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Abstract. Metapopulation models describing cities with different populations
coupled by the travel of individuals are of great importance in the understanding
of disease spread on a large scale. An important example is the Rvachev–Longini
model which is widely used in computational epidemiology. Few analytical results
are, however, available and, in particular, little is known about paths followed by
epidemics and disease arrival times. We study the arrival time of a disease in a
city as a function of the starting seed of the epidemics. We propose an analytical
ansatz, test it in the case of a spread on the worldwide air-transportation network,
and show that it predicts accurately the arrival order of a disease in worldwide
cities.
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In modern societies, individuals can easily travel over a wide range of spatial and temporal
scales. The interconnections of areas and populations through various means of transport
have important effects on the geographical spread of epidemics. In particular, the structure
and the different complexity levels of the air-transportation network are responsible for
the heterogeneous and seemingly erratic outbreak patterns observed in the worldwide
propagation of diseases [1] as recently documented for SARS [2, 3]. In order to describe
such a complex phenomenon and to obtain powerful numerical forecasting tools, different
levels of description are possible, ranging from a simple global mean-field to detailed
agent-based simulations [4]–[10] that recreate entire populations and their dynamics at
the scale of the single individual [10].

At large scale, such as the worldwide level, a very important class of models in
modern epidemiology are the so-called metapopulation models which use a description at
two levels by dividing the global population into interconnected subpopulations. Within
each subpopulation, a mean-field-like model of epidemic spreading is used, while the
spread from one subpopulation to another is due to the travel of individuals. Agents of
each subpopulation can be in various states (healthy, infectious, recovered, etc), change
state by contact with other agents and diffuse on the transportation network between
subpopulations. Metapopulation models can thus be considered as reaction–diffusion
processes, which opens up very interesting perspectives and issues [11] within the global
framework of dynamical phenomena occurring on complex networks [12]–[15]. For the
description of worldwide epidemic spreading, the subpopulations are cities connected by
a transportation network in which links correspond to the existence of passenger flows
described by the worldwide air-transportation network (WAN). The WAN represents
a major channel for the worldwide spread of infectious diseases [3, 1] and its complex,
heterogeneous features at various levels (degree distribution, traffic, populations) have
recently been characterized [17, 16].

In this letter, we focus, in the framework of such metapopulation models, on the issue
of the arrival time in a city of the first infectious individual. In particular, we study how
this time depends on the origin of the disease and on the network characteristics. This
problem is more complex than the one of random walks on complex networks [18], since
the number of infectious individuals diffusing on the network is constantly evolving due to
the inner-city epidemic dynamics. We also note that references [19, 20] were also concerned
with the arrival time problem for an epidemic spreading on a complex network, but in
a different framework: each network node was an individual (susceptible or infectious),
while in our case each node represents a whole subpopulation. After the precise definition
of the model, we will first consider the simple case of a one-dimensional topology for the
transportation network in order to gain analytical insights into this problem. This will
allow us to propose an analytical form for the arrival time in arbitrary networks. We then
test this form in the case of the WAN by simulating numerically a stochastic spreading
phenomenon on the network, and show that we can indeed predict with good accuracy the
spreading phenomenon and the arrival order of a disease in various cities at a worldwide
level.

While the precise model describing the epidemic spreading at the subpopulation level
could be refined at will in order to describe a particular disease, we are here interested in
generic and fundamental aspects of the metapopulation modeling approach. We therefore
restrict our study to a simple SI disease model in which individuals are either healthy
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(susceptible, S) or can become infectious (I) if in contact with an infectious individual.
The Rvachev–Longini SI model [21] describes the evolution of the number of infectious
Ii(t) individuals (and also of Si(t)) in each city i through

∂tIi = K({Xi}) + Ω({Ij}), (1)

where the first term K on the right-hand side describes the (epidemic) reaction process
inside each subpopulation (city), due to the interaction of individuals in the various
possible states. In our case X ∈ {S, I} (we have checked that more involved models,
such as SIS or SIR, give consistent results [22]) and the standard homogeneous mixing
assumption in each city gives [4]: K({Xi}) = λIi(Ni − Ii)/Ni, where Ni is the population
of city i and λ the spreading rate. The second term Ω represents the evolution due to the
arrival or departure of infectious individuals from or to other cities and is determined by
passenger flows on the transportation network. This model therefore considers a simplified
mechanistic approach with a widely used Markovian assumption in which individuals are
not labeled according to their original subpopulation, and at each time step the same
traveling probability applies to all individuals in the subpopulation, without memory of
their origin [21, 3, 1]. Denoting by wij the average number of passengers traveling from i
to j per unit of time (wij = 0 if there is no direct connection), the probability per unit
time that an individual travels from city i to city j is then given by wij/Ni. The full
metapopulation model is therefore described by

∂tIi = λIi(t)
Ni − Ii(t)

Ni
+

∑

j

wji

Nj
Ij −

∑

j

wij

Ni
Ii. (2)

This original formulation considers only expectation values, which can take continuous
values, so that ‘fractions’ of infectious individuals can travel and infect neighboring cities
arbitrarily fast4. To investigate arrival times, one therefore needs to take into account the
inherent stochasticity of the spreading. We thus consider in all our numerical simulations
the stochastic generalization described in [1, 3] where the number of individuals traveling
on each connection is an integer variable randomly extracted at each time step of length
Δt, with average ΔtwijIi/Ni (in the numerical simulations we will use Δt = 1day); for
simplicity we keep the endogenous growth deterministic since we are mainly concerned
with the effect of travel, but we have checked that inclusion of stochastic effects as in [1]
do not change our results [22]. Note that, in real cases such as the WAN, most weights are
symmetric (wij = wji) [16] but the probabilities of travel from one city to another are not
since they depend on the populations of the various cities: the travel effectively occurs
as a random diffusion with non-symmetric rates on the transportation network. The
topological distance thus does not contain all the information needed to characterize such
a process, nor does a priori the optimal weighted distance, which takes into account the
weights [23] but not the populations nor the endogenous epidemic evolution. Moreover,
since most transportation networks are small-world networks, many cities lie at the same
topological distance from a given seed, but will potentially be reached at very different
times.

Before turning to numerical simulations of the described model, we present an
analytical approach to the determination of arrival times. Let us first consider the simple

4 A numerical integration of (2) leads to an infection of all cities at time 0+.

doi:10.1088/1742-5468/2007/09/L09001 3

http://dx.doi.org/10.1088/1742-5468/2007/09/L09001


J.S
tat.M

ech.
(2007)

L09001

Arrival time statistics in global disease spread

t

0.01

0.02

0.03

20 40 60 80
t

0

P(
t 1=

t)

P(
t 1=

t)

0

0.04

0 10 20 30 40
0

0.02

0.04

Figure 1. Two-cities model. Arrival time t1 distribution computed by numerical
simulation and compared with the result of equation (4) for w/N0λ = 10−2 (line).
Inset: the same for w/N0λ = 10−1.

case of two cities (0 and 1), with populations N0, N1 which are connected by a passenger
flux w01 = w. We assume that, at t = 0, there are I0 = 1 infectious people in the city
0. Let us first consider that the travel events occur as instantaneous jumps of probability
p = (w/N0)Δt, at discretized times, in units of Δt. The probability that the time of
arrival t1 of the epidemic in the city 1 is equal to t = nΔt is then

Pd(t1 = nΔt) = [1 − (1 − p)I0(nΔt)]
n−1∏

i=1

(1 − p)I0(iΔt). (3)

In order to obtain the density probability P (t) of the arrival time in city 1 we consider
the limit Δt → 0, using the following assumptions: (i) I0(t) � N , which is realistic for
the usual diseases, in which only small fractions of the population are infectious; (ii) at
t1 the number of infected in city 0 is large enough so that the continuous limit for I0(t)
can be used. This last assumption is satisfied if 1/λ � 〈t1〉. Within these assumptions,
we obtain

P (t) dt =
w

N0
exp

(
λt − w

N0λ
eλt

)
Θ(t) dt (4)

(the last assumption is then 1 � ln(N0λ/w)). Here Θ(t) is the Heaviside function which
ensures the positivity of the arrival time. We recognize in (4) a Gumbel distribution with
average 〈t1〉 = (1/λ)[ln(N0λ/w) − γ], where γ is the Euler constant. The variance is
Var(t1) = π/

√
6λ and does not depend on w/N0 (the contribution of the negative values

of t in the Gumbel distribution has to be negligible which is satisfied if
∫ 0

−∞ P (t) dt =

w/N0λ � 1). Within these assumptions, we obtain a good agreement between results
of numerical simulations using discretized travel events [1] and the theory which uses
continuous approximations (see figure 1).
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Figure 2. (A)–(C) Arrival time distribution on a line at city #7, from
numerical simulations for a fixed random set of populations {Ni} and weights
{wi} (black circles). Red crosses: distributions for (A) uniform travel wi = w̄
and populations {Ni}; (B) uniform populations Ni = N̄ and weights {wi};
(C) uniform populations Ni = N̄ and weights wi = w̄. We use a small value
of n since most real complex networks are small-world: any node lies at a small
distance from the seed.

We now consider the case of a one-dimensional line of cities connected by passenger
fluxes of random intensity. We assume that the spreading process starts at city 0 and we
denote by tn the arrival time in city n. The quantities having the same unit as tn are 1/λ
and Ni/wi, where wi is the number of passengers traveling from i to i + 1 per unit time.
Dimensional analysis then implies that the probability distribution of the adimensional
quantity λtn must be a function of the other adimensional quantities which are the
wi/(λNi): P (λtn) = Gn(λtn, {wi/Niλ}), where Gn is an unknown function. One can write
tn as a sum of random variables, Δi = ti − ti−1 which are, however, correlated since each
local infection process depends on the history of the epidemics in all previously infected
cities. While a complete study of P (λtn) is left for future work [22], numerical simulations
of the spreading show (figure 2) that it obeys important invariance properties. For
heterogeneous populations and travels (wi and Ni are distributed uniformly in [10, 2000]
and [105, 2×107], respectively), the whole distribution is invariant when one replaces (i) all
the random weights by their geometrical mean w = (

∏n−1
i=0 wi)

1/n; (ii) all the random

populations by their geometrical mean N = (
∏n−1

i=0 Ni)
1/n; (iii) all weights by w and all

populations by N . The ratios of the average times for these different sets stay very close
to 1, with deviations at most of the order of 5%.

The average arrival time can thus be written as λ〈tn〉 = F ({ wi

Niλ
}), where F (x1, . . . , xn)

is a symmetric function of its variables which depends only on the product
∏

xi, and such
that 〈t1〉 is the average of the Gumbel distribution (4). This leads to the following ansatz:

λ〈tn〉 ≈ χ(n) ≡ ln

[
n−1∏

i=0

Niλe−γ

wi

]
. (5)
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Figure 3. λ〈tn〉 versus χ(n) for five cities connected on a line, with 100 different
random sets {wi, Ni}. Each point is an average over 1000 epidemics for each
realization of the random weights.

Figure 3 shows that the average arrival time in a city is indeed determined by χ to a
very good extent (while the arrival time at a given topological distance from the seed can
vary a lot). More quantitatively, χ is approximately proportional to λ〈t〉, which it slightly
overestimates since we neglect the flow of infectious individuals from n − 2 to n − 1 with
respect to the endogenous increase of In−1 during [tn−1; tn] [22].

We now consider a generic transportation network between the cities. The
quantity (5) can easily be computed on any path of length n on the network. While
the spread can a priori follow multiple paths from one city to another, we can reasonably
assume that the most probable path is the one which minimizes the value of χ computed
on it, leading to the smallest arrival time possible (a more refined ansatz taking into
account multiple paths does not lead to strong differences in the final results [22]). We
thus obtain the following ansatz for the arrival time at a city t of a disease starting at
node s:

χ(s, t) = min
{Pst}

∑

(k,l)∈Pst

[
ln

(
Nkλ

wkl

)
− γ

]
, (6)

where {Pst} is the set of all possible paths connecting s to t, and the sum is over the links
(k, l) on the paths. In other terms, we have introduced a new (non-symmetric) weight
ln(Niλ/wij)−γ on each oriented link (i, j) of the network (note that, since the weights are
real-valued, it is highly improbable that two different paths with the same sum of weights
exist).

We have simulated, using the model developed in [1], and summarized above, a
spreading phenomenon on a subnetwork of the WAN, composed of the 2400 nodes for
which the populations are larger than 10 000 inhabitants and which corresponds to 98%
of the total traffic5. The arrival times are computed by solving numerically the equations

5 Similar results are obtained for simulations on various network models, but we present results for the WAN
which contains additional correlations which may not be present in many models [16].
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Figure 4. λ〈t〉 versus χ on the WAN for diseases starting in different cities
(whose name is specified in each graph). Each red circle corresponds to a city
and averages are done over 1000 realizations of the spreading. Crosses are an
average over cities with the same χ. When the initial seed is a hub, the average
arrival time is larger than χ in the first cities reached, due to the multiplicity of
possible paths [22].

of the Rvachev–Longini model with discretized random travel events and averaging over
1000 realizations of the spreading with the same seed (one infectious individual in a given
city). Figure 4 shows the obtained values of λ〈t〉 versus χ for various initial seeds. We
observe that the average arrival time is indeed determined by the value of χ in a given city:
various cities with the same χ are reached at the same time by the disease propagation.
While χ quantitatively overestimates the arrival time, the two quantities are correlated
strongly enough, in order to obtain with a good confidence the order of arrival of the
disease in different cities. More precisely, if we denote Δχ(i, j) = |χ(j)−χ(i)|, we show in
figure 5 the probability fc(Δχ) that the arrival times in one realization of the spread t(i)

and t(j) follow the same order as given by χ(i) and χ(j) [i.e. (t(i) − t(j))(χ(i)−χ(j)) > 0].
In other words, fc is the probability that the disease arrival rank for the two cities i and
j is correctly predicted by χ. If Δχ(i, j) is equal to 0, no prediction is possible and we
indeed obtain fc(0) = 0.5. For Δχ > 10, almost all node couples are correctly ranked.
This result has, however, to be weighted by the number of couples with such a large Δχ.
We thus plot on the same figure the cumulative distribution p>(Δχ) of the number of
couples of nodes with a given value of Δχ. We see, for example, that approximately 80%
of the couples of cities have a Δχ > 2 and more than 70% of these couples are correctly
sorted (instead of just 50% on average if no information is available).
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Figure 5. Fraction of couples of nodes correctly ranked as a function of their Δχ
(circles), in each realization of the spread, and cumulative distribution (squares)
of the values of Δχ (i.e. fraction of couples of cities (i, j) with Δχ(i, j) > Δχ).

From a theoretical point of view, metapopulation models go far beyond classical
random walks and deserve many further theoretical investigations. In this letter, we
have proposed an ansatz for the arrival time of a disease in a city, knowing the starting
point of the spread. This ansatz is a good approximation and predicts with accuracy the
arrival order of the disease in the different cities, even if they are at the same topological
distance from the seed [22]. Containment strategies could use such information to target
the cities most at risk of rapid infection, and therefore deploy limited supplies of vaccine
or antivirals in an efficient way. Further developments could include more sophisticated
compartmental or metapopulation models, and the systematic investigation of various
structures of complex networks [22]. Finally, it would be interesting to extend this study
to other scales, like the urban scale, where nodes are locations such as homes, offices or
malls [10].
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Colizza V, Barrat A, Barthélemy M and Vespignani A, 2006 Bull. Math. Biol. 68 1893

[2] http://www.who.int/csr/sars/en
[3] Hufnagel L, Brockmann D and Geisel T, 2004 Proc. Natl Acad. Sci. USA 101 15124
[4] Anderson R M and May R M, 1992 Infectious Diseases in Humans (Oxford: Oxford University Press)
[5] Hethcote H W and Yorke J A, 1984 Lect. Notes Biomath. vol 56 (Berlin: Springer)
[6] Keeling M J, 1999 Proc. R. Soc. B 266 859
[7] Pastor-Satorras R and Vespignani A, 2001 Phys. Rev. Lett. 86 3200

doi:10.1088/1742-5468/2007/09/L09001 8

http://www.iata.org
http://www.iata.org
http://www.iata.org
http://www.iata.org
http://www.iata.org
http://www.iata.org
http://www.iata.org
http://www.iata.org
http://www.iata.org
http://www.iata.org
http://www.iata.org
http://www.iata.org
http://www.iata.org
http://www.iata.org
http://www.iata.org
http://www.iata.org
http://www.iata.org
http://www.iata.org
http://www.iata.org
http://dx.doi.org/10.1073/pnas.0510525103
http://dx.doi.org/10.1007/s11538-006-9077-9
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://www.who.int/csr/sars/en
http://dx.doi.org/10.1073/pnas.0308344101
http://dx.doi.org/10.1098/rspb.1999.0716
http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1088/1742-5468/2007/09/L09001


J.S
tat.M

ech.
(2007)

L09001

Arrival time statistics in global disease spread

[8] Lloyd A L and May R M, 2001 Science 292 1316
[9] Ferguson N M, Keeling M J, Edmunds W J, Gani R, Grenfell B T, Anderson R M and Leach S, 2003

Nature 425 681
[10] Eubank S, Guclu H, Anil Kumar V S, Marathe M V, Srinivasan A, Toroczkai Z and Wang N, 2004 Nature

429 180
[11] Colizza V, Pastor-Satorras R and Vespignani A, 2007 Nat. Phys. 3 276
[12] Albert R and Barabási A-L, 2000 Rev. Mod. Phys. 74 47
[13] Dorogovtsev S N and Mendes J F F, 2003 Evolution of Networks: From Biological Nets to the Internet and

WWW (Oxford: Oxford University Press)
[14] Pastor-Satorras R and Vespignani A, 2003 Evolution and Structure of the Internet: A Statistical Physics

Approach (Cambridge: Cambridge University Press)
[15] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D-U, 2006 Phys. Rep. 424 175
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