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Abstract. The correlationsof the free-energy landscapeof mean-fieldspin glassesat different
temperaturesare investigated,concentratingon modelswith a first-order freezing transition.
Using a ‘potential function’ we follow the metastablestatesof the model in temperature,and
discussthe possibility of level crossing(which we do not find) and multifurcation (which we
find). The dynamicsat a given temperaturestarting from an equilibrium configurationat a
different temperatureis also discussed. In the presenceof multifurcation, we find that the
equilibrium is neverachieved,leadingto an agingbehaviourat slowerenergy levelsthanusual
aging. The relevanceof the observedmechanismsfor real structuralglassesis discussed,and
somenumericalsimulationsof a soft spheremodelof glassarepresented.

1. Intr oduction

Free-energy landscapesin high-dimensionalspaceshave been used for a long time as
metaphorsfor describingthe physicsof complexsystemsas glassesand spin glasses,and
also proteins and evolutionary fitness landscapes[1]. The basic idea of this approach
is that complex system dynamics can be viewed as a searchfor optima in a rough
hypersurface.Although free-energy surfacescanin principlebedefinedfor largeclassesof
finite-dimensionalmodels,theactualconstructionof suchfunctionshasbeenachievedonly
in the caseof long-rangedisorderedsystems(mean-fieldspin glasses),which relevancefor
finite-dimensionalspin glasseshasbeena subjectof a long debate,growing evidence[2]
pointing in the direction that mean-fieldtheory is a good startingpoint to describefinite-
dimensionalphysics. Thoulesset al [3] (TAP) showedthat stableand metastablestates
of long-rangespin glassesare associatedto minima of a suitable free energy, which is
a randomfunction in a N (→ ∞) dimensionalspace. The complex phenomenologyof
equilibriumspinglassescanbe readasa setof propositionsaboutthe low-lying minima of
the TAP free energy, andthe barriersseparatingthem.

Dueto therandomcharacterof theTAP free-energy function,analyticstatementson the
structureof thestationarypoint haveaninescapablestatisticalcharacter.Varioustechniques
havebeeninventedto studythe minima of TAP free energy, andthe structureof the stable
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andmetastableminima for the fixed externalparameteris known in greatdetail, andgives
a coherentpictureof the glassytransition.Two classesof modelsareknown,accordingto
the orderof the freezingtransition. In modelssuchasthe Sherrington–Kirkpatrickmodels,
which displaya second-orderphasetransition,the metastablestatesof the TAP free energy
do not play an importantphysical role. A second-ordertransitionsuggestsa mechanism
of bifurcation(or rathermultifurcation)of the paramagneticminimum asTc is crossed.In
off-equilibriumdynamicsit is foundthatall theextensivequantitiestendto their equilibrium
valuesfor large times. Whereasthesemean-fieldmodels,with continuoustransition,seem
to apply for the descriptionof real spin glasses,a secondclassof models,such as, for
examplethePottsglass,showa first-orderfreezingtransition,andseemcloserto describing
the physicsof structuralglasses. Indeed,for thesemodelsa purely dynamicaltransition
occurswherethe relaxationtime diverges,while the static thermodynamicquantitiesshow
singularitiesonly at a lower temperature. Below the dynamical transition temperature,
metastablestatesdominatethe physics,and, dynamically, the extensivequantitiesdo not
tend to their equilibrium values if a randominitial condition is chosen. Statically, the
partition function is dominatedby metastablestates(betweenthestaticalandthedynamical
transitions,by anexponentiallylargenumberof mutuallyinaccessiblestates)thatthesystem
is unableto dynamicallyreach.

The scenarioin which the barriersbetweenmetastablestatesare infinite, and where
a quenchedsystemnever reachesany of thesestates,is clearly linked to the mean-field
approximation.For finite systems,metastablestateshavea finite lifetime, and the system
shouldbeableto find themin afinite time. Thetime,andthestatesthesystemis ableto find,
candepend,for exampleon the cooling rate. A modifiedscenariowould include‘activated
processes’and suppressthe divergenceof relaxation times at the dynamical transition,
replacingit by a rapid increase(with divergenceonly at the static transition).

This picture, as was alreadyadvocatedin [4–6] and more recently in [7], could be
relevantfor realglasses:indeed,theglasstransitiontemperatureis alsoa purelydynamical
quantity,definedby the fact that the relaxationtime reachesa certainvalue, the existence
of a static transition at a lower temperaturestill being a subjectof debate. Below this
temperature,the systemremainsout of equilibrium for all availabletimescales,and static
quantitiesarenot reached.In thesameway, theaforementionedscenariowouldyield aglass
transition(correspondingto a large but finite valueof the relaxationtime) occurringabove
the static transition,anda dynamicalevolutionresultingfrom a mixture of mean-field-like
dynamicsandactivatedprocesses.

In this context,the relevanceof mean-fieldstudiesdependson the varioustimescales
involved: if the barriersbetweenmetastablestatesarelow, activatedprocessesarefast and
will dominatetheevolution;if in contrast,theenergy barriersarefinite but large, therewill
exist time windowsin which the mean-fieldscenariowill hold.

To addressthis question,we thereforehaveto gain knowledgeof the metastablestates,
both statically and dynamically, for the mean-fieldmodels,and to comparethe emerging
pictureanddynamicalscenarioswith the realworld, or at leastwith numericalsimulations.

If thestructureof theTAP minimafor a fixed temperatureis ratherwell known[8, 9], a
muchlesscoherentpictureis availablefor the correlationof the free-energy landscapesfor
differenttemperatures.In theSherrington–Kirkpatrickmodel,thestudyin [10,11] revealed
‘chaotic temperaturedependence’of the low-lying states.Statesof equilibrium at different
temperaturesare,no matterhow small the temperaturedifferences,asuncorrelatedasthey
can. In someothermodelsthe chaoticpropertyis absent.A clearexampleis the spherical
p-spin model, where the homogeneityof the Hamiltonian implies that the order of the
free-energy minima doesnot dependon temperature,so that, in the whole low-temperature
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phase,thestaticsis givenby thesamelow-lying states.Somegeneralconclusionsaboutthe
fateof TAP minimaundertemperaturechangescanbedrawnon thebasisof thesmoothness
of theTAP freeenergy asa functionof temperature.For example,absolutelystableminima
cannotdisappearor multifurcate for an infinitesimal changeof the temperature,and the
generationof new stationarypointshasto passby a marginally stablesituation.

Two issuesappearto be relevantfor the descriptionof correlationsof the landscapes
for differenttemperatures:level bifurcationsandlevel crossing.Therefore,in this paperwe
try to gain somegenericinsightsinto thesetopics,by addressingthe issueof following the
TAP statesin temperaturefor a sphericalmodelwhich displaysfirst-orderglassytransition.
Dif ferent from the p-spin model, the Hamiltoniandoesnot have the homogeneitywhich
preventsthe chaoticity with respectto temperaturechanges.We thereforeexpectthat its
behaviouris generic in the class of models with first-order transition. The analysisis
performedwith the aid of a recentmethodwhere the metastablestatesare associatedto
local minima of somemacroscopic‘potential’ function of the spin-glassorder parameter.
The basicideaof this approachis that the free-energy manifold canbe probedintroducing
anexternalfield pointingin thedirectionof sometypical equilibriumconfiguration[12–14].
In section2, we review the constructionof the potentialof [12] and,usinga moregeneral
ansatz[15], we extendthediscussionto somepropertiesnot mentionedthere. In particular,
theextensionof theansatzallowsusto discuss,in section3, thepossibilityof multifurcation
of the metastablestatesthat we follow in temperature,a possibility not consideredin [12].

In section4, weuseanotherpowerfulapproach,adynamicalone,with appropriateinitial
conditions:thedynamicsof a systemthermalizedat a certaintemperature,andthenbrought
at another,alsoallows us to explorethe phasespaceof the system[12,16]. We showthat
the two methodsyield the sameresults,as was suggested,but not provedfor the general
case,in [12, 16], and usemoreoverthis dynamicalstudy to tackle anotherrelevantissue:
the dynamicalbehaviourof the systemswhena TAP solutionbifurcates†. In particular,the
problemof whetherthe systemwill fall into one of the new valleys or will be unableto
decidewhereto fall andageforever.

After having describedthesemechanismsfor the consideredmean-fieldmodels, in
section 5 we tentatively compare them with the case of real glasses,via numerical
simulationsof a soft sphereglass. In particular, the dynamicalmean-fieldapproachof
thermalizedinitial conditionscanbe thoughtof asa previousvery slow cooling to a certain
temperature,followed by a rapid change. The study of the energy reachedwith various
cooling ratesin thesimulatedsystemshowsthe relevanceof themean-fieldscenario,in the
availabletime window.

2. Studied models; the potential; previousresults

The classof modelswe consideris definedby N (real) spinss = {s1, . . . , sN } interacting
through a Hamiltonian H(s) and a global (spherical) constraint

∑

i s
2
i = N . The

Hamiltonianis random,Gaussian,with correlations

H(s)H(s′) = Nf (qss
′) (1)

whereqss′ = 1/N
∑

i sis
′
i is the overlap betweenthe configurationss and s

′. If f is a
polynomial function, the Hamiltoniancanbe presentedasa linear combinationof termsof

† In [12], the ansatzuseddid not allow us to seethe multifurcation, and the TAP solution seemedinsteadto
disappear,leavingthe issueopenof the correspondencebetweenthe dynamicalandthe staticalapproaches.
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the type

Hp(s) = −
∑

16i1<i2···<ip6N

Ji1i2···ipsi1si2 · · · sip (2)

with Gaussian-independentcouplingsJi1i2···ip , with zero meanand variancep!/(2Np−1).
It is easyto seethat Hp(s)Hp′(s′) = δp,p′q

p

ss
′/2. As we will seein the following, the

purely monomialcase,the so-calledp-spin model,hasremarkablysimplepropertiesunder
temperaturechanges[9] thanksto thehomogeneityof theHamiltonianundercontemporary
rescalingof all thevariables.In orderto studythegenericbehaviourit is thereforenecessary
to consider the inhomogeneousHamiltonian, giving rise to non-monomialcorrelation
functions. The specific form of the function f (q) we will use in our exampleswill be
mainly f (q) = 1

2(q3 + q4), howeverthe resultswill be genericfor the inhomogeneous
Hamiltonianverifying the conditionthatf ′′(q)−3/2f ′′′(q) is monotonicallydecreasingwith
q for all q (this ensuresthat the transitionis a discontinuousone).

In that casethe staticsof the model is describedby:
• a high temperaturephase,for T > Td , wherethe dominantcontributionis given by a

paramagneticstate;
• a temperaturerangeTd > T > Ts where the replica calculationsyield a replica-

symmetricresult,which in fact correspondsto ergodicity breakingin anexponentiallylarge
numberof states(finite complexity);

• a low-temperaturephase,for Ts > T , with a one-stepreplica-symmetrybreaking,
correspondingto the predominanceof the lowestTAP states,with zerocomplexity.

Therelaxationdynamicsfrom a randominitial state,yieldsequilibriumdynamicsin the
paramagneticstatefor T > Td , while, for Td > T , the agingphenomenaappears[17] and
the long time limit of the energy per spin is higher thanthe equilibrium value.

In this sectionwe review theconstructionof thepotentialfunction [12], andwe expose
somenewresultscomingfrom a replica-symmetrybreakingansatz[15], which clarify some
of the ‘mysteries’ left openin [12].

2.1. Constructionof thepotential

Oneof thecharacteristicsof spinglasses,dueto their randomcharacter,is that thedifferent
equilibrium statescannotbe selectedby an externalfield uncorrelatedwith the landscape
definedby the Hamiltonian. The basicidea underlyingthe potential function is to usean
externalfield pointing in thedirectionof a particularequilibriumconfiguration[13,12]. So,
if σi denotesa typical equilibrium configurationat a temperatureT ′ one can define the
partition function

Z[T , ε, σ] =
∑

S

e−βH [S]+εSσ. (3)

Besidesbeingself-averagingwith respectto the distributionof the quenchedHamiltonian,
the free energy 0[T , T ′, ε] = −T/N logZ[T , ε, σ] is also independenton the particular
configurationσ we choose,and thereforecoincideswith its averageover the probability
distributionexp(−β ′H [σ])/Z[T ′]. We definethe ‘potential’ as the Legendretransformof
0:

V [T , T ′, q12] = min
ε

0[T , T ′, ε] + εq12 − F [T ]. (4)

From the Legendretransformwe havesubtractedF the free energy at temperatureT in
order to haveV [T , T ′, 0] = 0. Definedin this way, the potentialhasthe meaningof the
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free energy cost to keepa systemat temperatureT at a fixed overlapq12 from a generic
configurationof equilibrium at a different temperatureT ′.

V is also self-averagingwith respectto the quencheddisorderdistribution, which we
denoteby an overline. The basicobjectwe needto evaluateis then

1

Z[T ′]

∑

σ

e−β ′H [σ] log

(

∑

S

e−βH [S]+εSσ

)

. (5)

It is explainedin detail in [12] that in order to perform the averagesit is possibleto
use a double analytic continuationfrom integer valuesof the parametersm and n, used
to representlogZ[T , ε, σ ] as limm→0(Z[T , ε, σ ]m − 1)/m, and 1/Z[T ′] as limn→0 Zn−1.
There are then n replicasσa (a = 1, . . . , n), and m replicasSα (α = 1, . . . , m). The
‘externalfield’ term is an interactiontermof all the replicasSα with oneprivilegedreplica,
say,σ1. Threeoverlapmatricesturn out to be relevantfor the descriptionof the physics
of the model: Q∗

ab = 1
N

∑

i〈σa
i σ

b
i 〉 describingthe overlap statisticsof the replicas at

equilibrium at temperatureT ′, Pa,α = 1
N

∑

i〈σa
i S

α
i 〉 describingthe overlapsamong the

replicasat temperatureT ′ andthereplicasat temperatureT , andfinally Qαβ = 1
N

∑

i〈Sα
i S

β

i 〉
describingtheoverlapsbetweenreplicasat temperatureT . As is physicallyclear,it is found
that the structureof the matrix Q∗

ab is not affectedat the leadingorderby the presenceof
the replicasSα. In this paperwe will restrict ourselvesto the temperaturerangeT > TS,
whereQ∗

ab = δab. In this regime it is sensibleto assumePa,α = δa,1q12 for all α. The
structureof the matrix Qαβ is more subtle. Assuminga single-statepicture in [12] the
form Qαβ = δαβ + q(1 − δαβ) wastaken. But it turnsout also to be necessaryto consider
the possibility that ergodicity is brokenfor the systemin a ‘field’, with consequentreplica
symmetrybreakingin Qαβ . The mostgeneralansatzwe shall needis the ‘one step’ form
(see,e.g. [8]), characterizedby the parameters(q0, q1, x). With this ansatzit easyto find
that the potential,asa function of all the orderparameters,is [15]:

V (q12) = − 1

2β

{

2ββ ′f (q12) − β2((1 − x)f (q1) + xf (q0)) + x − 1

x
ln(1 − q1)

−1

x
ln(1 − (1 − x)q1 − xq0) + q0 − q2

12

1 − (1 − x)q1 − xq0

}

(6)

whereV hasto be maximizedwith respectto q0, q1 andx. Thesesaddle-pointequations
read:

q2
12 = q0 − β2f ′(q0)(1 − (1 − x)q1 − xq0)

2

β2(f ′(q1) − f ′(q0))(1 − x) = (1 − x)
q1 − q0

(1 − q1)(1 − (1 − x)q1 − xq0)

β2(f (q1) − f (q0)) + 1

x2
ln

(

1 − q1

1 − (1 − x)q1 − xq0

)

+ β2 (1 − q1)

x
f ′(q1)

−β2f ′(q0)

x
(1 − (1 − x)q1 − xq0) = 0.

(7)

A numericalresolutionallows us to constructthe curveV (q12)†.
In general,this curvecanbe divided into threeregions.Therearesmall and large q12

regions(outsidethe interval A–B in figure 1) wherereplica symmetryholds. In between,
thesymmetryis broken. In the largeq12 region,thesolutionis q1 = q0 testifyingergodicity

† In [12], the form Qαβ = δαβ + q(1 − δαβ ) yieldedsimplified equations,correspondingto q0 = q1 in (7). The
resultingpotentialwill be denotedasthe ‘replica symmetric’potential.
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Figure 1. PotentialV asa function of q12, for the p = 3 + p = 4, β = 1.25, β ′ = 1.243; full
curve: replicasymmetricsolution;dottedcurve: RSB solution,from A (x = 1) to B (whereq0

andq1 merge).

in a single state. In the point B a de Almeida Thoulessinstability develops.The replica-
symmetrybreakingregion is interpretedas usual ergodicity breakingwith dominanceof
small numberof valleys for typical samples. At the point A one finds x = 1, and the
restoring of replica symmetry implies in fact a number of valleys exponentially large
N ∼ eN6(q12). In this region (betweenq12 = 0 and A), x = 1, the Edwards–Anderson
parameterinsidethe valleys is obtainedasthe valueof q1 from the secondequationof (7)
divided by (1 − x) in x = 1, and is depictedwith crossesin figure 2. The complexity
6(q12) can be calculatedas in the usualcaseas ∂V

∂x
|x=1, and is depictedin figure 3. For

q12 = 0, where there is no effective constraint,the secondreplica is at equilibrium at T

andwe find the total complexityat temperatureT , andthe equilibrium Edwards–Anderson
parameterat T .

The global situationis displayedfor a typical examplein figures1 and2.

2.2. Minima of thepotential

Thequalitativefeaturesof thepotentialarelargely independentof theform of thefunctionf .
Let us briefly discussthe caseof equaltemperaturesβ = β ′ [12]. The potentialalwayshas
an absoluteminimum for q12 = 0, corresponding,as previouslymentioned,to the second
replica being at equilibrium. Another minimum appearsfor a non-zerovalue of q12 for
temperaturesbelowTd (seefigure 4) (at T = T ′ = Td , it is a horizontalflex). This relative
minimumcorrespondsto havingbothreplicasin thesamestate,with q12 = q = qEA. Since
the numberof equilibrium statesat temperatureT is exp(N6(T )) by the definition of the
complexity(or configurationalentropy)6, the free-energy costof havingthis situationis

Vrelative minimum(qEA) = T 6(T ) = −β

2
f (qEA) − qEA

2β
− 1

2β
ln(1 − qEA). (8)

For thep-spinmodel,thecaseof differenttemperaturesβ andβ ′, hasalsobeentreated
in somedetails [12]. The relative minimum, which still exists for 0 < T < Tfinal(T

′),
andT ′ < Td , remainsin the replica-symmetricregion of the potential,and can be clearly
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Figure 2. q0(q12), q1(q12) asa function of q12, for the p = 3 + p = 4, β = 1.25, β ′ = 1.243
(lines); diamonds: RS solution, given by inserting q0 = q1 in (7); crosses:continuationof
q1(q12) in the first RS region,with limq12→0 q1(q12) = qEA(β).

Figure 3. 6(q12) for the p = 3 + p = 4, β = 1.25, β ′ = 1.243; for q12 → 0 we recoverthe
complexityat β. At A the complexitygoesto zero,correspondingto the entrancein the RSB
regionof the potential.

interpreted. Indeed,the homogeneityof the Hamiltonianallows us to write the TAP free
energy in a simpleform [9,12,18,16]:

fTAP({mi}) = q
p

2 E0({ŝi}) − T

2
ln(1 − q) − 1

4T
[(p − 1)qp − pqp−1 + 1] (9)

where we have written mi = 〈si〉 = √
qŝi , with

∑

i ŝ
2
i = N , and the angular energy

(zero-temperatureenergy) is:

E0({ŝi}) ≡ − 1

N

∑

16i1<···<ip6N

Ji1,...,ip ŝi1 · · · ŝip . (10)
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Figure 4. PotentialV asa function of q12, for the p = 3 p-spin model, for β = β ′, from top
to bottomβ = 1.6, β = βd ≈ 1.633,β = 1.7; hereβS = 1.706.

The order in free energy of the solutionsof the TAP equationsdoesnot dependon
temperature,nor cana solutionbifurcateasthe temperatureis changed.All thesesolutions
canbe easilyparametrized[9,12,18,16] andfollowed with temperature.

It is theneasyto showthat the propertiesof the primary minimum (valueof q0 = q1,
andenergy) arepreciselythepropertiesof theTAP statesof equilibriumat T ′ (characterized
by a zero-temperatureenergy E′

0) followed at T (parameterq andenergy), with

Vprimary = T 6(T ′) + FTAP(T , E′
0) − F(T ). (11)

This situation correspondsthereforeto having the secondreplica in a TAP stateof
equilibrium at T ′ followed at T †. This situationwas also ascertainedby the study of the
dynamicsof a systemthermalizedat T ′, and whosetemperaturewas then changedto T

[12,16,19]: the dynamicsobtainedis indeedof equilibrium in theseparticularTAP states,
chosenby the thermalizationat T ′ and followed when the temperatureof the systemis
changed.

In the case where f is different from a monomial, i.e. of an inhomogeneous
Hamiltonian,many points remainedunclear. In particular,the TAP free energy cannotbe
parametrizedin sucha simpleform, andit is not grantedthat the TAP solutionskeeptheir
order in free energy when the temperaturechanges.Moreover,the role of the breakingof
replicasymmetrywasnot studied.In thep-spinmodel,asa consequenceof theabsenceof
bifurcationof thesolutions,theminimumof thepotentialis alwaysin thereplica-symmetric
region,andtheinclusionof replica-symmetrybreakingeffectsdoesnot affect thediscussion
of the metastablestates,exceptfor eliminating the spurioussecondaryminimum found in
[12], whosemeaningwasnot clear.

For an inhomogeneousHamiltonian,by studyingthe potential,including RSB effects,
and the dynamicswith thermalizedinitial conditions,we will show that the potentialstill
allows us to determinethe characteristicsof TAP states,as long as the minimum is in the
replica-symmetricregion. We will associatetheentranceof theminimumin theRSBregion

† Also note that, for β ′ = βd , the minimum in fact becomesa horizontalflex of the potential,with the energy
andparameterq12 equalto thoseobtainedin off-equilibrium dynamics.
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of thepotentialwith bifurcations,andshowthat, in this case,thedynamicswith thermalized
initial conditionsgivesrise to a particularform of aging.

3. Potential for an inhomogeneousHamiltonian

Let us turn to the detailed study of the potential in the case of an inhomogeneous
Hamiltonian.Thenumericalexampleswill begiven for f (q) = (q3 + q4)/2 for simplicity,
but the analysisis independentof this particularform.

We first notethat, like for the homogeneouscase,a minimum with q12 6= 0 only exists
for T ′ < Td . Moreover,we will limit ourselvesto T ′ > Ts . For T = T ′, the primary
minimumis still in thereplica-symmetricpartof thepotential. If T is raised,this minimum
staysin the RS region, and disappearsat a certain temperatureTfinal(T

′), which verifies
Tfinal(Td) = Td .

As T is loweredhowever,the endpointof the RSB region (whereq0 = q1 ≡ q) gets
closerto the minimum, andfinally reachesit at Trsb(T

′) = 1
βrsb

given by

β2
rsbf

′′(q)(1 − q)2 = 1

β2
rsb(1 − q)2f ′(q) = q − p̃2

βrsbβ
′f ′(p̃) = p̃

1 − q

(12)

wherep̃ is the valueof q12 in the minimum. For evenlower temperatures,the minimum is
within the RSB region.

Trsb(T
′) reacheszero for someT ′ (seefigure 5); for lower T ′, the minimum is always

in the RS region.
An exampleof the situationT > Trsb(T

′) is displayedin figure 1, while the limiting
caseT = Trsb(T

′) anda casewhereT < Trsb(T
′) areshownin figure 6.

For temperaturesTfinal(T
′) > T > Trsb(T

′) the primary minimum canbe interpretedas
the stateof equilibrium at temperatureT ′ followed down at temperatureT . Indeed,if we

Figure 5. Tfinal(T
′) (full curve) and Trsb(T

′) (broken curve) for f (q) = 1
2(q3 + q4);

Td ≈ 0.805166. Note that at low enoughtemperatures,the statesneverbifurcate. The vertical
line correspondsto T ′ = Td , i.e. the temperatureof the appearanceof the minimum: alongthis
line the potentialdisplaysan horizontalflex.
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Figure 6. Potentialfor p = 3 + p = 4, for β ′ = 1.243 andβ = 1.4625(top), β = 3 (bottom);
full curves=RSsolution,brokencurves=RSBsolution. For β = 1.4625theendpointof theRSB
solutioncoincideswith the minimum of the potential;for β = 3 the minimum hasdisappeared
from the RS solution,while it still existsfor the RSB curve.

considerthe TAP stateswith valuesof the energy and of the parameterq equal to those
of the primary minimum, and if we computetheir free energy fTAP, we obtain (seethe
appendix):

Vprimary = fTAP − FRS(T ). (13)

Following the computationof [18,20], it is also possibleto obtain the numberof TAP
solutionswith fixed parameterq andenergy ETAP, and,writing it in the form

exp(NS(q, ETAP, T )) (14)

we havecheckednumericallythe identity:

S(qpr , Eprimary, T ) = 6(T ′). (15)
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Figure 7. Total free energy.

Therefore,the numberof equilibrium TAP solutionsat T ′ (exp(N6(T ′))) is equal to the
numberof TAP solutionsatT with theenergy andtheparameterq of theprimaryminimum.
This fact, togetherwith (13), showsthat the stateof equilibrium at T ′ hasbeenfollowed at
T , andis a stablestatewith free-energy cost

Vprimary = T 6(T ′) + FTAP(Eprimary, q
pr , β) − FRS(T ) (16)

(where the total, i.e. with the complexity term, free energy of the TAP states is
FTAP(ETAP, q, β) = fTAP(ETAP, q, β) − T S(q, ETAP, T )). In the next sectionwe will show
how thesestatescanbe followed dynamically,by choosingappropriateinitial conditions.

In contrast,for T < Trsb(T
′) the primary minimum is in the region of the potential

which displaysreplica symmetrybreaking†. The obvious interpretationfor this is that at
Trsb(T

′), the metastablestatesmultifurcate,accordingto the usualpatternknown from the
physicsof the Sherrington–Kirkpatrickmodel.

Let us now addressthe problem of level crossing: the p-spin model seemsvery
particular,in that theorderin freeenergy of theTAP statesdoesnot dependon temperature.
For T < Ts , the statics are given by the lowest TAP states,thereforethere are high
correlationsbetweenequilibrium statesat different temperatures.On the other hand, for
temperaturesbetweenTs andTd , equilibrium measuresat different temperaturesaregiven
by different bunchesof TAP states;thereforethe overlap betweenequilibrium statesat
different temperaturesis zero, but the TAP statescan be followed at other temperatures,
andtheir order in free energy (without the complexity term) remainsthe same.

For the caseof an inhomogeneousHamiltonian, we also show that, as long as we
considerTAP statesgiving theequilibriummeasureat temperatureshigherthanTs , we have
no crossingin the free energiesfTAP: indeed,if we notef (T , T ′) the free energy of one
TAP stateof equilibrium at T ′, followed at T , we have

f (T , T ′) = Vprimary(T , T ′) + F(T ) (17)

† Note that Trsb(Td ) = Td , and that, for T ′ = Td , T < Td , the minimum is in fact a horizontalflex, like for the
homogeneouscase,exceptthat it lies within the RSB regionof the potential. Besides,the energy in this point is
equalto the dynamicalenergy at T .
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andthuswe obtain

∂

∂T ′ f (T , T ′) = f (q
pr

12 )

T ′2 . (18)

This quantity is alwayspositive, so, if we havetwo temperaturesTd > T ′
1 > T ′

2 > Ts , at
any temperatureT for which we canfollow the statesgiving equilibrium at T ′

1 andT ′
2, the

order

f (T , T ′
1) > f (T , T ′

2) (19)

is conserved. Of course,this is not the caseif we considerthe full free energy, with
the complexity term, i.e. F(T , T ′) = f (T , T ′) − T 6(T ′). We then havethat eachcurve
F(T , T ′) as a function of T is tangentto the curveFRS(T ) at the point (T ′, F (T ′, T ′) =
FRS(T

′)).
Hence, this global situation, with the replica-symmetricfree energy as the envelope

of the curvesgiving the total TAP free energies, whereasthe curvesgiving the TAP free
energies without the complexity term do not cross,seemsvery genericbetweenthe static
anddynamictransitions.

Consideringthe caseof T ′ = Ts , the lowest T ′ for which we are allowed to use
the simple ansatzQ∗

ab = δab, we find a different situation. In fact, we find that if
T < Ts the value of the potential in the primary minimum is slightly higher than 0, with
qEA(T ) = q1(q12 → 0) > qpr > q

pr

12 . This is in contrastto thecaseof thep-spinmodel,for
which the statesof equilibrium at Ts , followed at T , arestill of equilibrium at T : theseare
the lowestTAP states,andtheydominatetheequilibriummeasurefor temperaturesranging
from 0 to Ts . In this casewe obtain Vprimary = V (0), and qpr = q1(q12 → 0). Here, in
contrast,thedifferencebetweenthequantitiesat q12 = 0 andat theprimaryminimumshow
that thestatesof equilibriumat Ts areno longerof equilibriumat T < Ts . Therefore,chaos
is presentin temperature.For a detailedstudy of the T ′ < Ts region,we would however
needto take into accountthe RSB effects on the first replica, which would yield another
form for the potential,andwe will not do it here.

4. Dynamics

We now addresstheproblemof thedynamicsof thesystemat T , startingfrom thermalized
initial conditionsat T ′. In thecaseof thep-spinmodel,it wasshownthatsucha procedure
allowsus to dynamicallyreachthestatesdescribedby theminimumof thepotential,i.e. to
follow dynamicallythe TAP states.As usual,we study the Langevinrelaxationdynamics
of the model,given by

dsi(t)

dt
= −∂H

∂si

− µ(t)si(t) + ηi(t) (20)

wherethe ηi areGaussianthermalnoiseswith 〈ηi(t)ηj (t
′)〉 = 2T δijδ(t − t ′), andµ(t) has

to be computedself-consistentlyin orderto implementthe sphericalconstraint
∑

i s
2
i = N .

In the infinite N limit, we can obtain the dynamicalequationsfor the correlationand

responsefunctions(C(t, t ′) = 1
N

∑

i 〈si(t)si(t ′)〉, r(t, t ′) = 1
N

∑

i 〈 ∂si (t)

∂ηi (t ′)
〉) [12,22], that for
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t > t ′ read:

∂r(t, t ′)

∂t
= −µ(t)r(t, t ′) +

∫ t

t ′
ds f ′′(C(t, s))r(t, s)r(s, t ′)

∂C(t, t ′)

∂t
= −µ(t)C(t, t ′) +

∫ t ′

0
ds f ′(C(t, s))r(t ′, s)

+
∫ t

0
ds f ′′(C(t, s))r(t, s)C(s, t ′) + 1

T ′ f
′(C(t, 0))C(t ′, 0)

(21)

complementedby the equationthat enforcesthe sphericalcondition

µ(t) =
∫ t

0
ds f ′(C(t, s))r(t, s) +

∫ t

0
ds f ′′(C(t, s))r(t, s)C(s, t)

+T + 1

T ′ f
′(C(t, 0))C(t, 0). (22)

In [12], it wasnotedthat a numericalintegrationof (21) for a particularchoiceof the
temperatures,after sometransientled to equilibrium with time translationinvariance(TTI)
and validity of the fluctuation dissipationtheorem(FDT). However,no systematicstudy
wasundertaken.

As long as the primary minimum of the potential is in the replica-symmetricregion
it is reasonableto take as an ansatz,that indeedan equilibrium regimeis reachedafter a
short transient. We thereforedeal with the functionsCas(τ ), ras(τ ) relatedby FDT, with
the introductionof the limiting quantitiesp̃ andq:

C(t, t ′) = Cas(t − t ′); r(t, t ′) = ras(t − t ′); ras(τ ) = −β
∂

∂τ
Cas(τ )

lim
t→∞

C(t, 0) = p̃; lim
τ→∞

Cas(τ ) = q.
(23)

This ansatzyields thesameequationsfor p̃ andq asthosefor q12 andq (33) specifying
the extremumof the potential in the RS region [12]. Besides,it coincidesvery well with
the resultsof a numericalintegrationof equations(21). We canthereforeconcludethat the
dynamicstakesplacein a TAP state,of equilibrium at T ′, in which the systemwasput at
T ′ by thermalization,followed dynamicallyat the new temperatureT . This behaviouris
exactly the sameasthat for the p-spin model [16].

For T < Trsb(T
′) anotheransatzhasto bechosen.In particular,sincefor low enoughT

the minimum disappearsfrom the RS potential,the dynamicalequationsfor p̃ andq have
no more solutions. We thereforeproposean ansatzsimilar to the one usedin the aging
dynamicsof suchmodels[17], exceptthat the motion will be confinedin the vicinity of
the initial state.We assumethenthat:

• for finite time separationsτ = t −t ′, with τ/t goingto zero,theequilibriumproperties
are valid, which meansthat we deal with the functionsCFDT(τ ) and rFDT(τ ), relatedby
FDT. We notethat limτ→∞ CFDT(τ ) = q1;

• an agingregimeis present:for t and t ′ going to infinity, without (t − t ′)/t → 0, TTI
is violated,andthe FDT is replacedby the quasi-FDT

x
∂C(t, t ′)

∂t ′
= Tr(t, t ′) (24)

with constantx 6= 1. In this regime, we have the limits limt ′/t→1 C(t, t ′) = q1,
limt ′/t→0 C(t, t ′) = q0;

• we havemoreoverto introducethe quantity limt→∞ C(t, 0) = p̃, which tells us how
muchthe systemremembersits initial conditions.
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As it happensin the randominitial condition case,the parametersq1, q0, p̃, x can be
determinedfrom theasymptoticanalysisof equation(21)without fully solvingthedynamics.
The hypothesisof the existenceof an aging regime, and the continuity of the response
function implies the equation

β2f ′′(q1)(1 − q1)
2 = 1 (25)

which coincideswith the ‘marginal stability condition’ of the statics[23,17]. The other
threeequations

q1

β(1 − q1)
= βf ′(q1)(1 − q1) + βx(q1f

′(q1) − q0f
′(q0)) + β ′p̃f ′(p̃)

p̃

β(1 − q1)
= βp̃x(f ′(q1) − f ′(q0)) + β ′f ′(p̃)

q0

β(1 − q1)
= βf ′(q0)(1 − q1) + βq0x(f ′(q1) − f ′(q0)) + β ′p̃f ′(p̃)

(26)

canbeshownto beequivalentto thevanishingof thederivativesof thepotentialfunction4
with respectto q1, q0 andq12. In termsof theseparametersthe asymptoticenergy is given
by:

E = −β ′f (p̃) − β(f (1) − f (q1)) − βx(f (q1) − f (q0)). (27)

The usualaging behaviourwith q0 = p̃ = 0 is of coursethe solution of theseequations.
This correspondsto forgettingtheinitial conditions,andhappenswhenT ′ is higherthanthe
dynamicaltransitiontemperature.However,for T ′ < Td , this solution,besidescontrasting
with the statical picture of the model, would be internally contradictory: indeed,at Trsb

the energy in the primary minimum is lower than the dynamical energy at the same
temperature.Therefore,such a solution, which would yield an asymptoticenergy equal
to the dynamicalone,would lead to a higherenergy for a lower temperature!Finally, the
numericalintegrationof thedynamicalequationsshowsthat thebehaviourof thedynamical
quantitiesis very different from the caseof infinite T ′, and that C(t, 0) doesnot seem
to decreaseto zero. Thesefacts lead to the conclusionthat we must prefer the solution
with non-zeroq0 andp̃. The agingthereforetakesplacein a restrictedphase-spaceregion.
However, for T < Trsb(T

′) the dynamic internal energy is higher then the static one,
similarly to what happensstartingfrom randominitial conditions.

Let us also note that the asymptoticenergy (27) in the caseof thermalizedinitial
conditionsis lower than the dynamicalenergy after a quench,showingthat this procedure
allowsus to reachstateswith lower energies. An immediateconsequenceis the importance
of the way in which the final temperatureis reached.

5. A comparison with real glasses

5.1. Generalconsiderations

In the studied mean-field models, we found that, below the dynamical transition TD,
we could define a whole spectrumof internal energies for the systemat temperatureT ,
dependingon the way the systemhasbeenput at its final temperature:

• theequilibriumenergy Eeq(T ), which is doneby theusualBoltzmannGibbsformula;
• the dynamicalenergy, correspondingto the energy of a systemwhich is quenchedto

the final temperaturefrom a temperaturehigher thanTD;
• the energiesE(T ′, T ), obtainedfor a systemat equilibrium at T ′ andthenput at T .

Dependingon T ′ andT , the systemcanbe at equilibrium or exhibit agingdynamics.
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Theseenergies can be consistentlycomputedusing the explicit form of the dynamics.
It is also possibleto computethem by using the appropriatestatisticalprescriptionwhich
doesnot makeexplicit referenceto the dynamics.

At this point the readermay askhow muchall thesefindingsare relevantfor the real
world. Metastablestateswith an infinite life do not exist in short-rangefinite-dimensional
modelsand their presencein mean-fieldmodelsis a clear artifact of the approximation.
Thewould-beinfinite life metastablestatesof themeanfield theorydo decaythroughsome
activatedprocesses(whosedetailedpropertieshave not yet beenfully clarified). If the
mean-fieldpicture is relevant for the real word the timescaleof the activatedprocesses
shouldbe large enoughthat there is a time window in which the behaviourpredictedby
the mean-fieldtheorycanbe observed.

Given our lack of commandon the activatedprocesses,we cannottreat this question
analytically and we have to resort to numericalsimulations. We will considera simple
system,oneof the prototypesof glassforming systems,known to havea glasstransitionat
a given temperatureTG.

We will seethat we canalsodefinevariousenergies:
• the equilibrium energy Eeq(T );
• theslow coolingenergy ES(T ), which is obtainedby the limit to infinite cooling time

of theenergy of a systemwhich startsat temperaturesgreaterthanthedynamicaltransition;
• the fast cooling energy EF(T ), which is obtainedby the limit to infinite cooling rate

of the energy of a systemwhich is quenchedto the final temperaturefrom a temperature
higher thanTD.

BetweenES(T ) andEF(T ), variouscoolingrateswill yield variousasymptoticenergies.
We will seethat if we cool the systemfast to a temperaturenearor belowTG (we have

investigatedup to temperaturesequalto 0.25TG) the energy asfunction of the time may be
representedby the following form

EF(t) = EF + At−µ + O(t−2µ) (28)

wherethe exponentµ is in the range0.5–0.7andweakly dependson the temperature.The
previousformula well representthe data for time in the window 102–105 time units (i.e.
oneMonte Carlo sweep).

In a similar way, we canrepresentthe datafor the slow-cooledenergy asa function of
time with a similar form in the sametime window:

ES(t) = ES + At−µ + O(t−2µ) (29)

wherethe exponentµ is compatibleto be equalto the oneusedin equation(28).
The two functions EF and ES are different from one anotherbelow TG and their

differencevanisheswhenwe approachTG. It is clearthat the two previousformulaecanbe
valid only in a limited time window; asymptoticallythe two energiesEF(t) andES(t) must
go to the samelimit (i.e. the equilibrium valueof the energy). This is likely to happenon
a much longerscale. Herewe want to stressthe presenceof a time window in which the
predictionof a theorybasedon the existenceof metastablestatescanbe tested.

Beforeshowingthe resultsof the numericalsimulations,we will give somedetailsof
the modelwe consider.

5.2. TheHamiltonian

The model we consideris the following. We have taken a mixture of soft particlesof
differentsizes.Half of theparticlesareof typeA, half of typeB andthe interactionamong
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the particle is given by the Hamiltonian:

H =
∑

i<k

(

σ(i) + σ(k)

|xi − xk|

)12

(30)

wheretheradius(σ ) dependson thetypeof particles.This modelhasbeencarefullystudied
in thepast[24–29]. It is knownthata choiceof theradius,suchthatσB/σA = 1.2, strongly
inhibits crystallizationandthat thesystemsgo into a glassyphasewhenit is cooled.Using
the sameconventionsas the previous investigatorswe considerparticlesof an average
diameterof 1, morepreciselywe set

σ 3
A + 2(σA + σB)3 + σ 3

B

4
= 1. (31)

Due to the simple scaling behaviouurof the potential, the thermodynamicquantities
dependonly on the quantity T

1
4 /ρ, T and ρ being respectivelythe temperatureand the

density.For definitenesswe havetakenρ = 1. It is usualto introducethequantity04 ≡ β.
The glasstransitionis known to happenaround0 = 1.45 (i.e. for T ≈ 0.226) [25].

5.3. Numericalresults

Our simulationsaredoneusinga Monte Carlo algorithm,which is moreeasyto dealwith
thanmoleculardynamics,if we changethe temperaturein an abruptway. Eachparticle is
shiftedby a randomamountat eachstep,andthe sizeof the shift is fixed by the condition
that the averageacceptancerate of the proposalchangeis about0.4. Particlesare placed
in a cubic box with periodicboundaryconditions. In our simulationswe haveconsidered
a relatively small numberof particles,i.e. N = 66. Note that for all the simulations,the
systemis alwaysout of equilibriumandexhibitsaging: theergodictime is far beyondreach
[27,28,30].

We start by placing the particlesat randomand quenchthe systemby putting it at its
final temperature(i.e. infinite cooling rate). The typical valueof the energy densityof the
initial configurationis very high (O(105)) due to the singularform of the potentialand it
takesa few iterationsto arrive at a morereasonablevalue. We showthe dataasa function
of Monte Carlo time t in figure 8 for 0 = 1.8 (T ≈ 0.095).

In the slow cooling approachwe also start by placing the particlesat randomat the
beginning. We divide the cooling time into five equal intervals: in the first interval we
have0 = 1, in the secondinterval 0 = 1.2, . . . and the fifth interval 0 = 1.8. The data
are takenfor eachtemperatureonly in the secondhalf of the correspondinginterval. The
results,asa functionof the time spentat eachtemperature,i.e. of the inverseof thecooling
rate, are shown in figure 8 for 0 = 1.8. We clearly seethat the two curvesEF and ES

definitelyextrapolateto a differentvalue. Theextrapolatedvaluesof theenergy asfunction
of the temperaturecanbe seenin figure 10 using the fast and the slow cooling methodin
the region 0 > 1.4 (T < 0.26). The dataare not shownat higher temperatures,because
the two methodsgive the sameresult. Other proceduresto investigatethe dependenceof
the cooling rate involve a similar cooling from 0 = 1 to 0 = 1.8 in a total time tcooling,
with times tcooling/4 spentat 0 = 1, 1.2, 1.4, 1.6, andthenthe studyof the evolutionof the
energy at 0 = 1.8. The long time limit of theenergy lies thenbetweenEF (for tcooling → 0)
andES (for tcooling → ∞). In figure9 we showin theevolutionof theenergy at 0 = 1.8 for
variouscooling rates.The effectsarequite small, so it is necessaryto comparereasonably
different rates.For the availabletimes,the energy of the systemdependson the cooling it
hasfollowed: the energy is lower for slowercooling procedures.
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Figure 8. ‘Fast’ curve: energy asa functionof t−0.5 wheret is thetime spentat 0 = 1.8 aftera
rapidquench;‘slow’ curve: energy reachedat theendof thetime spentat 0 = 1.8, asa function
of of t−0.5, where t is the time spentat eachtemperatureduring the gradualquenchprocess.
We seethat slower cooling yields lower energies. The continuationto t−0.5 → 0 corresponds
to an infinitely slow cooling.

Figure 9. Evolution of the energy at 0 = 1.8 (T ≈ 0.095), as a function of time, for various
cooling rates;the horizontal lines correspondto EF and ES. The lower curvescorrespondto
slowercoolings.

Moreover,it is worth noting that the value of µ is, roughly speaking,independentof
the temperature[30]. This phenomenonhappensin the only model of mean-fieldtheory
wheretheexponenthasbeencomputed[31] andthis is a strongindicationthat theapproach
to equilibrium in this region is not dominatedby activatedprocesses,but more (roughly
speaking)by entropicbarriers: the barriersbetweenmetastablestatescould include both
energetic and entropic effects [32]. Moreover, this showsthe possiblerelevanceof the
scenariodetailedin thepreceedingparagraph(agingsimilar to usual,but at lower energies),
andof someintuitive mean-fieldscenarios[33].
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Figure 10. Extrapolationsof the energies EF and ES at large times, i.e. asymptoticenergies
after a quenchor an infinitely slow cooling, for varioustemperatures.

It would beinterestingto beableto simulatethethermalizationat a certaintemperature,
followed by a quenchat a lower temperature,like in mean-fieldmodels.Unfortunately,the
availabletime window doesnot allow us to reachthermalizationat temperatureslower than
the dynamictransition.

Anotherpossibility would be to cool thesystemvery slowly to a certainvalueT ′, such
that its energy is lower thanES(T ) for a certainT (T > T ′), andthento bring the system
backto T , to seewhethertheobtainedenergy is still lower thanES(T ). Suchinvestigations
arehoweverbeyondthe scopeof this shortstudy.

6. Summary and conclusions

In this paperwe have investigatedthe behaviourin temperatureof the metastablestates
of long-rangespin glasseswith first-order freezing transition. We have shown that the
metastablestatescan be followed up and down in temperature,from the temperature
where they are dominating the partition function. Going up in temperature,one finds
sometemperaturewhere the statesdisappear,merging with somemaxima. Going down
in temperature,the statesneverdisappear,althoughin somerangeof T ′ multifurcation is
found. We also studiedthe dynamicsat temperatureT < Td , following a quenchfrom
equilibrium at temperatureT ′. If T ′ > Td we find no differencefrom the usual aging
behaviour[17] that follows a quenchfrom infinite temperature.For T ′ < Td we havefound
two possibilities.If T > Trsb(T

′) the original valley has‘deformed’ but not bifurcatedand
the systemis able to equilibrateinside it. In the complementaryinterval T < Trsb(T

′) the
landscapehaschangeddrasticallyasthe original valley hasbifurcated.The systemis then
unableto thermalizeandfalls in an agingregime,while remainingconfinedin the vicinity
of the initial data. Besides,this dynamicalstudyshowsthat the agingafter a slow quench
(in themean-fieldcase,thecaseof thermalizedinitial conditionsat T ′, canbethoughtof as
a situationafteraninfinitely slow quench)allowsusto reacha situationwherethebehaviour
is qualitatively similar to the one after a rapid quench(i.e. aging correspondingto a slow
touringof thephasespace),but within a phase-spaceregionwith lower energies. Therefore,
at a given temperatureT , the possibilitiesarenot only of agingat a relatively high energy,
after a suddenquench,or of equilibrium dynamicsafter an infinitely slow quench,but also
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of agingat intermediateenergies,dependingon the routefrom a high temperatureto T .
In the last section,we tried to emphasizethe possiblerelevanceof such mean-field

scenariosfor finite dimensions,whereit hasbeenadvocatedthatmetastablestatesmaystill
exist, but with a finite lifetime: comingfrom a high-temperaturephase,the systemmay be
ableto find thesestatesin a finite time, andthe resultingagingbehaviourwhendecreasing
the temperaturecouldbea mixtureof jumpsbetweenstatesandperiodsof wanderingwhen
statesbifurcate.

Indeed,the numericalstudyof section5 showsindicationsthat,at leastin the explored
time window, for a soft spheremodel of glass exhibiting aging, the dynamics is not
dominatedby activatedprocesses.Dependingon thecoolingratefrom thehigh-temperature
phase,variousenergiescanbe reached.Sincethe systemis finite, it shouldhoweverreach
equilibrium in a finite time (the energy shouldreachthe equilibrium energy, whateverthe
routeto thefinal temperaturemaybe)but, thesesimulationsshowthat,evenfor a relatively
small system,this finite time is very large,andthereforethatmean-fieldconclusionscanbe
of importancein the real world.
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Appendix

We considerthe casewhen the primary minimum of the potential is in the RS region:
q0 = q1 ≡ q. Then,for fixed T ′, we computethevalueof q12 andq for this minimum,qpr

12
andqpr . The saddle-pointequationsfor q0, q1, x reduceto

β2f ′(qpr) = qpr − q
pr

12
2

(1 − qpr)2
(32)

andthe equation ∂V
∂q12

= 0 is

ββ ′f ′(qpr

12 ) = q
pr

12

1 − qpr
. (33)

The valueof the potentialis

Vprimary = −β ′f (q
pr

12 ) + β

2
f (qpr) − β

2
(1 − qpr)f ′(qpr) − 1

2β
ln(1 − qpr). (34)

The energy of the secondreplica,in this minimum, is

Eprimary = ∂

∂β
(βV + βF(T )) (35)

which yields

Eprimary = −β ′f (q
pr

12 ) + βf (qpr) − βf (1). (36)

On the otherhand,we canwrite the TAP free energy as:

fTAP(H, q, β) = H − 1

2β
ln(1 − q) − β

2
(f (1) − f (q) − (1 − q)f ′(q)) (37)

whereq = 1
N

∑

i m
2
i , andH is the valuetakenby the HamiltonianH({mi}), so the energy

of a TAP statemi is

ETAP = ∂βf

∂β
= H − β(f (1) − f (q) − (1 − q)f ′(q)). (38)
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Then,taking

Hpr = Eprimary + β(f (1) − f (qpr) − (1 − qpr)f ′(qpr) (39)

we obtain immediatelythat

Vprimary = fTAP(Hpr , q
pr , β) − FRS(T ). (40)

This meansthat Vprimary is the free-energy costof havingthe secondreplicain a TAP state
with parameterqpr andenergy Eprimary at inversetemperatureβ.
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