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Abstract
We present a biased review of some of the most ‘spectacular’ effects appearing
in the dynamics of granular gases where the dissipative nature of the collisions
leads to a rich phenomenology, exhibiting striking differences with equilibrium
gases. Among these differences, the focus here is on the illustrative examples
of the ‘Maxwell demon’-like experiment, modification of Fourier’s law, non-
equipartition of energy and non-Gaussianity of the velocity distributions. The
presentation remains as non-technical as possible.

1. Introduction

Coulomb, Faraday, Huygens and Reynolds are among the prominent founding fathers of the
study of granular materials. Subsequently, this field has mostly been investigated by engineers.
During the last 15 years, however, physicists seem to have rediscovered the field and have
gradually become more involved again, partly due to the increase of computer resources [1, 2].
Beyond fashion effects and important industrial stakes, the behaviour of granular matter in its
own right is remarkably rich, and often resists understanding [3].

The corresponding systems are nevertheless simple to define. Broadly speaking, they
are composed of macroscopic compounds (with sizes larger than a fraction of millimetre).
Two crucial properties of granular matter directly follow from this size constraint: first,
ordinary temperature is irrelevant,as may be appreciated by comparing the typical gravitational
energy of a grain to the thermal agitation energy. Second, the interactions between grains
are dissipative. They involve complex macroscopic processes such as fracture, friction, and
internal vibrations, which contribute to dissipate kinetic energy. The mechanisms for exploring
configuration space are therefore unusual and any dynamics results from an external drive. The
resulting stationary states often differ from those observed in conservative systems (such as
molecular gases, ordinary liquids, or colloidal suspensions) with sometimes spectacular or
unexpected effects. The purpose of the present paper is to present in a concise and non-
technical manner four manifestations of those differences. We will restrict the discussion to
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the so-called gaseous state of granular matter, where a rapid flow is obtained by a violent and
sustained excitation. This does not necessarily mean that the total density has to be small. In
this regime (as opposed to the quasi-static limit which has been the object of intense research
and where solid or liquid-like behaviour may be observed), the only contacts between grains
occur during collisions. The corresponding ‘gases’ have been studied experimentally, but also
with numerical and analytical tools, and they provide an ideal situation for comparison between
the various approaches [1, 2].

This paper is organized as follows. Section 2 describes the general experimental and
theoretical framework of granular gases. Sections 3–6 then present four striking consequences
of the dissipative nature of collisions in granular gases. For more details, the interested reader
is referred to comprehensive books, such as [1, 2], to reviews [4–6], and to the references
provided therein.

2. Experiments, models and theoretical approaches

2.1. Experiments

A granular gas is typically obtained by enclosing sand or balls made of glass, steel, brass,
ceramic beads, etc in a container, which is subsequently vigorously shaken. The energy
injected at the boundaries compensates for the dissipative collisions [7], and allows the grains
(particles) to follow ballistic trajectories between collisions. The experimentally challenging
aspects deal with measurements of different relevant quantities (e.g. local density, velocity
distribution from which the velocity field may be extracted, etc). This requires sophisticated
detection devices (such as ultra-fast cameras,diffusive wave spectroscopy,magnetic resonance,
and positron-based techniques) [9–11, 8]. The most frequently employed experimental set-ups
are made up either of cylindrical containers [10] (which may block direct visualization), or of
thin cages with transparent boundaries [9], which make the system quasi-two-dimensional. In
order to obtain reproducible and reliable results, much effort has been paid to control the size
distribution, with spherical beads of typical millimetric size.

2.2. Modelling

Two features are essential to capture the behaviour of granular gases: the excluded volume on
the one hand (hard core effect), and the dissipative nature of collisions on the other hand. The
simplest approach incorporating these two aspects is the paradigmatic inelastic hard sphere
model [12, 13]. In this modelling, spherical grains that do not interact at distances larger
than their diameter (with forbidden overlaps) undergo momentum-conserving but dissipative
(inelastic) collisions. These collisions are assumed instantaneous so that events involving more
than two partners may be neglected. Suppose we have a binary mixture, where i labels both
the particle and the species in the mixture, and where mi = {m1, m2}. For two grains i and j
belonging to species i and j respectively, the post-collision velocities (denoted with primes)
read

v′
i = vi − m j

mi + m j
(1 + αi j)(σ̂ · vi j)σ̂ (1)

where i and j take the values 1 or 2. Here σ̂ is the centre-to-centre unit vector (oriented i → j
or j → i ) and vi j = vi − v j is the pre-collision value of the relative velocity. In equation (1),
αi j is the coefficient of normal restitution associated with the pair (i j). The collision dissipates
kinetic energy for αi j < 1, whereas αi j = 1 corresponds to the elastic (conservative) case.
For the sake of simplicity, the latter coefficient is taken independent of vi j or of the impact
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parameter of the collisions. While this is certainly an oversimplification of the experimental
reality, it appears that thorough measurements of the restitution coefficient are scarce under
conditions relevant for the study of bulk properties [14–17]. Bearing these limitations in mind,
the inelastic hard sphere model with a constant coefficient of normal restitution is useful as a
minimal approach to understand the rich phenomenology of granular gases, since it not only
facilitates numerical investigations but also allows for analytical studies. In particular, the next
sections will show how the striking effects of inelasticity are captured by this simple model.

More realistic models have also been proposed, where the particles have rotational degrees
of freedom, and where there is also, in addition to normal restitution, tangential restitution [18],
with sticking and sliding friction, the restitution coefficients depending on the velocities or
visco-elastic interactions [1, 2, 14, 19–22].

2.3. Analytical approaches

From the theoretical point of view, the methods range from a microscopic description
using kinetic theory, to continuum mechanics-like approaches (hydrodynamics), aiming at
establishing the evolution equations governing the dynamics of suitably defined coarse-grained
fields (density, momentum, kinetic energy, etc) [5]. In a molecular gas or an ordinary liquid,
the validity of the hydrodynamic approach relies on the existence of conserved quantities
(collisional invariants) among which the kinetic energy plays a key role. In a granular gas,
this approach seems a priori questionable, due to dissipation. In addition, new length and
timescales emerge, that may equally well interfere with the microscopic and macroscopic
scales [23].

3. From the Maxwell demon . . .

In a celebrated thought experiment,James Clerk Maxwell described in 1871 a demon capable of
separating slow from fast molecules in a gas, in order to create a ‘hot’ compartment and a ‘cold’
one. Many physicists—among which Brillouin—have contributed to exorcize this demon: in
an equilibrium gas, such a spontaneous separation is impossible. However, a granular gas is
not an equilibrium system, but is driven by a continuous supply of energy. Several groups
have shown that under those circumstances, a spontaneous separation reminiscent of that put
forward by Maxwell could be realized [24].

The required experimental set-up is simple: the confining box is divided into two identical
compartments that may communicate through a hole. The box is then filled with particles of
a granular material and brought into a gas-like state by vertical shaking. With strong shaking,
the grains fill the two halves of the box symmetrically, but upon decreasing the agitation,
a critical threshold is met below which the above symmetry is broken. One compartment
becomes more populated than the other; the grains suffer more collisions there and dissipate
more kinetic energy. Identifying the mean kinetic energy and the temperature by analogy
with the terminology of molecular gases (see section 4), one then obtains a rather dense and
‘cold’ compartment, coexisting with a more dilute and ‘hot’ counterpart. This phenomenon
explains the name ‘Maxwell demon’, often used to refer to the previous situation [25] and [26].
The second law of thermodynamics is nevertheless not violated! In contradistinction with the
molecules Maxwell had in mind, the grains are here macroscopic and may absorb and dissipate
energy.

The left/right asymmetry may be anticipated on simple grounds. Due to the inelasticity
of collisions, a dense region in which more collisions occur will see its mean kinetic energy
decrease. If such a fluctuation leads to an increase of density in one of the compartments,
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the grains will subsequently escape at a lower rate. Conversely, in the other compartment,
the mean energy will increase, which facilitates the escape. The fluctuation is amplified and
may overcome the energy input from the base if the shaking is not strong enough, leading to
a breakdown of symmetry. Translating the above heuristic argument into a more quantitative
theory is, however, not an easy task. Phenomenological approaches have been proposed to
refine the argument, with simplifying assumptions [25, 27, 28]. Equating left–right and right–
left fluxes of grains leads to qualitative agreement with the experimental observation. The
situation where the hole is of large size (e.g. when the aperture between the two compartments
typically extends over half the box height [29, 30]) seems more amenable to analytic treatment.
When the external forcing is sufficiently strong to allow the neglect of the gravitation force,
a hydrodynamic-like description may be put forward, leading to excellent agreement with
molecular dynamics simulations of inelastic hard spheres [29, 31]. At constant forcing, the
symmetric non-equilibrium steady state becomes unstable when the number of grains exceeds
a critical threshold. One of the compartments then becomes ‘colder’ and denser than the other
one [32].

4. . . . to Fourier’s law

The hydrodynamic approach, based on a Chapman–Enskog expansion procedure starting from
the relevant Boltzmann equation (see e.g. [31, 33, 34]), specifies the form of the constitutive
relations between fluxes and gradients. A striking result derived along these lines is that
Fourier’s law (relating the heat flux q to the temperature gradient) is modified with respect to
conservative systems. A new term proportional to the density gradient must be added to obtain
the heat flux, and one has

q = −κ∇T − µ∇n, (2)

where n denotes the local density of grains. The new transport coefficient µ is positive, whereas
it vanishes in a conservative system, as required by the second law of thermodynamics to
guarantee that heat flows from hot to cold. On the other hand, the collisions induce a ‘heating’
of the internal degrees of freedom of the grains, which is neglected in modelling of granular
systems. So, there is no reason to expect a positive entropy production.

In equation (2), the so-called ‘granular temperature’ T has no thermodynamic foundation,
but only a kinetic status. This quantity has no relation with the usual temperature (irrelevant
at the grain scale as emphasized in the introduction), but is defined as the variance of the
velocity distribution at a given point. The quantity nT is therefore the local kinetic energy
density in the local centre-of-mass frame. This definition allows for a direct measurement in
an experimental system. Furthermore, it coincides with the thermodynamic definition for a
system in equilibrium. The coefficientκ is therefore the counterpart of the thermal conductivity,
whereas µ has no analogue in a molecular system and is intrinsically related to the dissipative
nature of collisions. The latter quantity has profound consequences on the behaviour of the
system, among which is a possible inversion of the granular temperature profile [35–38], a
phenomenon that has been observed experimentally [39–41] and may be understood from
a hydrodynamic argument [36, 37]. Consider a granular gas driven by an oscillating piston
located (on average) at height z = 0. The energy flux is clearly directed toward positive z since
no energy comes from the empty region at large height. Starting from the base where energy
is injected, and increasing z, the temperature first decreases since the energy is dissipated in
the bulk. The density of grains may conversely increase or decrease, depending on parameters
(gravity and inelasticity). However, the temperature T is not a monotonically decreasing
function of height, but passes through a minimum before increasing. This behaviour is at first
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sight inconsistent with the dissipative nature of collisions, and indicates that heat flows from
‘cold’ to ‘hot’! It is a direct consequence of the fact that µ �= 0 in a granular system: in the
region where dT/dz > 0, the density decays very rapidly, which constitutes the dominant
contribution to q (see equation (2)). The resulting heat flux has therefore a positive projection
onto the z-axis, as it should. Note also that this constraint implies that the density is either a
decreasing function of z [37] or may reach a maximum at a smaller altitude than that where T
is minimum [38].

5. Velocity distribution

Another important characteristics of molecular gases lies in the velocity distribution of the
molecules. There collisions do not dissipate energy, and the distribution is a Gaussian. One can
naturally expect this property to break down for granular gases with dissipative collisions. The
first experimental measurements, however, were not precise enough to show deviations from
a Gaussian. It was only recently that experimental techniques became available to determine
distributions with pronounced differences from Maxwell–Boltzmann statistics, especially in
the high-velocity tails of the distributions [42, 11, 9, 43, 8]. Several authors reported a stretched
exponential law (on the whole range of velocities available, which covers an accuracy of four
to five orders of magnitude for P(v)):

P(v) ∝ exp[−(v/v0)
ν], (3)

with various exponents (here v0 is the ‘thermal’ rms velocity). In particular, an exponent ν

close to 3/2 was found in various experiments [11, 9, 8]. This behaviour was observed for
the horizontal velocity components of a vertically vibrated 2D system of steel beads in a wide
range of driving frequencies and densities [9], but also in a 3D electrostatically driven granular
gas [8]. A question that naturally arises concerns the possible universality of this distribution.

On a theoretical level, a delicate point concerns the supply of energy to the inelastic hard
sphere system, which compensates for the dissipation caused by inelastic collisions. The
description of driven experiments indeed requires a forcing mechanism allowing the system
to reach a steady state. This task is difficult, but the heating process and resulting fluidization
described by a ‘stochastic thermostat’ [44–50] has attracted attention, in particular because it
has been shown analytically that P(v) exhibits a high-energy tail of the form of equation (3)
with ν = 3/2, independent of dimension and restitution coefficient [46], in apparent agreement
with the experiments. The above model, where an external spatially homogeneous white-noise
driving force acts on the particles and thus injects energy through random ‘kicks’ between the
collisions, is therefore considered to provide a relevant theoretical framework to quantify the
non-Gaussian form of velocity distributions.

The experimental and theoretical conditions are quite different: in the experiments, the
energy is injected at the boundaries, and the system is not homogeneous; the theoretical model
on the other hand considers a homogeneous driving by a white noise, acting in the bulk of
a homogeneous system. It turns out, however, that the agreement between experiment and
theory for the exponent ν is somewhat misleading. For realistic values of the inelasticity
(α > 0.7), and at the level of the spatially homogeneous Boltzmann equation, the predicted
high-velocity tails for P(v), decaying as exp(−Av3/2), are only reached for velocities far
beyond the experimentally accessible ones [51]. At ‘thermal’ velocities, P(v) is in fact close
to a Gaussian. Of course this does not correspond to a failure of kinetic theory, but is most
likely caused by a too simple model for forcing.

Various groups have subsequently tackled the problem by numerical simulations of
molecular dynamics [52–57]: such simulations of inelastic hard discs in a two-dimensional box
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allow the use of a reasonably realistic energy injection through vibrating walls at the boundaries
of the box, and a study of the effect of the various parameters (inelasticities, average density).
The parameters can be adjusted to obtain velocity distributions close to their experimental
counterparts, and a very good precision can be reached. The simulations lead to the conclusions
that the distributions display generically overpopulated tails with respect to a Gaussian;
moreover, the details of the distributions depend on the various parameters (density, inelasticity,
energy injection . . .) and even on the part of the system where the distribution is measured
(i.e. it depends slightly for example on the distance from the boundaries injecting energy).

From the kinetic theory point of view, numerous works have also been devoted to the un-
derstanding of the velocity distributions emerging from the inelastic Boltzmann equation. Sim-
plified models such as the Maxwell model may allow for analytical solutions [58–60],while nu-
merical resolution is often used in addition to partial solutions which allow for the prediction for
example of the high-velocity tail behaviour [48, 61]. These high-velocity tails generically dis-
play stretched exponential behaviours with an exponent depending on the details of the model,
while power-law velocity distributions may also be obtained in marginal situations [58–61].

The present consensus emerging from these various studies tends to the conclusion of
the absence of universality in the velocity distributions: various experimental conditions and
various energy injection modes lead to different distributions. Of course, these conclusions
are based on numerical studies of simplified models, so the question of universality can still
be considered as open from an experimental point of view. The only common point seem
to concern the overpopulation of the high-velocity tails with respect to a Gaussian. To our
knowledge, no simple argument, however, exists to justify this phenomenon.

6. Breakdown of equipartition in mixtures

Before concluding, let us briefly turn our attention to mixtures. For a mixture of molecular
gases in equilibrium, all species have the same temperature, irrespective of their mass, size, or
density. One may wonder if such an equipartition still holds in a granular gas. Two groups have
addressed this question experimentally [10, 62], and their results for binary mixtures clearly
demonstrate that equipartition does not hold. The mean kinetic energy of heavy grains is
larger than that of the light component. These studies have stimulated numerical and analytical
investigations, mostly centred on the kinetic theory of inelastic hard spheres [63–65, 53, 66–68].

In simplified situations of homogeneous systems (with no forcing [69] or white-noise
driving [65], as well as in shear flows [70]), analytical progress is possible. The distinction
between collisions of particles of the same species or of different species leads to closed
equations for the granular temperatures of the two components. Solving these equations allows
us then to investigate the dependence of the non-equipartition of temperature on the various
parameters of the problem (mass ratio, size ratio, densities, inelasticities, etc), which can be
varied more easily than in experiments. More realistic molecular dynamics simulations with,
for example, energy injection at the boundaries have also been carried out [64, 53, 66, 68, 54].
The results of these various investigations are in qualitative agreement with the experiments,
despite the simplifications implied by the modelization. In particular, the heavier particles carry
typically more kinetic energy (even if this is not always the case). Moreover, the violation of
equipartition increases with the mass ratio, but depends only weakly on the relative densities.

7. Conclusion

Because of the dissipative nature of the collisions, granular gases are inherently out of
equilibrium. They are subject to continuous injection and dissipation of energy. An analogy
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with molecular gases is usually drawn because of their dilution and incessant collisions.
However, this analogy breaks down as soon as the phenomenology is studied: numerous effects
forbidden by thermodynamics in equilibrium gases appear (the ‘Maxwell demon’ experiment,
modification of Fourier’s law, non-equipartition of energy) as complex consequences of an
apparent simple ingredient, the inelasticity of collisions.

In this short review, we have arbitrarily chosen to present some aspects of the rich
phenomenology of granular gases, leaving aside many questions worth attention. Among
these, we can cite the problem of inelastic collapse [71], the propagation of shock waves [72],
possible phase transitions [73], the formation of clusters [74], the long-range correlations of
hydrodynamic fields [47], and thermal convection [75–80].

In conclusion, in spite of impressive recent advances in the comprehension of its
phenomenology, the field of granular gases still poses serious experimental and theoretical
challenges. In particular, independently of its successes and the technical difficulties, the
hydrodynamic approach is still a controversial issue. In view of the lack of scale separation
and neglect of certain correlations, its efficiency seems to go (far) beyond what one could have
expected a priori.
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