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Abstract. The correlationsof the free-enegy landscapef mean-fieldspin glassesat different
temperaturesre investigated,concentratingon modelswith a first-order freezing transition.
Using a ‘potential function’ we follow the metastablestatesof the modelin temperatureand
discussthe possibility of level crossing(which we do not find) and multifurcation (which we
find). The dynamicsat a given temperaturestarting from an equilibrium configurationat a
different temperatureis also discussed. In the presenceof multifurcation, we find that the
equilibriumis neverachieved)eadingto an agingbehaviourat slowerenepy levelsthanusual
aging. The relevanceof the observedmechanismgor real structuralglassess discussedand
somenumericalsimulationsof a soft spheremodel of glassare presented.

1. Intr oduction

Free-enggy landscapesn high-dimensionalspaceshave beenusedfor a long time as
metaphordor describingthe physicsof complexsystemsas glassesand spin glassesand
also proteins and evolutionary fitness landscaped1]. The basic idea of this approach
is that complex system dynamics can be viewed as a searchfor optima in a rough
hypersurface Although free-enegy surfacescanin principle be definedfor large classef
finite-dimensionamodels,the actualconstructionof suchfunctionshasbeenachievedonly
in the caseof long-rangedisorderedsystemgmean-fieldspin glasses)which relevancefor
finite-dimensionalspin glasseshasbeena subjectof a long debate,growing evidence[2]
pointing in the direction that mean-fieldtheoryis a good starting point to describefinite-
dimensionalphysics. Thoulesset al [3] (TAP) showedthat stableand metastablestates
of long-rangespin glassesare associatedo minima of a suitable free enegy, which is
a randomfunctionin a N (— oo) dimensionalspace. The complex phenomenologyof
equilibrium spin glassesanbe readasa setof propositionsaboutthe low-lying minima of
the TAP free enegy, andthe barriersseparatinghem.

Dueto therandomcharacteof the TAP free-enegy function, analyticstatementsn the
structureof the stationarypoint haveaninescapabletatisticalcharacter.Varioustechniques
havebeeninventedto studythe minima of TAP free enegy, andthe structureof the stable
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and metastableminima for the fixed externalparameteis known in greatdetail, and gives
a coherentpicture of the glassytransition. Two classef modelsare known, accordingto
the orderof the freezingtransition. In modelssuchasthe Sherrington—Kirkpatricknodels,
which display a second-ordephasetransition,the metastablestatesof the TAP free enegy
do not play an important physicalrole. A second-ordetransition suggestsa mechanism
of bifurcation (or rathermultifurcation) of the paramagnetieninimum as 7, is crossed.In
off-equilibrium dynamicsit is foundthatall the extensivequantitiestendto their equilibrium
valuesfor large times. Whereaghesemean-fieldmodels,with continuoustransition,seem
to apply for the descriptionof real spin glassesa secondclassof models, such as, for
examplethe Pottsglass,showa first-orderfreezingtransition,andseemcloserto describing
the physicsof structuralglasses.Indeed,for thesemodelsa purely dynamicaltransition
occurswherethe relaxationtime diverges,while the staticthermodynamiauantitiesshow
singularitiesonly at a lower temperature. Below the dynamical transition temperature,
metastablestatesdominatethe physics,and, dynamically, the extensivequantitiesdo not
tend to their equilibrium valuesif a randominitial condition is chosen. Statically, the
partition functionis dominatedoy metastablestategbetweerthe staticalandthe dynamical
transitions by anexponentialljarge numberof mutuallyinaccessibletatesthatthe system
is unableto dynamicallyreach.

The scenarioin which the barriersbetweenmetastablestatesare infinite, and where
a quenchedsystemneverreachesany of thesestates,is clearly linked to the mean-field
approximation.For finite systemsmetastablestateshavea finite lifetime, and the system
shouldbeableto find themin afinite time. Thetime, andthe stateghe systemis ableto find,
candependfor exampleon the cooling rate. A modified scenariowould include ‘activated
processesand suppressthe divergenceof relaxationtimes at the dynamical transition,
replacingit by a rapid increase(with divergenceonly at the statictransition).

This picture, as was already advocatedin [4-6] and more recentlyin [7], could be
relevantfor real glassesindeed,the glasstransitiontemperatures alsoa purely dynamical
guantity, definedby the fact that the relaxationtime reachesa certainvalue, the existence
of a static transition at a lower temperaturestill being a subjectof debate. Below this
temperaturethe systemremainsout of equilibrium for all availabletimescalesand static
guantitiesarenotreached.In the sameway, the aforementionedcenariovould yield aglass
transition(correspondingo a large but finite value of the relaxationtime) occurringabove
the statictransition,and a dynamicalevolutionresultingfrom a mixture of mean-field-like
dynamicsand activatedprocesses.

In this context,the relevanceof mean-fieldstudiesdependson the varioustimescales
involved: if the barriersbetweemmetastablestatesarelow, activatedprocessearefastand
will dominatethe evolution;if in contrastthe enegy barriersarefinite but large, therewill
exist time windowsin which the mean-fieldscenariowill hold.

To addresghis question,we thereforehaveto gain knowledgeof the metastablestates,
both statically and dynamically, for the mean-fieldmodels,andto comparethe emeging
pictureanddynamicalscenarioswith the realworld, or at leastwith numericalsimulations.

If the structureof the TAP minimafor afixed temperaturas ratherwell known[8, 9], a
muchlesscoherentpictureis availablefor the correlationof the free-enegy landscapesor
differenttemperaturesin the Sherrington—Kirkpatricknodel, the studyin [10,11] revealed
‘chaotic temperaturelependencedf the low-lying states.Statesof equilibrium at different
temperaturesire, no matterhow small the temperaturalifferencesas uncorrelatecas they
can. In someothermodelsthe chaoticpropertyis absent.A clearexampleis the spherical
p-spin model, where the homogeneityof the Hamiltonian implies that the order of the
free-enegy minima doesnot dependon temperatureso that, in the whole low-temperature
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phasethe staticsis given by the samelow-lying states.Somegeneralconclusionsaboutthe
fate of TAP minimaundertemperaturehangexanbe drawnon the basisof the smoothness
of the TAP free enegy asa function of temperature For example absolutelystableminima
cannotdisappearor multifurcate for an infinitesimal changeof the temperature and the
generatiorof new stationarypointshasto passby a mamginally stablesituation.

Two issuesappearto be relevantfor the descriptionof correlationsof the landscapes
for differenttemperaturestevel bifurcationsandlevel crossing.Therefore,n this paperwe
try to gain somegenericinsightsinto thesetopics, by addressinghe issueof following the
TAP statesin temperaturdor a sphericaimodelwhich displaysfirst-orderglassytransition.
Different from the p-spin model, the Hamiltonian doesnot have the homogeneitywhich
preventsthe chaoticity with respectto temperaturechanges.We thereforeexpectthat its
behaviouris genericin the classof modelswith first-order transition. The analysisis
performedwith the aid of a recentmethodwhere the metastablestatesare associatedo
local minima of somemacroscopicpotential’ function of the spin-glassorder parameter.
The basicideaof this approachs that the free-enegy manifold canbe probedintroducing
anexternalfield pointingin the directionof sometypical equilibrium configuration12—14].
In section2, we review the constructionof the potentialof [12] and,usinga moregeneral
ansatZ15], we extendthe discussiorto somepropertiesnot mentionedhere. In particular,
the extensiorof theansatzllowsusto discussjn section3, the possibility of multifurcation
of the metastablestatesthat we follow in temperaturea possibility not consideredn [12].

In sectiond, we useanothempowerfulapproacha dynamicalone,with appropriatenitial
conditions:the dynamicsof a systemthermalizedat a certaintemperatureandthenbrought
at another,alsoallows us to explorethe phasespaceof the system[12,16]. We showthat
the two methodsyield the sameresults,as was suggestedbut not provedfor the general
case,in [12, 16], and use moreoverthis dynamicalstudy to tackle anotherrelevantissue:
the dynamicalbehaviourof the systemsvhena TAP solutionbifurcates. In particular,the
problemof whetherthe systemwill fall into one of the new valleys or will be unableto
decidewhereto fall andageforever.

After having describedthese mechanismdgor the consideredmean-fieldmodels, in
section 5 we tentatively comparethem with the case of real glasses,via numerical
simulationsof a soft sphereglass. In particular, the dynamical mean-fieldapproachof
thermalizednitial conditionscanbe thoughtof asa previousvery slow coolingto a certain
temperaturefollowed by a rapid change. The study of the enegy reachedwith various
cooling ratesin the simulatedsystemshowsthe relevanceof the mean-fieldscenariojn the
availabletime window.

2. Studied models; the potential; previousresults

The classof modelswe consideris definedby N (real) spinss = {s1, ..., sy} interacting
through a Hamiltonian H(s) and a global (spherical) constraint ;s> = N. The
Hamiltonianis random,Gaussianyith correlations

H(s)H(s') = Nf(qss) @

wheregss = 1/N ), s;s! is the overlap betweenthe configurationss ands’. If f is a
polynomialfunction, the Hamiltoniancanbe presenteds a linear combinationof termsof

T In [12], the ansatzuseddid not allow us to seethe multifurcation, and the TAP solution seemednsteadto
disappear|eavingthe issueopenof the correspondencbetweenthe dynamicalandthe staticalapproaches.
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the type
H[,(S) = — Z Ji1i2"'i,;si1si2 “ee S,'P (2)

1<iy<iz-<ip<N

with Gaussian-independegbuplings J;;,...,, with zero meanand variancep!/(2NP71).
It is easyto seethat H,(s)H,(s') = §, yq%,/2. As we will seein the following, the
purely monomialcase the so-calledp-spin model, hasremarkablysimple propertiesunder
temperaturehangeg9] thanksto the homogeneityof the Hamiltonianundercontemporary
rescalingof all thevariables.In orderto studythe genericbehaviouiit is thereforenecessary
to considerthe inhomogeneoudHamiltonian, giving rise to non-monomial correlation
functions. The specificform of the function f(¢) we will usein our exampleswill be
mainly f(q) = 3(¢° + ¢*), howeverthe resultswill be genericfor the inhomogeneous
Hamiltonianverifying the conditionthat " (¢)~%/2 f""(q) is monotonicallydecreasingvith
g for all ¢ (this ensureghatthe transitionis a discontinuousone).

In that casethe staticsof the modelis describedby:

e a high temperaturghasefor T > T,, wherethe dominantcontributionis given by a
paramagnetictate;

e atemperatureangeT; > T > T, wherethe replica calculationsyield a replica-
symmetricresult,whichin fact correspondso ergodicity breakingin anexponentiallylarge
numberof states(finite complexity);

e a low-temperaturephase,for T, > T, with a one-stepreplica-symmetrybreaking,
correspondingo the predominancef the lowest TAP stateswith zerocomplexity.

Therelaxationdynamicsfrom arandominitial state,yields equilibriumdynamicsin the
paramagnetistatefor T > T,, while, for T, > T, the agingphenomenappeard17] and
the long time limit of the enegy per spinis higherthanthe equilibrium value.

In this sectionwe review the constructionof the potentialfunction[12], andwe expose
somenew resultscomingfrom areplica-symmetnpreakingansat4 15], which clarify some
of the ‘mysteries’left openin [12].

2.1. Constructionof the potential

Oneof the characteristic®f spinglassesdueto their randomcharacterjs thatthe different
equilibrium statescannotbe selectedby an externalfield uncorrelatedwith the landscape
definedby the Hamiltonian. The basicidea underlyingthe potentialfunction is to usean
externalfield pointingin the directionof a particularequilibrium configuration[13,12]. So,
if o; denotesa typical equilibrium configurationat a temperaturel”’ one can definethe
partition function

ZIT e, 0) =y e Pl (3)
S

Besidesbeing self-averagingvith respectto the distribution of the quenchedHamiltonian,
the freeenegy I'[T, T',¢] = —T/N 109 Z[T, ¢, o] is also independenbn the particular
configurationo we choose,and thereforecoincideswith its averageover the probability
distributionexp(—B8'H[o])/Z[T']. We definethe ‘potential’ asthe Legendretransformof
I

V[T, T, q1o] = min[T, T, €] + eq1o — F[T]. (4)
€

From the Legendretransformwe have subtractedF the free enegy at temperaturel in
orderto have V[T, T’, 0] = 0. Definedin this way, the potentialhasthe meaningof the



Temperatue evolutionand bifurcationsof metastablestates 5597

free enepy costto keepa systemat temperaturel’ at a fixed overlapgi, from a generic
configurationof equilibrium at a differenttemperaturer”.

V is also self-averagingwith respectto the quencheddisorderdistribution, which we
denoteby an overline. The basicobjectwe needto evaluateis then

1
e—ﬂ’H[cr] |Og ( e—ﬁH[S]-‘rESO’) . (5)
Z[T"] ZU: ZS:

It is explainedin detail in [12] that in order to perform the averagest is possibleto
use a double analytic continuationfrom integer valuesof the parametersn andn, used
to represeniog Z[7, €, o] aslim,,_o(Z[T, €, o]" — 1)/m, and1/Z[T'] aslim,_o Z" L.
There are thenn replicaso, (¢ = 1,...,n), andm replicasS, (¢ = 1,...,m). The
‘externalfield’ termis aninteractionterm of all the replicass, with oneprivilegedreplica,
say,o1. Threeoverlap matricesturn out to be relevantfor the descriptionof the physics
of the model: Q}, = & Z descnblngthe overlap statisticsof the replicas at
equilibrium at temperatureT’, P,, = & Z (o¢S¥) describingthe overlapsamongthe

replicasattemperaturg”’ andthereplicasattemperaturd’, andfinally Q% = % D> (SH Sf)

describingthe overlapsbetweerreplicasattemperaturd’. As is physicallyclear,it is found
that the structureof the matrix Q?, is not affectedat the leadingorder by the presenceof

the replicasS®. In this paperwe will restrictourselvesto the temperaturaangeT > Ts,

where Q*, = §,. In this regimeit is sensibleto assumeP, , = 8,191 for all . The
structureof the matrix Q.p is more subtle. Assuminga single-statepicture in [12] the
form Qus = dup + q(1 — 84p) Wastaken. But it turnsout alsoto be necessaryo consider
the possibility that ergodicity is brokenfor the systemin a ‘field’, with consequenteplica
symmetrybreakingin Q.s. The mostgeneralansatzwe shall needis the ‘one step’ form

(see,e.q.[8]), characterizedy the parametergqo, g1, x). With this ansatzit easyto find

that the potential,asa function of all the order parametersis [15]:

V(g1 = ~2 {2,3/3 f(q12) — BA((L = x) f(qu) + xf (q0)) + X In(1 q1)
1 q0 — 412
—;ln(l— (1 —x)q1 — xq0) + 1= (1—X)ql—xqo} (6)

whereV hasto be maximizedwith respectto ¢o, g1 andx. Thesesaddle-pointequations
read:

4% = qo — B2f'(q0)(L — (1L — x)q1 — xq0)?

2/ o1 Y 1— —(1— q1 — 9o
@) = flaoN =) = Q=0 g s
1 1-— 1-— 7
B (S (@) — f(q0) + —n ( 7 ) + g2 ‘“)f (q1) @
1-(A—-x)q1 —xq0
ﬂzf 90 (1 — (1— x)g1 — xq0) =

A numericalresolunonalIows usto constructthe curve V(q12)1.

In general this curve canbe divided into threeregions. Thereare small andlarge g1
regions(outsidethe interval A-B in figure 1) wherereplicasymmetryholds. In between,
the symmetryis broken. In thelarge g1, region,the solutionis g1 = go testifying ergodicity

1 In [12], theform Qup = Sup + q(1 — 84p) Yyielded simplified equationscorrespondingo go = g1 in (7). The
resultingpotentialwill be denotedasthe ‘replica symmetric’ potential.
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Figure 1. PotentialV asa function of ¢12, for the p =3+ p =4, B = 1.25, 8’ = 1.243; full
curve: replicasymmetricsolution; dottedcurve: RSB solution,from A (x = 1) to B (wherego
andg; memge).

in a single state. In the point B a de Almeida Thoulessinstability develops. The replica-
symmetry breakingregion is interpretedas usual ergodicity breakingwith dominanceof
small numberof valleys for typical samples. At the point A onefinds x = 1, and the
restoring of replica symmetry implies in fact a number of valleys exponentially large
N ~ eVE@2 n this region (betweengi; = 0 and A), x = 1, the Edwards—Anderson
parameteinside the valleysis obtainedasthe value of ¢; from the secondequationof (7)
divided by (1 — x) in x = 1, andis depictedwith crossesin figure 2. The complexity
3 (q12) canbe calculatedasin the usualcaseas %uzl, andis depictedin figure 3. For
q12 = 0, wherethereis no effective constraint,the secondreplicais at equilibrium at T
andwe find the total complexity at temperaturel’, andthe equilibrium Edwards—Anderson
parameteat 7.
The global situationis displayedfor a typical examplein figures1 and 2.

2.2. Minima of the potential

Thequalitativefeaturef the potentialarelargely independentf theform of thefunction f.
Let us briefly discussthe caseof equaltemperature® = g’ [12]. The potentialalwayshas
an absoluteminimum for g1, = 0, correspondingas previously mentioned,to the second
replica being at equilibrium. Another minimum appearsfor a non-zerovalue of g1, for
temperaturebelow 7, (seefigured) (at T = T’ = T, it is a horizontalflex). This relative
minimum correspondso havingbothreplicasin the samestate with g1 = ¢ = gga. Since
the numberof equilibrium statesat temperaturel’ is exp(N X (7)) by the definition of the
complexity (or configurationalentropy) X, the free-enegy costof havingthis situationis
Vielative minimum(@ea) = TX(T) = _gf(CIEA) - 6]2% - 2:; IN(1— gea). (8)
For the p-spinmodel,the caseof differenttemperatureg andp’, hasalsobeentreated
in somedetails[12]. The relative minimum, which still existsfor 0 < T < Tiina(T’),
and T’ < T,;, remainsin the replica-symmetriaegion of the potential,and can be clearly
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Figure 2. qo(q12), q1(q12) asa function of ¢12, for the p =3+ p =4, 8 =1.25, ' = 1.243
(lines); diamonds: RS solution, given by insertingqgo = g1 in (7); crosses:continuationof
q1(q12) in thefirst RS region,with lim,,,,091(g12) = geA(B).
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Figure 3. X(q12) forthe p =3+ p =4, B = 1.25, B’ = 1.243; for g1 — 0 we recoverthe

complexityat 8. At A the complexity goesto zero, correspondingo the entrancein the RSB
regionof the potential.

interpreted. Indeed,the homogeneityof the Hamiltonianallows us to write the TAP free
enegy in a simpleform [9,12,18,16]:

» . T 1 B
frap(imi}) = q2 E°({5:}) — 5@ -9 = lp = D" - pa” 1] 9)

where we have written m; = (s;) = ./g$;, with >, §> = N, and the angularenegy
(zero-temperaturenegy) is:

. 1 s
E°{&) = N Z Jig,oniySia iy - (10)

1<ip<+<ip<N
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Figure 4. PotentialV asa function of ¢12, for the p = 3 p-spin model,for g = g’, from top
to bottompB = 1.6, B = B; ~ 1.633,8 = 1.7; here s = 1.706.

The order in free enegy of the solutionsof the TAP equationsdoesnot dependon
temperaturenor cana solution bifurcateasthe temperaturds changed.All thesesolutions
canbe easily parametrized9, 12,18,16] and followed with temperature.

It is theneasyto showthat the propertiesof the primary minimum (value of gg = ¢,
andenegy) arepreciselythe propertiesof the TAP statesof equilibriumat 7’ (characterized
by a zero-temperaturenegy E() followed at T (parametey; andenegy), with

Vprimary = TE(T,) + FTAP(T’ E(/)) - F(T) (11)

This situation correspondghereforeto having the secondreplicain a TAP state of
equilibrium at T’ followed at T'{. This situationwas also ascertainedy the study of the
dynamicsof a systemthermalizedat 7', and whosetemperaturevas then changedto T
[12,16,19]: the dynamicsobtainedis indeedof equilibriumin theseparticularTAP states,
chosenby the thermalizationat 7’ and followed when the temperatureof the systemis
changed.

In the case where f is different from a monomial, i.e. of an inhomogeneous
Hamiltonian, many points remainedunclear. In particular,the TAP free enegy cannotbe
parametrizedn sucha simpleform, andit is not grantedthat the TAP solutionskeeptheir
orderin free enegy whenthe temperaturechanges.Moreover,the role of the breakingof
replicasymmetrywasnot studied. In the p-spin model,asa consequencef the absencef
bifurcationof the solutions,the minimum of the potentialis alwaysin the replica-symmetric
region,andtheinclusionof replica-symmetnpreakingeffectsdoesnot affect the discussion
of the metastablestates,exceptfor eliminating the spurioussecondaryminimum found in
[12], whosemeaningwas not clear.

For an inhomogeneousgiamiltonian, by studyingthe potential,including RSB effects,
and the dynamicswith thermalizedinitial conditions,we will show that the potential still
allows us to determinethe characteristicof TAP states,aslong asthe minimumis in the
replica-symmetrigegion. We will associatehe entranceof the minimumin the RSB region

1 Also notethat, for g/ = B,, the minimum in fact becomesa horizontalflex of the potential, with the enegy
and parametey, equalto thoseobtainedin off-equilibrium dynamics.
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of the potentialwith bifurcations,andshowthat,in this case the dynamicswith thermalized
initial conditionsgivesrise to a particularform of aging.

3. Potential for an inhomogeneousHamiltonian

Let us turn to the detailed study of the potential in the case of an inhomogeneous
Hamiltonian. The numericalexampleswill be givenfor f(q) = (¢ + ¢*)/2 for simplicity,
but the analysisis independenbf this particularform.

We first notethat, like for the homogeneousase,a minimum with g3, # 0 only exists
for T" < T;. Moreover,we will limit ourselvesto 7’ > T,. For T = T’, the primary
minimumis still in thereplica-symmetrigart of the potential. If T is raised this minimum
staysin the RS region, and disappearsat a certaintemperatureTiing(7’), which verifies
TfinaI(Td) = Td-

As T is loweredhowever,the endpointof the RSB region (wherego = g1 = ¢q) gets
closerto the minimum, andfinally reachest at Tysp(T') = i given by

Bt (@)(1—q)? =1
Bl = a)’f'@) = q - ° (12)
BusoB () = %

—q

where p is the valueof g, in the minimum. For evenlower temperatureghe minimumis
within the RSB region.

T.su(T’) reacheszerofor someT’ (seefigure 5); for lower 77, the minimum is always
in the RS region.

An exampleof the situationT > Tisp(T”) is displayedin figure 1, while the limiting
caseT = T,sn(T’) anda casewhereT < Tisp(T’) areshownin figure 6.

For temperaturegiing(T") > T > Tsp(T’) the primary minimum canbe interpretedas
the stateof equilibrium at temperaturel” followed down at temperaturel’. Indeed,if we

1 \
Tt

05

: : L i i
07 072 0.74 .76 0.78 0.8 Td

Figure 5. Thna(T") (full curve) and Tisp(T”) (broken curve) for f(g) = 2(¢° + ¢*);
T, ~ 0.805166. Note that at low enoughtemperaturesthe statesneverbifurcate. The vertical
line correspondso T’ = Ty, i.e. the temperaturef the appearancef the minimum: alongthis
line the potentialdisplaysan horizontalflex.
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Figure 6. Potentialfor p = 3+ p = 4, for B/ = 1.243and 8 = 1.4625(top), B = 3 (bottom);
full curves=RSsolution, brokencurves=RSBsolution. For g = 1.4625the endpointof the RSB
solution coincideswith the minimum of the potential;for 8 = 3 the minimum hasdisappeared
from the RS solution,while it still existsfor the RSB curve.

considerthe TAP stateswith valuesof the enegy and of the parametely equalto those
of the primary minimum, and if we computetheir free enegy frap, we obtain (seethe
appendix):

Vprimary = fTAP — Fre(T). (13)

Following the computationof [18,20], it is also possibleto obtain the numberof TAP
solutionswith fixed parametey andenegy Etap, and,writing it in the form

exp(NS(q, Etap, T)) (14)
we havecheckednumericallythe identity:

S(q’", Eprimarya T)= E(T,)~ (15)
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Figure 7. Total free enegy.

Therefore,the numberof equilibrium TAP solutionsat 7’ (exp(N £(T"))) is equalto the
numberof TAP solutionsat T with theenegy andthe parametey; of the primary minimum.
This fact, togethemwith (13), showsthatthe stateof equilibriumat 7’ hasbeenfollowed at
T, andis a stablestatewith free-enegy cost

Vorimary = TE(T') + FTAP(Eprimaryv q”", B) — Frs(T) (16)

(where the total, i.e. with the complexity term, free enegy of the TAP statesis
Frap(E1ap, ¢, B) = frap(Etap, ¢, B) — T S(q, E1ap, T)). In the next sectionwe will show
how thesestatescan be followed dynamically,by choosingappropriatenitial conditions.

In contrast,for T < Tsp(T") the primary minimum is in the region of the potential
which displaysreplica symmetrybreaking. The obviousinterpretationfor this is that at
Tiso(T"), the metastablestatesmultifurcate,accordingto the usualpatternknown from the
physicsof the Sherrington—Kirkpatrickmodel.

Let us now addressthe problem of level crossing: the p-spin model seemsvery
particular,in thatthe orderin free enegy of the TAP statesdoesnot dependon temperature.
For T < Ty, the staticsare given by the lowest TAP states,thereforethere are high
correlationsbetweenequilibrium statesat different temperatures.On the other hand, for
temperaturebetweenT; and Ty, equilibrium measurest differenttemperaturesre given
by different bunchesof TAP states;thereforethe overlap betweenequilibrium statesat
differenttemperaturess zero, but the TAP statescan be followed at other temperatures,
andtheir orderin free enegy (without the complexity term) remainsthe same.

For the caseof an inhomogeneouddamiltonian, we also show that, as long as we
considelTAP stateggiving the equilibrium measuret temperaturefigherthanT;, we have
no crossingin the free enegies frap: indeed,if we note (T, T’) the free enegy of one
TAP stateof equilibriumat 7, followed at T, we have

F(T, T = VorimanT, T') + F(T) (17)

1 Notethat Tysp(7,) = T4, andthat, for 7/ = Ty, T < T,, the minimumiis in fact a horizontalflex, like for the
homogeneousase exceptthatit lies within the RSB region of the potential. Besidesthe enegy in this point is
equalto the dynamicalenegy at T'.
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andthuswe obtain

d _ flafy)

G [T = 3 (18)

This quantity is alwayspositive, so, if we havetwo temperatured,; > T > T, > T, at
any temperaturel” for which we canfollow the statesgiving equilibriumat 77 and7,, the
order

f(T. 1) > f(T,Ty) (19)

is conserved. Of course,this is not the caseif we considerthe full free enegy, with
the complexityterm,i.e. F(T,T) = f(T,T") — TX(T'). We thenhavethat eachcurve
F(T,T’) asa function of T is tangentto the curve Frs(T) at the point (T’, F(T', T') =
Frs(T")).

Hence, this global situation, with the replica-symmetricfree enegy as the envelope
of the curvesgiving the total TAP free enepies, whereasthe curvesgiving the TAP free
enegies without the complexity term do not cross,seemsvery genericbetweenthe static
anddynamictransitions.

Consideringthe caseof T’ = Ty, the lowest T’ for which we are allowed to use
the simple ansatzQ¥, = §,,, we find a different situation. In fact, we find that if
T < T, the value of the potentialin the primary minimum is slightly higherthan 0, with
qea(T) = q1(q12 — 0) > ¢"" > ¢1,. Thisis in contrasto the caseof the p-spinmodel,for
which the statesof equilibrium at 7}, followed at T', arestill of equilibriumat 7: theseare
the lowest TAP states andthey dominatethe equilibrium measurdor temperaturesanging
from O to 7. In this casewe obtain Vyimary = V(0), and¢”” = g1(g12 — 0). Here,in
contrastthe differencebetweenthe quantitiesat g;, = 0 andat the primary minimum show
thatthe statesof equilibriumat 7; areno longerof equilibriumat T < T;. Therefore chaos
is presentin temperature.For a detailedstudy of the T’ < T, region, we would however
needto take into accountthe RSB effects on the first replica, which would yield another
form for the potential,andwe will notdo it here.

4. Dynamics

We now addresghe problemof the dynamicsof the systemat T, startingfrom thermalized
initial conditionsat 7'. In the caseof the p-spinmodel,it wasshownthatsucha procedure
allows usto dynamicallyreachthe statesdescribedby the minimum of the potential,i.e. to
follow dynamicallythe TAP states.As usual,we study the Langevinrelaxationdynamics
of the model, given by

ds;(t)  9H

dr as;

— w(@)si(t) + (1) (20)

wherethe n; are Gaussiarthermalnoiseswith (n; (t)n; (t")) = 2T6;;6(t — t'), and u(¢) has
to be computedself-consistentlyn orderto implementthe sphericalconstrainty_; s = N.
In the infinite N limit, we can obtainthe dynamicalequationsfor the correlationand

responsdunctions(C(t, ') = + >, (s;(Os; (1), r(t, 1) = + 3, (;;’_"((l’,)))) [12,22], that for
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t > t' read:
or(t,t') ) t , /
P —M(t)r(t,t)—i-/ ds f7(C(t, $))r(t, s)r(s, t')
%t;t/) =—u®C(, 1) +/ ds f'(C(t,s))rt', s) 21)
0

! 1
—l—/ ds f"(C(t, s)r(t,s)C(s,t') + Ff’(C(l, 0)C(t', 0)
0

complementedby the equationthat enforcesthe sphericalcondition
t t

w(t) :/ ds f/(C(t,s)r(t,s) +[ ds f7(C(t,8)r(t,s)C(s, 1)
0 0

1
+T + Ff/(c(t’ 0)C(t, 0). (22)

In [12], it was notedthat a numericalintegrationof (21) for a particularchoiceof the
temperaturesafter sometransientled to equilibrium with time translationinvariance(TTI)
and validity of the fluctuation dissipationtheorem(FDT). However, no systematicstudy
wasundertaken.

As long as the primary minimum of the potentialis in the replica-symmetricregion
it is reasonabldo take as an ansatz that indeedan equilibrium regimeis reachedafter a
shorttransient. We thereforedeal with the functions C,,(t), r.(t) relatedby FDT, with
the introductionof the limiting quantitiesp andg:

0
C(Z, t/) = Cas(t - t,); r(t, t,) = r(m(t - t/); V,”(T) = _ﬂicm(t)

at (23)
tlim C@,0)=p; lim Cu(r) =gq.

This ansatzyields the sameequationdor p andg asthosefor g1, andg (33) specifying
the extremumof the potentialin the RS region[12]. Besides,it coincidesvery well with
the resultsof a numericalintegrationof equationg21). We canthereforeconcludethatthe
dynamicstakesplacein a TAP state,of equilibriumat 7', in which the systemwas put at
T’ by thermalization,followed dynamically at the new temperaturel’. This behaviouris
exactlythe sameasthat for the p-spin model[16].

ForT < Tisp(T’) anotheransatzhasto be chosen.In particular,sincefor low enoughT
the minimum disappeargrom the RS potential, the dynamicalequationsfor p andg have
no more solutions. We thereforeproposean ansatzsimilar to the one usedin the aging
dynamicsof suchmodels[17], exceptthat the motion will be confinedin the vicinity of
theinitial state.We assumeahenthat:

o for finite time separations = ¢ —1’, with t/¢ goingto zero,the equilibriumproperties
are valid, which meansthat we deal with the functions Cepr(t) and rept(t), relatedby
FDT. We notethatlim,_, ., Crpt1(t) = q1;

e anagingregimeis present:for + and¢’ goingto infinity, without (+ —¢')/t — 0, TTI
is violated,andthe FDT is replacedby the quasi-FDT

aC(t,t)
"7
at’
with constantx # 1. In this regime, we have the limits lim,,_1C(t,¢) = qa,
im0 C(t, 1) = qo;

e we havemoreoverto introducethe quantitylim,_, ., C(z, 0) = p, which tells us how

muchthe systemremembersts initial conditions.

=Tr@, t) (24)
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As it happensn the randominitial condition case,the parametersyy, go, p, x canbe
determinedrom theasymptoticanalysisof equation(21) withoutfully solvingthedynamics.
The hypothesisof the existenceof an aging regime, and the continuity of the response
function implies the equation

B2f (gL —q1)? =1 (25)

which coincideswith the ‘marginal stability condition’ of the statics[23,17]. The other
threeequations

— B B — q) + Bx(qif (q1) — gof (q0) + BB L (P
B —q1)
ﬁ ~ / ! ’ el
— _ 26
50 —ap Bpx(f'(q1) — f'(q0) + B f'(P) (26)
D0 B (o)1 — qu) + Baox(F(q1) — F'(qo) + BB S (H)
B —q1)

canbe shownto be equivalentto the vanishingof the derivativesof the potentialfunction 4
with respecto ¢1, go andgi». In termsof theseparametershe asymptoticenegy is given
by:

E=-pf(p)—B(fD— fqn) — Bx(f(q1) — f(q0). (27)

The usualaging behaviourwith ¢o = p = 0 is of coursethe solution of theseequations.
This correspondso forgettingtheinitial conditions,andhappensvhenT’ is higherthanthe
dynamicaltransitiontemperature However,for T’ < T, this solution, besidescontrasting
with the statical picture of the model, would be internally contradictory: indeed,at Tsp
the enegy in the primary minimum is lower than the dynamical enegy at the same
temperature. Therefore,such a solution, which would yield an asymptoticenegy equal
to the dynamicalone,would leadto a higherenegy for a lower temperature!Finally, the
numericalintegrationof the dynamicalequationsshowsthat the behaviourof the dynamical
guantitiesis very different from the caseof infinite 7/, and that C(z, 0) doesnot seem
to decreasdo zero. Thesefacts lead to the conclusionthat we must prefer the solution
with non-zerogg and p. The agingthereforetakesplacein a restrictedphase-spaceegion.
However, for T < Tsp(T’) the dynamic internal enegy is higher then the static one,
similarly to what happensstartingfrom randominitial conditions.

Let us also note that the asymptoticenegy (27) in the caseof thermalizedinitial
conditionsis lower thanthe dynamicalenepgy after a quench,showingthat this procedure
allows usto reachstateswith lower enegies. An immediateconsequencis theimportance
of the way in which the final temperatureas reached.

5. A comparisonwith real glasses

5.1. Generalconsiderations

In the studied mean-field models, we found that, below the dynamical transition T,
we could define a whole spectrumof internal enegies for the systemat temperaturer,
dependingon the way the systemhasbeenput at its final temperature:

o theequilibriumenepgy E.«(T), whichis doneby the usualBoltzmannGibbsformula;

¢ the dynamicalenepy, correspondindo the enepgy of a systemwhich is quenchedo
the final temperaturdrom a temperaturénigherthan 7p;

e the enegies E(T’, T), obtainedfor a systemat equilibrium at 7/ andthenputat 7.
Dependingon 7’ and T, the systemcan be at equilibrium or exhibit aging dynamics.
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Theseenepgies can be consistentlycomputedusing the explicit form of the dynamics.
It is also possibleto computethem by using the appropriatestatisticalprescriptionwhich
doesnot makeexplicit referenceto the dynamics.

At this point the readermay ask how much all thesefindings are relevantfor the real
world. Metastablestateswith an infinite life do not existin short-rangdinite-dimensional
modelsand their presencan mean-fieldmodelsis a clear artifact of the approximation.
The would-beinfinite life metastablestatesof the meanfield theorydo decaythroughsome
activated processegwhose detailed propertieshave not yet beenfully clarified). If the
mean-fieldpicture is relevantfor the real word the timescaleof the activatedprocesses
should be large enoughthat thereis a time window in which the behaviourpredictedby
the mean-fieldtheory can be observed.

Given our lack of commandon the activatedprocesseswe cannottreat this question
analytically and we haveto resortto numericalsimulations. We will considera simple
system,one of the prototypesof glassforming systemsknownto havea glasstransitionat
a given temperaturelg.

We will seethatwe canalsodefinevariousenegies:

o the equilibrium enegy Eeq(T);

e the slow coolingenegy Es(T), which is obtainedby the limit to infinite coolingtime
of the enepgy of a systemwhich startsat temperaturegreaterthanthe dynamicaltransition;

e the fast cooling enegy Er(T), which is obtainedby the limit to infinite cooling rate
of the enegy of a systemwhich is quenchedo the final temperaturédrom a temperature
higherthan T).

BetweenEs(T) and Ex(T), variouscoolingrateswill yield variousasymptoticenegies.

We will seethatif we cool the systemfastto a temperaturenearor below T (we have
investigatedup to temperaturegqualto 0.257¢) the enegy asfunction of the time may be
representedby the following form

Er(t) = Ep + At ™" + O~ %) (28)

wherethe exponentu is in the range0.5-0.7andweakly dependsn the temperatureThe
previousformula well representhe datafor time in the window 10?1 time units (i.e.
one Monte Carlo sweep).

In a similar way, we canrepresenthe datafor the slow-cooledenegy asa function of
time with a similar form in the sametime window:

Es(t) = Es+ At ™" 4+ O(t~2) (29)

wherethe exponentu is compatibleto be equalto the oneusedin equation(28).

The two functions Eg and Eg are different from one anotherbelow Tg and their
differencevanishesvhenwe approachl. It is clearthatthe two previousformulaecanbe
valid only in alimited time window; asymptoticallythe two enegies Ex(t) and Es(¢) must
go to the samelimit (i.e. the equilibrium value of the enegy). This is likely to happenon
a muchlongerscale. Here we want to stressthe presenceof a time window in which the
predictionof a theorybasedon the existenceof metastablestatescanbe tested.

Before showingthe resultsof the numericalsimulations,we will give somedetailsof
the modelwe consider.

5.2. TheHamiltonian

The model we consideris the following. We have taken a mixture of soft particles of
differentsizes.Half of the particlesareof type A, half of type B andthe interactionamong
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the particleis given by the Hamiltonian:
o (i) + o (k) )12
H= _— 30
,Zk: ( i — | (30)
wheretheradius(o) depend®on thetype of particles. This modelhasbeencarefully studied
in the past[24—29]. It is knownthata choiceof theradius,suchthato /o4 = 1.2, strongly
inhibits crystallizationandthat the systemggo into a glassyphasewhenit is cooled. Using

the sameconventionsas the previousinvestigatorswe considerparticlesof an average
diameterof 1, more preciselywe set

02 +2(os +0p)3 + og
4
Due to the simple scaling behaviouurof the potential, the thermodynamicquantities
dependonly on the quantity T%/p, T and p being respectivelythe temperatureand the
density. For definitenessve havetakenp = 1. It is usualto introducethe quantityT™* = 8.
The glasstransitionis known to happenaroundl’ = 1.45 (i.e. for T ~ 0.226) [25].

—1 (31)

5.3. Numericalresults

Our simulationsare doneusing a Monte Carlo algorithm,which is more easyto dealwith
thanmoleculardynamics,if we changethe temperaturén an abruptway. Eachparticleis
shiftedby a randomamountat eachstep,andthe size of the shift is fixed by the condition
that the averageacceptanceate of the proposalchangeis about0.4. Particlesare placed
in a cubic box with periodic boundaryconditions. In our simulationswe haveconsidered
a relatively small numberof particles,i.e. N = 66. Note that for all the simulations,the
systemis alwaysout of equilibriumandexhibitsaging: the emgodictime is far beyondreach
[27,28,30].

We start by placing the particlesat randomand quenchthe systemby putting it at its
final temperaturdi.e. infinite cooling rate). The typical value of the enegy densityof the
initial configurationis very high (O(10%)) dueto the singularform of the potentialand it
takesa few iterationsto arrive at a morereasonablealue. We showthe dataasa function
of Monte Carlotime ¢ in figure 8 for I' = 1.8 (T =~ 0.095).

In the slow cooling approachwe also start by placing the particlesat randomat the
beginning. We divide the cooling time into five equalintervals: in the first interval we
havel’ = 1, in the secondinterval ' = 1.2, ... andthe fifth interval " = 1.8. The data
aretakenfor eachtemperatureonly in the secondhalf of the correspondingnterval. The
results,asa function of the time spentat eachtemperaturei.e. of theinverseof the cooling
rate, are shownin figure 8 for I' = 1.8. We clearly seethat the two curves Er and Es
definitely extrapolateo a differentvalue. The extrapolatedraluesof the enegy asfunction
of the temperaturecan be seenin figure 10 usingthe fast andthe slow cooling methodin
theregionT” > 1.4 (T < 0.26). The dataare not shownat highertemperatureshecause
the two methodsgive the sameresult. Other proceduredo investigatethe dependencef
the cooling rate involve a similar coolingfrom I = 1 to I' = 1.8 in a total time f¢ooiing,
with timesteaing/4 spentatT” = 1, 1.2, 1.4, 1.6, andthenthe study of the evolutionof the
enegy atI" = 1.8. Thelong time limit of the enepy lies thenbetweenEr (for tcooling — 0)
and Es (for feooling = 00). In figure 9 we showin the evolutionof theenegy atI" = 1.8 for
variouscooling rates. The effectsare quite small, soit is necessaryo comparereasonably
differentrates. For the availabletimes, the enegy of the systemdependn the cooling it
hasfollowed: the enegy is lower for slower cooling procedures.
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Figure 8. ‘Fast’ curve: enepy asa functionof 1 ~% wherer is thetime spentatI" = 1.8 aftera
rapidquench;'slow’ curve: enegy reachedattheendof thetime spentatI" = 1.8, asafunction
of of 195, where: is the time spentat eachtemperatureduring the gradualquenchprocess.
We seethat slower cooling yields lower enegies. The continuationto 1~%5 — 0 corresponds
to aninfinitely slow cooling.

Energy

192
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Figure 9. Evolution of theenegy atI" = 1.8 (T ~ 0.095), asa function of time, for various
cooling rates;the horizontallines correspondo Er and Es. The lower curvescorrespondo
slower coolings.

Moreover,it is worth noting that the value of n is, roughly speaking,independenbf
the temperaturg30]. This phenomenorhappensn the only model of mean-fieldtheory
wherethe exponenthasbeencomputed 31] andthisis a strongindicationthatthe approach
to equilibrium in this regionis not dominatedby activatedprocessesbut more (roughly
speaking)by entropic barriers: the barriersbetweenmetastablestatescould include both
enegetic and entropic effects [32]. Moreover, this showsthe possiblerelevanceof the
scenariadetailedin the preceedingparagraphagingsimilar to usual,but at lower enegies),
and of someintuitive mean-fieldscenariog33)].
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Figure 10. Extrapolationsof the enegies Er and Es at large times, i.e. asymptoticenegies
after a quenchor aninfinitely slow cooling, for varioustemperatures.

It would beinterestingto be ableto simulatethe thermalizatiorat a certaintemperature,
followed by a quenchat a lower temperaturelike in mean-fieldmodels. Unfortunately,the
availabletime window doesnot allow usto reachthermalizatiorat temperaturetower than
the dynamictransition.

Anotherpossibility would be to cool the systemvery slowly to a certainvalue7’, such
thatits enepgy is lower than Es(T) for a certainT (T > T’), andthento bring the system
backto T, to seewhetherthe obtainedeneny is still lowerthan Es(T). Suchinvestigations
are howeverbeyondthe scopeof this shortstudy.

6. Summary and conclusions

In this paperwe have investigatedthe behaviourin temperatureof the metastablestates
of long-rangespin glasseswith first-order freezing transition. We have shown that the
metastablestatescan be followed up and down in temperature,from the temperature
where they are dominating the partition function. Going up in temperatureone finds
sometemperaturenvhere the statesdisappearmeiging with somemaxima. Going down
in temperaturethe statesneverdisappearalthoughin somerangeof T’ multifurcationis
found. We also studiedthe dynamicsat temperaturel’ < T,, following a quenchfrom
equilibrium at temperatureT’. If T’ > T, we find no differencefrom the usual aging
behaviour{17] thatfollows a quenchfrom infinite temperatureFor 7’ < T, we havefound
two possibilities.If T > Tsp(T’) the original valley has‘deformed’ but not bifurcatedand
the systemis ableto equilibrateinsideit. In the complementarynterval T < Tisp(T') the
landscapéhaschangeddrasticallyasthe original valley hasbifurcated. The systemis then
unableto thermalizeandfalls in an agingregime,while remainingconfinedin the vicinity
of the initial data. Besidesthis dynamicalstudy showsthat the aging after a slow quench
(in the mean-fieldcase the caseof thermalizednitial conditionsat 7', canbe thoughtof as
asituationafteraninfinitely slow quench)allowsusto reacha situationwherethe behaviour
is qualitatively similar to the one after a rapid quench(i.e. aging correspondingo a slow
touring of the phasespace) but within a phase-spaceegionwith lower enegies. Therefore,
at a giventemperaturel’, the possibilitiesare not only of agingat a relatively high enegy,
aftera suddenquench,or of equilibrium dynamicsafter aninfinitely slow quench but also
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of agingat intermediateenegies, dependingon the route from a high temperaturedo 7.

In the last section,we tried to emphasizethe possiblerelevanceof such mean-field
scenariodor finite dimensionswhereit hasbeenadvocatedhat metastablestatesmay still
exist, but with a finite lifetime: comingfrom a high-temperatur@hase the systemmay be
ableto find thesestatesin a finite time, andthe resultingaging behaviourwhendecreasing
thetemperatureould be a mixture of jumpsbetweenstatesand periodsof wanderingwhen
statesbifurcate.

Indeed,the numericalstudy of section5 showsindicationsthat, at leastin the explored
time window, for a soft spheremodel of glass exhibiting aging, the dynamicsis not
dominatecdby activatedprocessesDependingon the cooling ratefrom the high-temperature
phaseyariousenepgiescanbe reached.Sincethe systemis finite, it shouldhoweverreach
equilibrium in a finite time (the enegy shouldreachthe equilibrium enegy, whateverthe
routeto the final temperaturenay be) but, thesesimulationsshowthat, evenfor arelatively
small system this finite time is very large, andthereforethat mean-fieldconclusionscanbe
of importancein the real world.
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Appendix

We considerthe casewhen the primary minimum of the potentialis in the RS region:
do = g1 = q. Then,for fixed T’, we computethe valueof g1, andg for this minimum, g7,
andg?". The saddle-poinequationdor ¢g, g1, x reduceto

ﬁZf/(qPr) — Lqﬂz (32)
(1—gr)?
andthe equation% =0is
a1
rple PPN
BB S 0l = 0 (33)
The value of the potentialis
r r r ! r 1 r
Vprimary: _ﬂ/f(CIfz) + gf(qp ) — g(l_ q™) f'(q") — % In(1— q’). (34)
The enegy of the secondreplica,in this minimum, is
d
Eprimary = %(,BV + ,BF(T)) (35)
which yields
Eprimary= —ﬁ/f(szr) + /3f(61’") - IBf(l) (36)
On the otherhand,we canwrite the TAP free enepgy as:
1 /
Jfme(H,q,B) =H — 25 In(1—¢q) — g(f(l) - f@—-A-9)f (@) (37)

whereg = % > ml2 and H is the valuetakenby the Hamiltonian H ({m;}), sothe enegy
of a TAP statem; is

0
Evap = a%f —H - B — f@) — A—q)f'@). (38)
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Then,taking
Hyr = Eprimary + B(f (D) — f(g"") — (1= q") f'(@"™) (39)
we obtainimmediatelythat
Vorimary = frap(Hpr, g7, B) — Frs(T). (40)

This meansthat Vyrimary is the free-enegy costof havingthe secondreplicain a TAP state
with parametey”” andenegy Epimary at inversetemperatures.
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