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The availability of new data sources on human mobility is opening new avenues for investigating the

interplay of social networks, human mobility and dynamical processes such as epidemic spreading. Here

we analyze data on the time-resolved face-to-face proximity of individuals in large-scale real-world

scenarios. We compare two settings with very different properties, a scientific conference and a long-

running museum exhibition. We track the behavioral networks of face-to-face proximity, and

characterize them from both a static and a dynamic point of view, exposing differences and similarities.

We use our data to investigate the dynamics of a susceptible–infected model for epidemic spreading that

unfolds on the dynamical networks of human proximity. The spreading patterns are markedly different

for the conference and the museum case, and they are strongly impacted by the causal structure of the

network data. A deeper study of the spreading paths shows that the mere knowledge of static aggregated

networks would lead to erroneous conclusions about the transmission paths on the dynamical networks.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Access to large data sets on human activities and interactions
has long been limited by the difficulty and cost of gathering such
information. Recently, the ever increasing availability of digital
traces of human actions is widely enabling the representation and
the analysis of massive amounts of information on human beha-
vior. The representation of this information in terms of complex
networks (Anon, 2009; Dorogovtsev and Mendes, 2003; Newman,
2003; Pastor-Satorras and Vespignani, 2004; Caldarelli, 2007;
Barrat et al., 2008; Wasserman and Faust, 1994; Watts, 2007)
has led to many research efforts because of the naturally inter-
linked nature of these new data sources.

Tracing human behavior in a variety of contexts has become
possible at very different spatial and temporal scales: from
mobility of individuals inside a city (Chowell et al., 2003) and
between cities (De Montis et al., 2007), to mobility and transporta-
tion in an entire country (Brockmann et al., 2006), all the way to
planetary-scale travel (Barrat et al., 2004; Balcan et al., 2009).
Mobile devices such as cell phones make it possible to investigate
mobility patterns and their predictability (González et al., 2008;
Song et al., 2010). On-line interactions occurring between indivi-
duals can be monitored by logging instant messaging or email
ll rights reserved.
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exchange (Eckmann et al., 2004; Kossinets and Watts, 2006; Golder
et al., 2007; Leskovec and Horvitz, 2008; Rybski et al., 2009;
Malmgren et al., 2009). Recent technological advances further
support mining real-world interactions by means of mobile
devices and wearable sensors, opening up new avenues for
gathering data on human and social interactions. Bluetooth and
Wifi technologies give access to proximity patterns (Hui et al.,
2005; Eagle and Pentland, 2006; O’Neill et al., 2006; Pentland,
2008; Clauset and Eagle, 2007), and even face-to-face presence can
be resolved with high spatial and temporal resolution (http://
www.sociopatterns.org; Cattuto et al., 2010; Alani et al., 2009; Van
den Broeck et al., 2010). The combination of these technological
advances and of heterogeneous data sources allow researchers to
gather longitudinal data that have been traditionally scarce in
social network analysis (Padgett and Ansell, 1993; Lubbers et al.,
2010). A dynamical perspective on interaction networks paves the
way to investigating interesting problems such as the interplay of
the network dynamics with dynamical processes taking place on
these networks.

In this paper, we capitalize on recent efforts (http://www.
sociopatterns.org; Cattuto et al., 2010; Alani et al., 2009; Van
den Broeck et al., 2010) that made possible to mine behavioral
networks of face-to-face interactions between individuals in a
variety of real-world settings and in a time-resolved fashion. We
present an in-depth analysis of the data we collected at two widely
different events. The first event was the INFECTIOUS exhibition
(http://www.sciencegallery.com/infectious) held at the Science
Gallery in Dublin, Ireland, from April 17th to July 17th, 2009.

http://www.sociopatterns.org
http://www.sociopatterns.org
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The second event was the ACM Hypertext 2009 conference (http://
www.ht2009.org/) hosted by the Institute for Scientific Inter-
change Foundation in Turin, Italy, from June 29th to July 1st,
2009. In the following, we will refer to these events as SG and HT09,
respectively. Intuitively, interactions among conference partici-
pants differ from interactions among museum visitors, and the
concerned individuals have very different goals in both settings.
The study of the corresponding networks of proximity and inter-
actions, both static and dynamic, reveals indeed strong differences
but also interesting similarities. We take advantage of the avail-
ability of time-resolved data to show how dynamical processes that
can unfold on the close proximity network—such as the propaga-
tion of a piece of information or the spreading of an infectious
agent—unfold in very different ways in the investigated settings. In
the epidemiological literature, traditionally, processes of this kind
have been studied using either aggregated data or under assump-
tions of stationarity for the interaction networks: here we leverage
the time-resolved nature of our data to assess the role of network
dynamics on the outcome of spreading processes. At a more
fundamental level, simulating simple spreading processes over
the recorded interaction networks allows us to expose several
properties of their dynamical structure as well as to probe their
causal structure.

The paper is organized as follows: first, we briefly describe the
data collection platform and our data sets in Section 2; in Section 3
we discuss the salient features of the networks of interactions
aggregated on time windows of one day. These networks are static
objects, carrying only information about the cumulative time
that—daily—each pair of individuals has spent in face-to-face
proximity. Section 4 analyzes the dynamical properties of face-to-
face interactions between conference participants and museum
visitors. Section 5 further characterizes the aggregated network
structures by investigating the effect of incremental link removal.
Finally, Section 6 investigates the role played by causality in
information spreading along the proximity network, and Section
7 concludes the paper and defines a number of open questions.
2. Data

The data collection infrastructure uses active Radio-Frequency
IDentification (RFID) devices embedded in conference badges to
mine face-to-face proximity relations of persons wearing the badges.
RFID devices exchange ultra-low power radio packets in a peer-
to-peer fashion, as described in http://www.sociopatterns.org,
Cattuto et al. (2010), Alani et al. (2009), and Van den Broeck
et al. (2010). Exchange of radio packets between badges is only
possible when two persons are at close range (1–1.5 m) and facing
each other, as the human body acts as a RF shield at the carrier
frequency used for communication. The operating parameters of
the devices are programmed so that the face-to-face proximity
of two individuals wearing the RFID tags can be assessed with a
probability in excess of 99% over an interval of 20 s, which is a fine
enough time scale to resolve human mobility and proximity at
social gatherings. False positives are exceedingly unlikely, as the
ultra-low power radio packets used for proximity sensing cannot
propagate farther than 1.5–2 m, and a sustained excess of packets
is needed in order to signal a proximity event. When a relation of
face-to-face proximity (or ‘‘contact’’, as we will refer to it in the
following) is detected, the RFID devices report this information to
receivers installed in the environment (RFID readers). The readers
are connected to a central computer system by means of a local area
network. Once a contact has been established, it is considered
ongoing as long as the involved devices continue to exchange at
least one radio packet for every subsequent interval of 20 s.
Conversely, a contact is considered terminated if an interval of
20 s elapses with no packets exchanged. For a detailed description
of the sensing platform and some of its deployments, see http://
www.sociopatterns.org, Cattuto et al. (2010), Alani et al. (2009),
and Van den Broeck et al. (2010).

The deployments at the Science Gallery in Dublin (http://www.
sciencegallery.com/infectious) and at the HT09 conference in Turin
(http://www.ht2009.org/) involved vastly different numbers of
individuals and stretched along different time scales. The former
lasted for about three months and recorded the interactions of
more than 14,000 visitors (more than 230,000 face-to-face contacts
recorded), whereas the latter took place over the course of three
days and involved about 100 conference participants (about 10,000
contacts). Behaviors are also very different: in a museum, visitors
typically spend a limited amount of time on site, well below the
maximum duration permitted by the museum opening hours, they
are not likely to return, and they follow a rather pre-defined path,
touching different locations that host the exhibits. In a conference
setting, on the other hand, most attendees stay on-site for the entire
duration of the conference (a few days), and move at will between
different areas such as conference room, areas for coffee breaks and
so on. The coverage of the community was different in both
settings. At the Science Gallery, visitors were equipped with a
RFID tag upon entering the venue, as part of an interactive exhibit,
and therefore almost the totality of them were tracked. On the
other hand, at HT09, about 75% of the participants volunteered
to being tracked. This sampling may introduce some biases in the
results. Sampling issues are also commonly encountered in the
study of static complex networks (Willinger et al., 2002; Petermann
and De Los Rios, 2004; Clauset and Moore, 2005; Dall’Asta et al.,
2005). Cattuto et al. (2010) have shown that for a broad variety of
real-world deployments of the RFID proximity-sensing platform
used in this study, the behavior of the statistical distributions of
quantities such as contact durations is not altered by unbiased
sampling of individuals. On the other hand, we cannot completely
rule out that a systematic bias is introduced by the selection of
volunteers, if volunteers and non-volunteers have different beha-
vioral patterns. Accurately checking this point would require
monitoring an independent data source for face-to-face contacts,
and because of scalability issues this would be feasible only for
small control groups. Issues regarding the effect of missing data and
incomplete sampling on the properties of dynamical processes
unfolding on the networks also deserve attention and will be the
subject of future investigations.
3. The static interaction network

We start by analyzing aggregated networks of interaction
obtained by aggregating the raw proximity data over one day.
This aggregation yields a social graph where nodes represent
individuals, and an edge is drawn between two nodes if at least
one contact was detected between those nodes during the interval
of aggregation. Therefore, every edge is naturally weighted by the
total duration of the contact events that occurred between the tags
involved, i.e., by the total time during which the corresponding
individuals have been in face-to-face proximity.

The choice of daily time windows seems quite natural in our
settings. It would represent, for instance, a typical time scale for a
description of articulated social networks based on surveys, in
which each participant would (ideally) declare who s/he has
encountered during the course of the day. Such a choice for the
duration of the time-window, albeit natural, is by no means unique
(Clauset and Eagle, 2007). For instance, it is possible to aggregate
the data over longer periods of time (weeks or months) to
investigate the stationarity of the collected data (Cattuto et al.,
2010). Shorter aggregation times of the order of a few minutes are

http://www.ht2009.org/
http://www.ht2009.org/
http://www.sociopatterns.org
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HT09: June 30th SG: July 14th

SG: May 19th SG: May 20th

Fig. 1. Daily aggregated networks in the HT09 and SG deployments. Nodes represent individuals and edges drawn between nodes if at least one contact event was detected

during the aggregation interval. Clockwise from top: aggregated network for one day of the HT09 conference, and for three representative days at the SG deployment. In each

case, the network diameter is highlighted. All the network visualizations in this study were produced using the igraph library (Csardi and Nepusz, 2006).

Fig. 2. Number of connected components (CCs) in the daily aggregated networks of

the SG deployment as a function of the number of visitors.
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also useful, for instance, to resolve circadian activity patterns at the
venue under investigation.

Fig. 1 displays the aggregated contact networks for June 30th at
the HT09 conference (top left), and for three representative days for
the SG museum deployment. Despite the large variation in the
number of daily museum visitors, ranging from about 60 to 400,
the chosen days illustrate many features of the SG aggregated
networks, in particular the presence of either a single or two large
connected components (CC) in the network. Days with smaller
numbers of visitors can also give rise to aggregated networks made
of a larger number of small isolated clusters. As shown in Fig. 2,
depending on the number of visitors the number of CC can in fact
vary substantially. For a large number of visitors, typically only one
CC is observed. For a low number of visitors, on the other hand,
many clusters are formed. Overall one also notices that the network
diameter (highlighted in all the plots of Fig. 1) is considerably
longer for SG than for HT09 aggregated networks, reflecting the
different behavioral patterns in these settings.

The small-world nature—or lack thereof—of the aggregated
networks can be investigated statistically by introducing a proper
null model. To this end, we construct a randomized network using
the rewiring procedure described by Maslov et al. (2004). The
procedure consists in taking random pairs of links (i,j) and (l,m)
involving four distinct nodes, and rewiring them as (i,m) and (j,l).
This procedure preserves the degree of each node and the degree
distribution P(k), while destroying the degree correlations between
neighboring nodes, as well as any other correlations linked to node
properties. The procedure is carried out so that initially distinct CCs
do not get merged. Since the rewiring procedure cannot be
implemented for the rare CCs with less than four nodes, these
small CCs are removed from the aggregated networks before
rewiring. Fig. 3 displays a single realization of the null model for
the networks in the top row of Fig. 1. We notice that the rewired
version of the aggregated HT09 network is very similar to the
original version, whereas the null model for the aggregated
network of the SG data on July 14th is more ‘‘compact’’ than the
original network and exhibits a much shorter diameter. Similar
considerations hold for the other aggregated networks of the SG
deployment.

More quantitatively, we measure the mean number of nodes
one can reach from a randomly chosen node by making l steps on
the network, a quantity hereafter called M(l). For a network
consisting of a single connected component, the definition of



Fig. 4. Average number of nodes reachable from a randomly chosen node by making l steps on the network, M(l), divided by its saturation limit Mð1Þ, for daily aggregated

networks (circles) and their randomized versions (triangles). For the randomized case, data are averaged on 100 realizations. Left: network aggregated on June 30th for the

HT09 case. Right: SG deployment, July 14th. The solid lines are only guides for the eye.

Fig. 5. Degree distributions P(k) averaged over all daily aggregated networks, for the HT09 (left) and the SG (right) cases.

HT09: June 30th (rewired) SG: July 14th (rewired)

Fig. 3. Randomized versions of the daily aggregated networks in the top row of Fig. 1. Left: HT09 deployment, June 30th. Right: SG deployment, July 14th. The network

diameters are highlighted as in Fig. 1. In the SG case, the randomized network is much more ‘‘compact’’ than the original one, with a much shorter diameter.
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M(l) implies that

Mð1Þ ¼/kSþ1 and Mð1Þ ¼N, ð1Þ

where /kS is the average node degree, N is the total number of
nodes in the network and Mð1Þ the saturation value of M on the
network. The saturation value Mð1Þ is reached when l is equal to
the length of the network diameter, and may vary for different
realizations of the random networks. For a network consisting of
several CCs one has to take into account the probability Ni/N that
the chosen node belongs to a given CC, where Ni is the number of
nodes in the i-th CC. As a consequence, Eq. (1) generalizes to

Mð1Þ ¼
1

N

X
i
Nið/kSiþ1Þ and Mð1Þ ¼

1

N

X
i
N2

i , ð2Þ

where /kSi is the average node degree on the i-th CC. This ensures
that the quantity MðlÞ=Mð1Þ, regardless on the number of CC,
assumes the same value when l¼1, and saturates to unity for both
the aggregated and rewired network. Fig. 4 displays MðlÞ=Mð1Þ for
the aggregated networks on the top row of Fig. 1, as well as its value
averaged on 100 randomized networks (the average value of M(l)
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converges rapidly already when calculated on a few tens of
randomized networks). We notice the striking similarity between
the results for the HT09 original and randomized networks, where
about 90% of the individuals lie, in both cases, within two degrees of
separation. In the SG case, conversely, the same 90% is reached with
six degrees of separation for the original network, but with only
three degrees of separation on the corresponding randomized
networks. The same calculation, performed on other aggregated
SG networks, yields qualitatively similar results, always exposing a
dramatic difference from the null model.

One of the standard observables used to characterize a network
topology is the degree distribution P(k), i.e., the probability that a
randomly chosen node has k neighbors. Fig. 5 reports the degree
distributions of the daily aggregated networks, averaged over the
whole duration of the HT09 deployment (left) and SG deployment
(right). For the SG case, we left out the few isolated nodes that
contribute to the degree distribution for k¼0 only. The P(k)
distributions are short-tailed in all cases: P(k) decreases exponen-
tially in the SG case, and even faster for HT09. We notice that the
HT09 degree distribution exhibits a peak at k around 15–20,
pointing to a characteristic number of contacts established during
the conference. Moreover, the average degree in the HT09 case,
/kS, close to 20, is more than twice as high as that for the SG
networks, /kS which is close to 8. This represents another clear
indication of the behavioral difference of conference participants
versus museum visitors (the fact that the average degree is high for
conference attendees can be regarded as a goal of the conference
Fig. 6. Visit duration distribution at the SG museum (histogram) and fit to a

lognormal distribution (red line). (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

12:00 t
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Fig. 7. Aggregated networks for two different days of the SG museum deployment. Nod

diameter is highlighted in each case.
itself). Finally, we observe that a large fraction of the recorded
contacts are sustained for a short time: for instance, removing all
the contacts with a cumulated duration below 1 min yields /kS
about 7.5 for HT09 and /kS about 3.5 for SG.
4. Temporal features

The availability of time-resolved data allows one to gain much
more insight into the salient features of the social interactions
taking place during the deployments than what could be possible
by the only knowledge of ‘‘who has been in face-to-face proximity
of whom’’.

We first investigated the presence duration distribution in both
settings. For the conference case, the distribution is rather trivial, as
it essentially counts the number of conference participants spend-
ing one, two or three days at the conference. The visit duration
distribution for the museum, instead, can be fitted to a lognormal
distribution (see Fig. 6), with geometric mean around 35 min. This
shows that, unlike the case of the conference, here one can
meaningfully introduce the concept of a characteristic visit dura-
tion that turns out to be well below the cutoff imposed by museum
opening hours. The existence of a characteristic visit duration sheds
light on the elongated aspect of the aggregated networks of visitor
interactions (see Fig. 1). Indeed museum visitors are unlikely to
interact directly with other visitors entering the venue more than
1 h after them, thus preventing the aggregated network from
exhibiting small-world properties. Fig. 7 reports the SG aggregated
networks for two different days, where the network diameter is
highlighted and each node is colored according to the arrival time
of the corresponding visitor. One notices that, as expected from the
aforementioned properties of the visit duration distribution, there
is limited interaction among visitors entering the museum at
different times. Furthermore, the network diameter clearly defines
a path connecting visitors that enter the venue at subsequent times,
mirroring the longitudinal dimension of the network. These find-
ings show that aggregated network topology and longitudinal/
temporal properties are deeply interwoven.

Let us now focus on the temporal properties of social interac-
tions. At the most detailed level, each contact between two
individuals is characterized by its duration. The corresponding
distributions are shown in Fig. 8. As noted before, in both the HT09
and SG cases most of the recorded interactions amount to shortly
sustained contacts lasting less than 1 min. However, both distribu-
tions show broad tails—they decay only slightly faster than a
power law. This behavior does not come as a surprise, as it has been
observed in social sciences in a variety of context ranging from
human mobility to email or mobile phone calls networks (Eckmann
et al., 2004; Hui et al., 2005; Cattuto et al., 2010; Oliveira and
Barabási, 2005). More interestingly, the distributions are very close
(except in the noisy tail, due to the different number of contributing
o 13:00
o 14:00
o 15:00
o 16:00
o 17:00
o 18:00
o 19:00
o 20:00

es are colored according to the corresponding visitor’s entry time slot. The network
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events), showing that the statistics of contact durations are robust
across two very different settings. This robustness has been
observed by Cattuto et al. (2010) across different scientific
Fig. 10. Strength distributions P(s) in the HT09 (left) and SG (right) aggregated networks

interaction of the corresponding individual with other individuals.

Fig. 8. Distributions of the contact durations for the HT09 (triangles) and SG

(circles) deployments, averaged over all days. Despite the differences in the

measurement contexts, the distributions are superimposed.

Fig. 9. Weight distributions for the daily aggregated networks of one HT09

conference day (triangles) and for the SG aggregated networks (circles), averaged

over all daily aggregated networks. The weight of a link represents the total time

spent in face-to-face proximity by the two linked individuals during the aggregation

interval (here one day).
conferences, but the museum setting corresponds to a situation
in which a flux of individuals follows a predefined path, and this
strong similarity between distributions was therefore not expected
a priori. At a coarser level, aggregated networks are characterized
by weights on the links, that quantify for how long two individuals
have been in face-to-face proximity during the aggregation inter-
val. Fig. 9 displays the distributions of these weights w. These
distributions are very broad (Cattuto et al., 2010): while most links
correspond to very short contacts, some correspond to very long
cumulated durations, and all time scales are represented, that is, no
characteristic interaction timescale (except for obvious cutoffs) can
be determined. We note that at this coarser level of analysis the
distributions are again very similar.

For each individual, the cumulated time of interaction with
other individuals is moreover given by the strength s of the
corresponding node (Barrat et al., 2004), i.e., by the sum of the
weights of all links inciding on it. The strength distributions P(s) are
displayed in Fig. 10 for the aggregated networks of the HT09
conference (left) and of the SG museum case (right). Unlike k, the
node strength s spans several orders of magnitude, ranging from a
few tens of seconds to well above 1 h. The node strength s can be
correlated with the node degree k by computing the average
strength /sðkÞS of nodes of degree k (Barrat et al., 2004). While
a completely random assignment of weights yields a linear
dependency with /sðkÞS proportional to /wSk, where /wS is
the average link weight, super-linear or sub-linear behaviors have
been observed in various contexts (Barrat et al., 2004; Cattuto et al.,
2010; Onnela et al., 2007a). A super-linear dependence such as the
one observed in some conference settings (Cattuto et al., 2010)
hints at the presence of super-spreader nodes that play a promi-
nent role in processes such as information diffusion (Pastor-
Satorras and Vespignani, 2001; Anderson and May, 1992). On
the other hand, the sub-linear dependence observed for large-scale
phone call networks (Onnela et al., 2007a) corresponds to the fact
that more active individuals spend on average less time in each call.
Fig. 11 displays the ratio /sðkÞS=ð/wSkÞ for the SG and HT09 daily
aggregated networks. Two different trends appear despite the large
fluctuations: a slightly increasing trend in the conference setting,
and a clearly decreasing one in the museum setting. In particular,
the behavior of /sðkÞS=ð/wSkÞ for the HT09 case (left plot in
Fig. 11) can be fitted linearly yielding a linear coefficient D¼ 0:01
(p-value¼0.007). By reshuffling 4000 times the weights of the
network links and performing the same linear fit for each reshuf-
fling, we obtain a distribution of linear coefficients D. Such
distribution, whose mean is zero, is shown in the inset of the left
plot in Fig. 11 together with the value of D from the HT09 daily
aggregated networks (vertical line). The observed value of D at the
(data for all daily networks). The strength of a node quantifies the cumulated time of



Fig. 11. Correlation between node’s strength and degree, as measured by the average strength /sðkÞS of nodes of degree k. The figures show /sðkÞS=ð/wSkÞ (circles), for the

HT09 (left) and SG (right) deployments (the solid line is only a guide for the eye). The dashed lines stand for a linear fit and a power law fit to the data for the HT09 and SG

deployments, respectively. Distinct increasing and decreasing trends are respectively observed. The inset for the HT09 deployment shows a distribution of linear coefficientsD
calculated for 4000 reshufflings of the network weights and the fitted value from the data collected at HT09 (vertical line). The inset for the SG deployment shows

/sðkÞS=ð/wSkÞ on a doubly logarithmic scale (circles) together with the power law fit to the data (dashed line).
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HT09 is an outlier of the distribution (96th percentile), thus
showing that the observed behavior of /sðkÞS=ð/wSkÞ can hardly
arise by a random assignment of link weights. On the other hand,
the observed behavior of /sðkÞS=ð/wSkÞ at the SG can be fitted to a
power law with a negative exponent i.e. it decreases linearly on a
double logarithmic scale such as the one shown in the inset of
the right plot in Fig. 11. These results indicate that individuals
who encountered the same number of distinct persons can
have different spreading potentials, depending on the setting. It
also gives a warning about characterizing spreading by only
measuring the number of encounters, which can yield a rather
misleading view.
5. Percolation analysis

The issue of network vulnerability to successive node removal
has attracted a lot of interest in recent years starting from the
pioneering works of Albert et al. (2000) and Cohen et al. (2000), that
have shown how complex networks typically retain their integrity
when nodes are removed randomly, while they are very fragile
with respect to targeted removal of the most connected nodes.
While the concepts of node failures and targeted attacks are
pertinent for infrastructure networks, successive removals of
nodes or links is more generally a way to study network structures
(Holme et al., 2002; Girvan and Newman, 2002; Radicchi et al.,
2004; Dall’Asta et al., 2006). For instance, detecting efficient
strategies for dismantling the network sheds light on the network
community structure, as it amounts to finding the links that act as
bridges between different communities (Girvan and Newman,
2002; Radicchi et al., 2004). Moreover, in the context of information
or disease spreading, the size of the largest connected component
gives an upper bound on the number of nodes affected by the
spreading. Identifying ways to reduce this size, by removing
particular links, in order to break and disconnect the network as
much as possible, is analogous in terms of disease spreading to
finding efficient intervention and containment strategies.

In order to test different link removal strategies, we consider
different definitions of weight for a link connecting nodes i and j in
the aggregated contact network:
�

1 As shown by Holme et al. (2002) and Dall’Asta et al. (2006) and verified

numerically (not shown) for the present case, a procedure that does not update the
The simplest definition of link weight is given by the cumulated
contact duration wij between i and j. In the following, we will
refer to this weight as ‘‘contact weight’’.
�
 The topological overlap Oij, introduced by Onnela et al. (2007b),
is defined as

Oij ¼
nij

ðki�1Þþðkj�1Þ�nij
A ½0,1�, ð3Þ

where ki(j) is the degree of node i(j) and nij measures the number
of neighbors shared by nodes i and j. This measure is reminiscent
of the edge clustering coefficient (Radicchi et al., 2004), and
evaluates the ratio of the number of triangles leaning upon the ij

edge with the maximum possible number of such triangles
given that i and j have degrees ki and kj, respectively. Edges
between different communities are expected to have a low
number of common neighbors, hence a low value of Oij.

�
 Finally, the structural similarity of two nodes is defined as the

cosine similarity

simij ¼

P
lAVwilwjlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

lw
2
il

P
lw

2
jl

q A ½0,1�, ð4Þ

where V is the set of neighbors shared by nodes i and j, and the
sums at the denominator are computed over all the neighbors of
i and j. Cosine similarity, which is one of the simplest similarity
measures used in the field of information retrieval (Newman
et al., 2004; van Rijsbergen; Baeza-Yates and Ribeiro-Neto,
1999), takes into account not only the number of shared
neighbors of i and j, but also the similarity of the corresponding
edge strengths, i.e. the similarity of individuals in terms of the
time they spent with their neighbors. Once again, edges
connecting different communities are expected to have a low
value of simij.

Based on these three weight definitions, we consider four
different strategies for link removal, namely: removing the links
in increasing/decreasing order of contact weight, in increasing
order of topological overlap, and in increasing order of cosine
similarity. The former two strategies are the simplest one can
devise, as they do not consider the neighborhoods’ topology. The
latter two strategies were implemented in an incremental fashion,
by recomputing the lists of links ranked in order of increasing
overlap or cosine similarity whenever a link was removed, and then
removing the links in the updated list order.1 An issue also arises



Fig. 12. Effect of four different ways of removing 60% of the links on the SG museum daily aggregated network of July 14th. Clockwise from top: links removed in decreasing

contact weight order, increasing contact weight order, increasing topological overlap order and increasing cosine similarity order. The largest CC is highlighted in each case.
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from the fact that all the generalized weights mentioned above
produce a certain amount of link degeneracy (in particular when
using the contact weight): for instance, many links may have the
same (small) value wij, or exactly 0 overlap or similarity. Each link
removal procedure carries therefore a certain ambiguity, and the
results may depend on which links, among those with the same
contact weight/overlap/similarity, are removed first.

The impact of link removal on network fragmentation can be
measured by monitoring the variations of the size of the largest CC,
hereafter called N1, as a function of link removal. If the network is
initially divided into two CCs, labeled C0

1 and C0
2 , of similar initial

sizes N0
1 ZN0

2, we call N1 the size of the largest CC surviving in the
network (which does not need to be a subnetwork of C0

1). We used
the apex ‘‘0’’ to denote quantities expressed for the original
network, before any link removal. In order to alleviate the problems
arising from link degeneracy, we averaged N1 on 100 different link
orderings (i.e. we reshuffled the list of links of equal generalized
weight before removing them).

An example of a single realization of the removal strategies for
the SG aggregated network of July 14th is shown in Fig. 12.
We observe that a removal of 60% of the network links has a far
deeper impact on the network when the removal is based on
the topological overlap (the size of the largest CC is N1¼30) or
cosine similarity (N1¼155) rather than on decreasing (increasing)
contact weight (N1¼204 (205)). More quantitatively, Fig. 13 shows
that removing links according to their topological overlap is
the most efficient strategy. This is in agreement with previous
(footnote continued)

link ranking upon every link removal, based on the quantities (3) and (4), leads to

sub-optimal results. The deviation from the updating strategy becomes apparent

only when more than 20% of links have been removed since Oij and simij deal with

local quantities only. As a consequence, each link removal amounts to a local

perturbation of the network, contrary to what happens with non-local quantities

such as the betweenness centrality (Holme et al., 2002; Dall’Asta et al., 2006).
results (Holme et al., 2002; Girvan and Newman, 2002;
Radicchi et al., 2004; Dall’Asta et al., 2006; Onnela et al., 2007b)
that have shown that topological criteria detect efficiently the links
that act as bridges between communities. Due to their high
degeneracy, removing first the links with small contact weights
approximates a random removal strategy that is far from optimal.
Despite this limitation, removing the links with small contact
weights can outperform the removal of links with high contact
weight since the latter are usually found within dense commu-
nities, while links between communities have typically small
contact weights.

The strategy based on link topological overlap proves slightly
more effective than the strategy based on link similarity: the
information on the link contact weights incorporated in the
definition of simij (Eq. (4)) does not enhance the decrease of N1.
This can be explained through the following argument: topological
overlap link ranking usually leads to a higher degeneracy with
respect to similarity-based link ranking. As a consequence, for a
network with similar values of N1

0 and N2
0, a strategy based on

topological overlap is more likely to dismantle in parallel both C0
1

and C0
2 than a similarity-based strategy, as it has no bias towards a

specific component. The opposite strategy of a complete disman-
tling of C0

1 that leaves C0
2 intact would result in N1 ¼N0

2 even after
the complete disintegration of C0

1 . This effect is illustrated in Fig. 13
for the SG aggregated networks of May 19th–20th, which are
indeed composed of two large CCs (see Fig. 1).

Interestingly, and as expected from the previous comparisons,
rather different results are obtained for the HT09 and SG aggre-
gated networks. The conference network is more resilient to all
strategies, and significant levels of disaggregation are reached only
by removing large fractions (Z40260%) of the links, sorted by
their topological overlap. For the SG aggregated networks, on the
other hand, targeting links with small topological overlap or cosine
similarity is a quite effective strategy, which can be intuitively
related to the modular structure visible in Fig. 1.



Fig. 13. Size N1 of the largest CC as a function of the fraction of removed links, for several removal strategies, and for different daily aggregated networks in the HT09 and SG

deployments. For all networks, removing links in increasing topological overlap order and increasing cosine similarity order have the most disruptive effects. The HT09

aggregated network is in all cases more resilient than the SG aggregated networks.
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6. Dynamical spreading over the network

Aggregated networks often represent the most detailed infor-
mation that is available on social interactions. In the present case,
they would correspond to information obtained through ideal
surveys in which respondents remember every single person they
encountered and the overall duration of the contacts they had with
that person. While such a static representation is already informa-
tive, it lacks information about the time ordering of events, and it is
unable to encode causality. The data from our measurements do not
suffer from this limitation, as they comprise temporal information
about every single contact. Therefore, these data can be used to
investigate the unfolding of dynamical processes. They also allow to
study the role of causality in diffusion processes, such as the spread-
ing of an infectious agent or of a piece of information on the
encounter networks of individuals. In the following we will mainly
use an epidemiological terminology, but we may equally imagine
that the RFID devices are able to exchange some information when-
ever a contact is established. Individuals will be divided into two
categories, susceptible individuals (S) or infected ones (I): suscep-
tible individuals have not caught the ‘‘disease’’ (or have not received
the information), while infected ones carry the disease (or have
received the information) and can propagate it to other individuals.

In order to focus on the structure of the dynamical network itself,
we consider in the following a deterministic snowball SI model
(Anderson and May, 1992): every contact between a susceptible
individual and an infected one, no matter how short, results in a
transmission event in which the susceptible becomes infected,
according to Sþ I-2I. In this model, individuals, once infected, do
not recover. Such a deterministic model allows to isolate the role
played in the spreading process by the structure of the dynamical
network (e.g. its causality). Its role would otherwise be entangled
with the stochasticity of the transmission process and the corre-
sponding interplay of timescales. Of course, any realistic epidemio-
logical model should include a stochastic description of the infection
process, since the transmission from an infected individual to a
susceptible one is a random event that depends on their cumulative
interaction time. The resulting dynamics would depend on the
interplay between contact and propagation times. We leave the
study of this interesting type of interplay to future investigations.

In our numerical experiments, for each day we select a single
‘‘seed’’, i.e., an individual who first introduces the infection into the
network. All the other individuals are susceptible and the infection
spreads deterministically as described above. By varying the choice
of the seed over individuals, we obtain the distribution of the
number of infected individuals at the end of each day. The
transmission events can be used to define the network along which
the infection spreads (i.e., the network whose edges are given by
S2I contacts), hereafter called the transmission network.

Due to causality, the infection can only reach individuals
present at the venue after the entry of the seed. As a consequence,
in the following we will use the term partially aggregated network to
indicate the network aggregated from the time the seed enters the
museum/conference to the end of the day. We note that the
partially aggregated network defined in this way can be radically
different from (much smaller than) the network aggregated along
the whole day.

Fig. 14 shows two partially aggregated networks for July 14th at
the SG museum, for two different choices of the seed (blue node),
and the corresponding transmission networks. The transmission
network is of course a subnetwork of the partially aggregated
network: not all individuals entering the premises after the seed



Fig. 14. Partially aggregated networks on July 14th at the SG museum, for two different choices of the seed (blue node at the bottom). Transparent nodes and light gray edges

represent individuals not infected and contacts not spreading the infection, respectively. Red nodes and dark gray links represent infected individuals and contacts spreading

the infection, respectively. The diameter of the transmission network and of the partially aggregated networks are shown respectively with blue and orange links. The black

node represents the last infected individual. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Distribution of the path lengths nd from the seed to all the infected individuals calculated over the transmission network (circles) and the partially aggregated

networks (triangles). The distributions are computed, for each day, by varying the choice of the seed over all individuals.
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can be reached from the seed by a causal path, and not all links are
used for transmission events. In order to emphasize the branching
nature of infection spreading, we represent the transmission
network with successively infected nodes arranged from the
bottom to the top of the figure. We notice that the diameter of
both the transmission and the partially aggregated network may
not include the seed and/or the last infected individual.

The presence of a few triangles in the transmission network is
due to the finite time resolution of the measurements. Let us
consider, for instance, the case of an infected visitor A who infects B,
followed by a simultaneous contact of A and B with the susceptible
C. In this case it is impossible to attribute the infection of C to either
A or B, and both the C2A and the C2B links are highlighted in
the transmission network as admissible transmission events. As a
consequence, we slightly overestimate the number of links in the
transmission network of Fig. 14. In the case of Fig. 14, the number of
links is between 1% and 8% larger than for a tree with the same
number of nodes. At finer time resolutions, some of the diffusion
paths of Fig. 14 would actually be forbidden by causality.

A general feature exemplified by Fig. 14 is that the diameter of
the transmission network (blue path) is longer than the diameter
of the partially aggregated network (orange path), a first signature
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of the fact that the fastest paths between two individuals, which
are the ones followed by the spreading process, do not coincide
with the shortest path over the partially aggregated network
(Kossinets et al., 2008).

The difference between the fastest and the shortest paths for a
spreading process can be quantitatively investigated. Fig. 15 reports
the distribution of the network distances nd between the seed and
every other infected individual along both the transmission networks
and the aggregated networks. When calculated on the partially
aggregated network, nd measures the length of the shortest seed-to-
infected-individual path, whereas it yields the length of the fastest

seed-to-infected-individual path when calculated on the transmis-
sion network. We observe that the length distribution of fastest
paths, i.e., the P(nd) distribution for the transmission network, always
turns out to be broader and shifted towards higher values of nd

than the corresponding shortest path distribution, i.e., P(nd) for the
partially aggregated network. The difference is particularly notice-
able in the case of May 20th and July 14th for the SG deployment, and
June 30th for the HT09 conference, where the longest paths on the
transmission network are about twice as long as the longest paths
along the partially aggregated network.

These results clearly underline that in order to understand
realistic dynamical processes on contact networks, information
about the time ordering of the contact events turns out to be
essential: the information carried by the aggregated network may
lead to erroneous conclusions on the spreading paths.

It is also possible to study the length of the path connecting the
first (seed) to the last infected individual along the transmission
network. We measure the fastest seed-to-last-infected-individual
path (a quantity hereafter called ‘‘transmission nd’’) as a function of
the duration of the spreading process, defined as the time between
Fig. 16. Scatterplot of the seed-to-last-infected-individual distance (transmission nd) alon

from the entry of the seed to the last infection event).
the entry of the seed and the last transmission event. As shown by
Fig. 16, a clear correlation is observed between the transmission nd

and the duration of the spreading process for the SG case (Pearson
coefficients 0.76 for May 20th and May 19th, and 0.9 for July 14th). No
significant correlation is instead observed for the HT09 conference.
This highlights the importance of the longitudinal dimension in the
SG data, and gives a first indication of the strong differences in the
spreading patterns, that we further explore in the following.

Let us now consider some other quantitative properties of the
spreading process, in particular the number of individuals reached
by the infection/information at the end of one day. In the SG case
Fig. 17 shows the distributions for each day, as boxplots, displaying
the median together with the 5th, 25th, 75th and 95th percentiles.
Days are arranged horizontally from left to right, in increasing
number of visitors. A high degree of heterogeneity is visible. The
blue line corresponds to the number of daily visitors, that is the
maximum number of individuals who can potentially be infected.
We observe that the number of infected individuals is usually well
below this limit. The number of reached individuals also depends
on the number of CC in the aggregated network, as the spreading
process cannot propagate from one CC to another. In fact, the limit
for which all visitors are infected can be reached only if the
aggregated network is globally connected, that occurs only when
the global number of visitors is large enough. These results hint at
the high intrinsic variability of the final outcome of an epidemic-
like process in a situation where individuals stream through a
building. A totally different picture emerges for the HT09 con-
ference, where the infection is almost always able to reach all the
participants.

As mentioned previously, the spreading process cannot reach
individuals who have left the venue before the seed enters, or the
g the transmission network, versus the total duration of the epidemics (time interval



Fig. 17. Results of spreading dynamics in the SG data: the figure shows panel boxplots of the final number of infected individuals in one day, versus the number of visitors in

that day. The blue line represents the total number of daily visitors, giving an upper bound for the number of infected. The bottom and top of the rectangular boxes correspond

to the 25th and 75th quantile of the distribution of infected individuals at the end of each day, and the red lines correspond to the median (50th quantile). The 5th and 95th are

also shown (black horizontal lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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individuals who belong to a CC different from that of the seed.
Therefore, we consider the ratio of the final number of infected
individuals, Ninf to the number Nsus of individuals who can be
potentially reached through causal transmission paths starting at
the seed. The distributions of this ratio is reported in Fig. 18. We
observe that in the case of HT09 (left) almost all the potentially
infected individuals will be infected by the end of the day, whereas
the distribution of Ninf=Nsus is broader in the SG case (right). We
notice that a static network description would inevitably lead to all
individuals in the seed’s CC catching the infection, a fact that can be
a severe (and misleading) approximation of reality.

For each day the chosen seed generates a deterministic spread-
ing process for which we can compute the cumulative number of
infected individuals as a function of time, a quantity hereafter
referred to as an incidence curve. Fig. 19 shows the results for a
selected day of the HT09 conference and for three different days of
the SG data.

In the case of the HT09 conference, the earliest possible seeds
are the conference organizers, but little happens until conference
participants gather for the coffee break and/or meet up at the end of
the first talk, between 10:00 and 11:00. A strong increase in the
number of infected individuals is then observed, and a second
strong increase occurs during the lunch break. Due to the con-
centration in time of transmission events, spreading processes
reach very similar (and high) incidence levels after a few hours,
regardless of the initial seed or its arriving time. Even processes
started after 15:00 can reach about 80% of the conference parti-
cipants. Thus, the crucial point for the spreading process does not
consist in knowing where and when the epidemic trajectory has
started, but whether the seed or any other subsequently infected
individual attend the coffee break or not.

A different picture is obtained in the SG case: First, in order to
reach almost all participants the epidemics must spread on a
globally connected network and start early (black curves for July
14th data). Even in such a favorable setting for spreading, the
incidence curves do not present sharp gradients, and later epi-
demics are unable to infect a large fraction of daily visitors.
The incidence curves for May 19th and 20th of Fig. 19 show that



Fig. 19. Incidence curves, giving the number of infected versus time for a spreading phenomenon simulated in the HT09 and SG data. Clockwise from top: HT09, June 30th

(aggregated network consisting of a single CC with N1¼102 individuals); SG network for July 14th (one CC, N1¼282 individuals), May 19th (two CCs, N1¼N2¼49 individuals)

and May 20th (two CCs, N1¼N2¼89 individuals). Each curve corresponds to a different seed, and is color-coded according to the starting time of the spreading.

Fig. 18. Distribution of the ratio Ninf=Nsus for the HT09 (left) and the SG (right) data, averaged over all potential seeds. Ninf is the final number of infected individual at the end of

one day, while Nsus is the number of individuals that could potentially be reached by a causal transmission path starting at the seed. Nsus is given by the number of individuals

visiting the premises in the same day, from the time the seed enters the premises, and belonging to the same CC as the seed.
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different scenarios can also occur: due to the fragmented nature of
the network, the final fraction of infected individuals can fluctuate
greatly, and sharp increases of the incidence can be observed when
dense groups such as those visible in Fig. 1 are reached.
7. Conclusions

In this paper we have shown that the analysis of time-resolved
network data can unveil interesting properties of behavioral
networks of face-to-face interaction between individuals. We
considered data collected in two very different settings, represen-
tative of two types of social gatherings: the HT09 conference is a
‘‘closed’’ systems in which a group of individuals gathers and
interacts in a repeated fashion, while the SG museum deployment
is an ‘‘open’’ environment with a flux of individuals streaming
through the premises.

We took advantage of the accurate time-resolved nature of our
data sources to build dynamically evolving behavioral networks.
We analyzed aggregated networks, constructed by aggregating the
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face-to-face interactions during time intervals of one day, and
provided a comparison of their properties in both settings. We
assessed the role of network dynamics on the outcome of dyna-
mical processes such as spreading processes of informations or of
an infectious agent.

Our analysis shows that the behavioral networks of individuals
in conferences and in a museum setting exhibit both similarities
and important differences. The topologies of the aggregated net-
works are widely different: the conference networks are rather
dense small-worlds, while the SG networks have a larger diameter
and are possibly made of several connected components—they do
not form small-worlds, and their ‘‘elongated’’ shape can be put in
relation with the fact that individuals enter the premises at
different times and remain there only for a limited amount of
time. The networks’ differences are also unveiled by a percolation
analysis, which reveals how the SG aggregated networks can easily
be dismantled by removing links that act as ‘‘bridges’’ between
groups of individuals; on the contrary, aggregated networks at a
conference are more ‘‘robust’’, even with respect to targeted link
removal.

Interestingly, some important similarities are also observed: the
degree distributions of aggregated networks, for example, are
short-tailed in both cases. Moreover, despite the higher social
activity at a conference, both the distribution of the contact event
durations and the distribution of the total time spent in face-to-face
interactions by two individuals are very similar.

The study of simple spreading processes unfolding on the
dynamical networks of interaction between individuals allowed
us to delve deeper into the time-resolved nature of our data.
Comparison of the spreading dynamics on the time-dependent
networks with the corresponding dynamics on the aggregated
networks show that the latter easily yields erroneous conclusions.
In particular, our results highlight the strong impact of causality in
the structure of transmission chains, that can differ significantly
from those obtained on a static network. The temporal properties of
the contacts are crucial in determining the spreading patterns and
their properties. Studies about the role of the initial seed and its
properties on the spreading patterns, or the determination of the
most crucial nodes for propagation, can be misleading if only the
static aggregated network is considered. In more realistic
dynamics, the fastest path is typically not the shortest path of
the aggregated network, and the role of causality is clearly visible in
the analysis of the seed-to-last-infected paths.

Spreading phenomena unfold in very different ways in the two
settings we investigated: at a conference, people interact repeat-
edly and with bursts of activity, so that transmission events also
occur in a bursty fashion, and most individuals are reached at the
end of the day; in a streaming situation, instead, the fraction of
reached individuals can be very small due to either the lack of
global connectivity or the late start of the spreading process.
Detailed information on the temporal ordering of contacts is
therefore crucial. We also note that in more realistic settings with
non-deterministic spreading, information about the duration of
contacts, and not only their temporal ordering, would also turn out
to be very relevant and lead to an interesting interplay between the
contact timescale and the propagation timescale (Stehlé et al.,
submitted for publication). Future work will also address the issue
of sampling effects: the fact that not all the conference attendees
participated to the data collection may lead to an underestimation
of spreading, since spreading paths between sampled attendees
involving unobserved persons may have existed, but are not taken
into account.

We close by stressing that as the data sources on person-to-
person interactions become richer and ever more pervasive, the
task of analyzing networks of interactions is unavoidably shifting
away from statics towards dynamics, and a pressing need is
building up for theoretical frameworks that can appropriately deal
with streamed graph data and large scales. At the same time, we
have shown that access to these data sources challenges a number
of assumptions and poses new questions on how well-known
dynamical processes unfold on dynamic graphs.
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