations of contact events between differ-
ent pairs of individuals, and of higher order correlations between the numbers and
durations of events between individuals.

The aggregation on successive time windows sheds also light on the temporal
evolution and possible stability of the system under scrutiny. This can be done at
different levels of detail, from a comparison of (degree, weight, strength) distribu-
tions measured on different time windows, or a measure of a similarity such as Jac-
card coefficient between successive aggregated networks. Such measure can even
be used to automatically detect relevant timescales in temporal networks [1]. At a
finer resolution, we can investigate the similarly between the neighborhoods of a
given node in contact networks aggregated over different periods. For instance, for
daily aggregated networks, the similarity between the neighborhoods of an individ-
ual i in the contact networks measured in two different days denoted 1 and 2 can be

quantified through the cosine similarity ¢!(i) = Yiwijawijo/\/ X wl.z“ Y wl.zj 2

where w;; 4 is the weight of the link between i and j in the contact network of day d,
i.e., the cumulative duration of the contacts between i and j occurring on day d. The
cosine similarity takes values between O and 1: it is equal to O if i had contact with
strictly different individuals in the two days considered, and to 1 if i had contacts
with the same persons in both days, with proportional durations.

Obviously, aggregated networks have also limitations. The main one stems from
the fact that they do not carry information on the order of events. Different temporal
networks with different histories can thus give rise to the same aggregated weighted
network, as shown for an example in Fig. 1.1. This can turn out to be crucial when
dealing with processes on temporal networks: if for instance A and B come into con-
tact before B and C do, A can transmit an information to C through B while, if the
order of contacts is reversed, this propagation path does not exist. A static represen-
tation does not distinguish between these possibilities and therefore overestimates
the existence of paths between nodes. As a result, aggregated networks can yield
misleading results on the relative importance of nodes in the network (as measured,
e.g., by their centralities) [2, 3, 4].
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(a) Temporal network G (b) Temporal network G2 (c) Weighted, time-aggregated

representation of both G and G-

Fig. 1.1 Time-unfolded and weighted static, time-aggregated representation of two temporal net-
works G and G»: two different temporal networks can yield the same aggregated weighted net-
work. From [4].

Contact matrices.

When the population described by the data at hand can be divided into groups, such
as for instance age groups, or classes in a school context, departments in offices,
etc, it is customary to describe the contact networks between specific groups of
individuals by using contact matrices, which contain very coarse summaries of the
data but highlight the mixing patterns between these groups. If the population is
divided into n groups, and if we denote the number of individuals in group X by ny,
one usually considers the following quantities, aggregated over each time window
of interest:

e the total number of contacts between individuals of class X with individuals of
group Y : Nxy = Yex jey wi; (for X =Y we have Nyx = %Zi,jex wih),

e the average number of contacts of an individual of group X with individuals of
group Y nyy = Nxy /nx,

o the total time spent in contact between individuals of group X with individuals
of group Y: Wxy = Yiex jey wﬁj (for X =Y we have Wxy = %Zi,jex wf.j),

o the average time spent by an individual of group X in contact with individuals of
group Y: wxy = Wxy /nx.

Contact matrices contain thus an even more coarse-grained representation of the
data than aggregated networks: the differences between individuals of a group are
neglected, as is the specific structure of the contact network, since only averages are
retained. They are however widely used to inform data-driven models of spreading
processes in the epidemiology of infectious diseases: when dealing with diseases
that affect in different ways persons of different ages for instance, it can indeed be
crucial to take into account the fact that children have more contacts among them
than adults, with therefore a higher propagation risk. The specific structure of the
contact networks of children and adults might on the other hand be less relevant. In
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this respect, the simplicity of contact matrix representations is appealing. Moreover,
even such a simple representation can carry interesting information on the temporal
stability of the mixing patterns between groups: one can for instance consider the
similarity between two contact matrices measured in different time windows, which
can inform us on the differences between the mixing patterns of children and adults
during schooldays vs weekends or vacations.

1.2.2 Novel data representations

The above description of the data representations highlights the need for novel in-
termediate ways of representing temporal networks. On the one hand, keeping too
much detail can limit the ability to generalize data. On the other hand, aggregated
temporal networks, even if weighted, do not take into account enough temporal
information to correctly rank nodes by their importance and overestimate the exis-
tence of paths between nodes; contact matrices in addition do not take into account
the heterogeneity of links and nodes within a group and discard any structure, and
in particular the fact that not all pairs of nodes are linked.

Within the Multiplex project, two complementary directions have been followed,
developing novel frameworks for the representation of temporal network data. Im-
portantly, both correspond to static representations, hence much easier to deal with
than temporal ones, but retain more temporal information than the representations
discussed above.

Higher order aggregated networks.

A first important issue, given a temporally resolved dataset, consists in determin-
ing in which measure an aggregated representation gives inaccurate information on
the real data. To this aim, the betweenness preference has been introduced in [3]:
it quantifies to which extent paths existing in time-aggregated representations of
temporal networks are actually realizable in the time-resolved data. In other words,
measuring betweenness preference in empirical temporal networks allows to under-
stand if the corresponding aggregated representations loose too much information or
can be used for the simulation of dynamical processes unfolding on these networks.

As discussed above, static representations of temporal data are however of great
interest. To go forward in this perspective, several authors have therefore introduced
new higher-order time-aggregated representations of temporal networks [5, 6] that
take into account non-Markovian effects and thus preserve causality. An example is
given in Fig. 1.2 for second-order aggregation: each second-order node represents
an edge in the first-order aggregate network G(!); second-order edges are given by
all pairs (e}, e;) of directed edges of type e; = (a,b) and es = (b,c) in G, ie.,
by all possible paths of length two in the first-order aggregate network. Second-
order edges are moreover weighted, and the weights w2 (e1,e2) can be defined as
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the relative frequency of time-respecting paths (a,b;t;) — (b,c;t2) with t, > 1 of
length two in the temporal network.

Representing data in this way, instead of simply aggregating temporally, allows
to keep more information on relevant temporal correlations. For instance, using ran-
dom walks on such novel representation preserves the statistics of temporal paths
of length 2, i.e., of correlations that can be crucial when simulating dynamical pro-
cesses on top of temporal networks, and to create a novel, causality-preserving,
null model of temporal networks. This representation has allowed to show for in-
stance that non-Markovian characteristics of temporal networks can either enforce
or mitigate the influence of topological properties on dynamical processes. As such,
they constitute an important additional dimension of complexity that needs to be
taken into account when studying time-varying network topologies [6]. Moreover,
the path-based centralities defined in such higher-order aggregate networks give a
much better evaluation of the ranking of nodes’ importance in the temporal network
than when the usual aggregated networks are used [4].
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Fig. 1.2 Second-order aggregate networks corresponding to the two temporal networks shown in
Fig. 1.1. From [4]

Contact matrices of distributions.

The contact matrices of distributions (CMD) extend the usual concept of contact
matrices to tackle their shortcomings while maintaining a highl level of summariza-
tion of complex temporal data. In practice, the matrix defined in [7] has as entry for
groups X and Y the distribution of aggregated contact durations between all pairs
of individuals x in group X and y in group Y, where the distribution includes the
fraction of such pairs that do not have any contact. Alternatively, it is possible to
fit all the distributions to a common functional form (in [7], a negative binomial
distribution) and to consider as entries of the matrix the parameters of the fits. Sim-
ilarly to the customary contact matrices, the contact matrix of distributions is not
an individual-based representation: it does not retain the detailed structure of the
empirical contact network and contains only a summary of all interactions between
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individuals of various groups. However, in contrast with the usual contact matrices,
it accounts for the broad fluctuations of contact durations as well as for the poten-
tially high fraction of missing links across groups of individuals (it does not assume
that all individuals have been in contact).

It is important to note that the CMD defines in fact a representation framework
that can be extended and refined in various ways. For instance, while the CMD
of [7] contains only the distribution of daily aggregated contact durations, one can
retain as entry of the matrix the more detailed distributions of (i) durations of single
contacts (ii) intercontact durations and (iii) number of contacts between pairs of
individuals, as well as the density of links between groups. Keeping this information
allows one to build realistic timelines of contacts between individuals that respect
these statistics, as we will see in the next section [8]. Moreover, matrix entries could
also retain clustering coefficients of the aggregated networks, or their assortativity
properties, or other temporal or structural properties considered relevant.

1.2.3 Detecting mesoscopic structures

The representations discussed above are based on aggregation over time or over
node attributes, projecting away many specificities, structures, and correlations of
the original data. Depending on the problem at hand, these aggregated representa-
tions may overlook or confound important structural features of the network. For
example, a node may belong to different communities at different points in time:
aggregating the network over time will artificially merge the communities and cre-
ate a cluster that does not represent the network at any point in time. Groups of
nodes with similar activity patterns over time can also exist: for instance in environ-
ments such as schools, the interactions that are possible at a given time are driven
and constrained by an externally imposed schedule of social activities (e.g., class
and lunch breaks). In this case, temporal aggregation of the network may retain the
topology of interactions but loses the information on correlated activity patterns,
which may play an important role for, e.g., epidemic processes unfolding over the
temporal network [9]. In general, correlated topological and temporal features of
the network may give rise to structures that are neither local features of individual
nodes or edges nor global structures, and are hence often called ”mesostructures”.
Detecting such mesoscopic structures in high-resolution social network data is an
out-standing challenge that goes beyond the extension of community detection tech-
niques to temporal networks.

In this perspective, a promising approach uses a tensor representation of the tem-
poral network: one start by representing the temporal network as a time-ordered se-
quence of adjacency matrices, each describing the state of the network at a discrete
point in time. The adjacency matrices are then combined into a three-way tensor that
encodes the entire information about the temporal network and has been recognized
as a convenient representation both for multi-layer networks and temporal networks.
As shown in [10], non-negative tensor factorization techniques, which have shown
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their relevance in the field of machine learning, can then be used to extract non-
trivial structures and represent such complex data as a sum of simpler terms that
can be more easily interpreted. Interestingly, some of these structures correspond
to so-called “communities” in static networks, but others entail a complex inter-
play of activity and structural patterns that could not be found by usual community
detection tools. This opens the door to representing information-rich complex data
in simpler, human-readable ways and also to investigations on how each simpler
structure impacts dynamical processes unfolding on these data, as we will discuss
below.

1.3 Putting the data representations to concrete use

1.3.1 Comparing datasets

In the task of comparing datasets, to assess for instance the robustness of stylized
facts concerning the system(s) of interest observed at different moments or under
different conditions, even very simple and coarse-grained representations are ex-
tremely valuable. For instance, statistical distributions of contact durations and their
functional shapes can be compared in datasets describing contacts between individ-
uals collected in different contexts [11, 12, 13, 14, 15, 16]: as shown in Fig. 1.3,
the distributions of contact durations are very broad, and extremely similar for very
different contexts, populations, activity timelines, and deployment conditions. The
broadness of these distributions, as well as their robustness, imply two important
facts for modelers, in particular when dealing with processes depending on contact
durations between individuals, such as epidemic spreading. First, the broadness of
the distributions means that taking into account only average contact durations and
assuming that all contacts are equivalent might be a too coarse representation of the
reality. Indeed, different contacts might yield very different transmission probabil-
ities: many contacts are very short and correspond to a small transmission proba-
bility, but some are much longer than others and could therefore play a crucial role
in disease dynamics, Second, the robustness of the distributions found in different
contexts means that these distributions can be assumed to depend negligibly on the
specifics of the situation being modeled and thus directly plugged into the models.
Longitudinal studies can also be carried out at the level of coarse-grained sum-
maries. For instance, the distributions of contact or inter-contact durations have been
shown to be robust also when measured in different time windows, unveiling a sta-
tistical stationarity in an otherwise non-stationary signal. Activity timelines giving,
e.g., the number of contacts between individuals of different groups, can turn out
to be very stable from one day to the next, as for instance in hospitals or schools
[16, 13, 15], or to have a more casual character as in offices [14], giving hints on
the impact of organizational details on contacts. Contact matrices giving the average
number or duration of contacts between individuals of different categories have also
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revealed an interesting robustness of contact patterns in a high school across differ-
ent timescales: these contact matrices, computed for the same classes in different
days or even in different years, are extremely similar [13, 15], showing for instance
that temporally limited datasets can already yield important information on mixing
patterns of students that remain relevant on long timescales. Finally, contact matri-
ces built from data coming from different sources, namely on the one hand wearable
sensors and on the other hand contact diaries, have also revealed a strong similarity,
despite the raw datasets differ qualitatively and quantitatively [15], as shown in Fig
1.4.

Notably, the robustness of both distributions of contact durations and of contact
matrices imply the robustness of contact matrices of distributions, a fact that we will
exploit below.
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Fig. 1.4 Contact matrices of link densities obtained from different data sources in a high school.
We compare here the contact matrices of link densities between classes built from (a) the network
of contacts obtained using the sensor data collected on a specific day and (b) the network of contacts
as reported in the contact diaries collected on the same day. The similarity between these two
matrices is of 97%. From [15].
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The study of aggregated networks obviously shed more light on the comparison
of datasets, by providing additional statistical characteristics such as the distribution
of the number of neighbors, of the cumulative contact durations, the correlations be-
tween nodes’ properties such as degree and strength, but also by allowing a compar-
ison of networks’ structures at both global and local levels. The aggregated contact
networks first provide additional properties whose distributions can be measured
and compared, such as nodes’ degrees and strengths and links weights. The distri-
butions of degree (number of distinct individuals with whom a given individual has
been in contact) turn out to be similar across days and contexts, with narrow shapes,
an exponential decay at large degrees and characteristic average values that depend
on the particular context [2]. The distributions of the cumulative contact durations
are broad and very similar across very different contexts: different populations, in
which individuals behave with very different goals in different spatial and social en-
vironments, display a strikingly similar statistical behavior. Finally, the comparison
of the neighborhoods of specific nodes in different days yield information on the rate
of renewal of contacts between different days, an important quantity in the context
of epidemic spreading phenomena. This rate turns out to be substantial, but much
smaller than if contacts were at random, and takes similar values across contexts.

Despite these statistical similarities, aggregated networks describing contacts in
different contexts are obviously different, as revealed by a more detailed investiga-
tion. Differences in their structure can be already revealed by a visual inspection
of simple force-based network layouts. For instance, the aggregated network of in-
teractions during a conference day is much more “compact” than the ones describ-
ing the interactions between museum visitors. The aggregated network of contacts
among school children, high school students or office workers have a more modular
structure [14, 15]. For instance, children of each class form a cohesive structure with
many links, but links between different classes, and in particular between children
of different grades, are less frequent.

More subtle differences can be found by investigating the correlations between
weights and network topology. In particular, we can consider for each node its de-
gree (number of distinct individuals contacted) and its strength (cumulated time
of interaction with other individuals). Correlations between these quantities are ex-
pected. For random durations of contacts a linear dependency of the average strength
(s(k)) of nodes of degree k is obtained; a super-linear dependence hints at the im-
portance of super-spreader nodes with large degree, while a sub-linear behavior in-
dicates that the decrease in the weights of individual contacts mitigates the expected
super-spreading behavior of large degree nodes. In this respect, contrasting results
have been obtained in different contexts, showing that too coarse data summaries
ignoring correlations might not carry enough information to fully characterize how
diffusion processes would unfold on the contacts described by these data. Aggre-
gated networks, even though they do not include detailed temporal information and
remain a static description, shed in this respect important light on the system’s dy-
namics.
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1.3.2 Using detailed data in data-driven simulations

One of the most important practical uses of data consists in feeding data-driven
models of dynamical processes such as for instance information diffusion or epi-
demic spread, which unfold on networks of communication or contacts. The issue
of how much detail should be used when feeding such models is tightly linked with
the above discussion on advantages and limitations of data representations.

The answer depends in particular on the timescales of the process under inves-
tigation. For instance, when dealing with fast processes, the order in which events
between nodes take place can be crucial in determining how fast the process spreads
and how many nodes it impacts [9, 6]. On the other hand, for relatively slow pro-
cesses such as simulations of realistic infectious disease spread, it has been shown
in [11] that aggregated networks can be used as a substitute of full temporal net-
work data, under the condition that the aggregated network is weighted, i.e., that
the heterogeneous character of the interaction between individuals is taken into ac-
count. In the same spirit, [7] shows how the use of usual contact matrices in data-
driven simulations of spreading processes can yield misleading results, while the
contact matrices of distributions, which entail a summary of the heterogeneity of
contact patterns, come thus as an interesting trade-off to inform models of realistic
infectious disease spread, by keeping the right amount of information and forgetting
about unimportant details when one is not interested in who is specifically reached
by the spread, but rather in population level outcomes and in strategies based on
grouping individuals according to their role or category in the population.

We discuss below two more practical uses of contact matrices of distributions
and of contact matrices in data-driven simulations.

Using data representations to complement incomplete data

As discussed above, comparison of various datasets describing contacts between
individuals has revealed the strong robustness of the distributions of contact dura-
tions across contexts. Moreover, these distributions have been shown to be robust as
well under sampling of the population under scrutiny. Contact matrices giving the
density of links between groups of individuals are also unchanged by sampling. As
discussed and shown in practice in [§], this can be a great resource when dealing
with incomplete datasets.

Let us for instance assume that data describing the contacts between individuals
has been collected in a given context, but that not all individuals have participated
to the data collection. As a result, all information on the contacts involving the non-
participating individuals seems to be lost. When simulating a spreading process on
the data, these individuals effectively act as if they were immunized as the potential
transmission paths going through them cannot be taken into account. The outcome
of the spread is therefore strongly estimated [8] (see Fig. 1.5).

The robustness of the CMD under population sampling means however that not
all the relevant information about the non-participating individuals is unknown, and
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that this data representation can be accurately measured even in the incomplete data.
The CMD can then be used to create surrogate data, i.e., sets of fake but realistic
timelines of contacts among the non-participating individuals and between them and
the participating ones. Using such surrogate data in the spreading simulations allows
to recover a correct evaluation of the epidemic risk [8], as shown on an example in
Fig. 1.5.
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Fig. 1.5 Distribution of epidemic sizes for a spreading process simulated on top of a temporal
contact network, here a high school dataset. The red curve gives the distirbution when the whole
dataset is used. Left: distributions obtained when data is missing. Right: distributions obtained
when surrogate data built using knowledge on the contact matrix of distributions measured on the
sampled data are used. From [8].

Another example of the usefulness of such representations has been given in [17].
Contact data obtained through contact diaries, due both to population sampling and
to underreporting of contacts, is very incomplete and cannot be used easily in de-
tailed simulations of spreading processes. However, the similarities of the contact
matrices of link densities measured in both contact diaries and sensor data, together
with the wide robustness of the distributions of contact durations measured in di-
verse settings, means that it is also possible to build, starting from the contact di-
aries, surrogate contact data that is similar enough to the real contacts so that the
outcome of the simulations of spread yields similar results [17]: once again, one
uses the robustness of the CMD properties across data sources and contexts to mea-
sure the properties of the contacts most relevant for the issue at hand.

These two examples crucially confirm the interest of the contact matrix of dis-
tributions, by showing that the information it contains about the density of links
between groups of individuals and the heterogenity of contact durations is sufficient
in the perspective of using data in simulations of realistic spreading processes.
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Mesoscale interventions

Detailed, time-resolved networked data can yield a precise ranking of nodes accord-
ing to their importance as measured for instance from their (temporal) betweenness
centrality. A customary perspective consists in using such ranking to identify the
nodes on which it is interesting to act in order to mitigate or enhance a dynami-
cal process such as an epidemic propagation. The ensuing individual-based control
strategies, however, are difficult to carry out in practice. Moreover, in the case of
temporally evolving networks, they might be of limited efficiency as the specific
interactions among nodes do not repeat themselves in a precise way at different
moments [18]. On the other side of the possible spectrum of data representations,
too coarse summaries of the data, such as global averages, offer only a very limited
choice of control tools.

In this perspective, representations of the data at intermediate levels of detail can
in fact carry crucial information suggesting efficient interventions at this interme-
diate scale. For instance, the contact matrix representation of the contact patterns
occurring in a school shows that children spend much more time in contact with
children of the same class and of their own grade. This is expected to be a rather
general qualitative feature of schools, due both to age homophily and schedule con-
straints, and suggests that transmission events might take place preferentially within
the same class or grade. Hence, such data suggests targeted and reactive miti- gation
strategies in which one class or one grade is temporarily closed whenever symp-
tomatic individuals are detected. As shown in [19], these strategies turn out to be
almost as effective as whole-school closure, at a much lower cost in terms of service
disruption.

Another example of mesoscale intervention is developed in [20] in the context
of the decomposition of a temporal network of contacts in a sum of interpretable
components thanks to the non-negative tensor factorization [10] described above.
Simulations of epidemic spreading processes with varying parameters can indeed
be carried out either on the original temporal contact network or on a modified net-
work in which a specific component s has been removed (obtained by summing the
other components), and the outcomes can be compared. When a component can be
interpreted in terms of a specific behavioral pattern, its removal can be regarded as
the effect of an intervention strategy that selectively targets that behavior. The case
study presented in [20] corresponds to the interactions between children in a school.
Its tensor decomposition yields on the one hand components corresponding to the
classes, and on the other hand components mixing different classes and correspond-
ing mainly to the lunch breaks. As shown in Fig. 1.6, the removal of the latter has
a much stronger impact than the removal of the former, despite corresponding to
a smaller number of links. Most importantly, such components could not be iden-
tified by traditional community detection methods but instead consist of weaker,
temporally-localized mixing patterns corresponding to scheduled social activities.
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Fig. 1.6 Impact of the removal of specific structures of a temporal network (school dataset) on a
SIR spreading process. The heatmap shows the epidemic size ratio (ratio of epidemic sizes without
and with intervention) as a function of the spreading model parameters. Each heat map corresponds
to a targeted intervention that selectively removes one component. For each removed component r
the heat map shows the epidemic size ratio as a function of the SIR parameters A and pt. Epidemic
ratio = 1 indicates that the intervention does not affect epidemic size. The white area is the region
where the epidemic dies out, i.e., it fails to affect more than 1% of the network nodes. The region
inside the black contour line corresponds to parameter values such that the SIR epidemic finishes
within the finite span of the school dataset (2 days), both for the full and the altered temporal
networks. That is, for those parameter values the epidemic size ratio is not affected by the finite
temporal span of the dataset. The figure clearly shows the strong impact of removing components
12 or 14, which correspond to the mixing of classes during the breaks. From [20].

1.4 Conclusions and perspectives

The increase in data availability and resolution raise both opportunities and chal-
lenges related to their analysis, modeling and practical use. Many datasets in par-
ticular are commonly used to feed data-driven models. To this aim, the right level
of description need to be found, which keeps relevant salient properties of the data
while discarding unnecessary details. Adequate data representations and null mod-
els need therefore to be defined. Naturally, different datasets can give rise to the
same representation, once aggregated. It is thus in fact interesting to define whole
hierarchies of representations at intermediate aggregation levels. In this chapter, we
have reviewed some recent advances in the case of temporal networks, and dis-
cussed their possible representations, from very detailed to very coarse. Each rep-
resentation retains specific features of the data. For instance, higher order temporal
networks take into account non-Markovian aspects and preserve causality. Contact
matrices of distributions keep information about the heterogeneities of contact du-
rations between different groups. Mesoscale structures reveal complex interplays
of activity and structural patterns. These representations can be used to compare
datasets, which can for instance be similar at a certain level of aggregation but dif-
fer at a less aggregated one. They can also be useful to feed data-driven models of
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dynamical processes or to generate synthetic datasets similar to a given, original
one.

Many perspectives and issues remain obviously open. In particular, principled
approaches to the design of hierarchies of data representations and null models are
currently missing. Further techniques to detect structures and correlated activity pat-
terns are needed. It is also important to devise minimal models at different levels of
description that incorporate non-trivial longitudinal structures, mesoscopic struc-
tures, and correlated activity patterns. Finally, the issue of building approaches to
dynamical processes on (temporal) networks by working directly at mesoscales re-
mains an outstanding problem.
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