
Observing Brownian motion and measuring
temperatures in vibration-fluidized granular matter

Patrick Mayor1, Gianfranco D’Anna1, Alain Barrat2

and Vittorio Loreto3

1 Institut de Physique de la Matière Complexe, Faculté des Sciences de Base,
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Abstract. Understanding the behaviour of granular media, either at rest or
moving under external driving, is a difficult task, although it is important and
of very practical interest. Describing the motion of each individual grain is
complicated, not only because of the large number of grains, but also because the
mechanisms of interaction at the grain level involve complex contact forces. One
would like to have, in fact, a description in terms of a few macroscopic quantities.
Since a granular medium resembles a liquid or a gas when strongly vibrated or
when flowing out of a container, a natural approach is to adopt usual equilibrium
statistical mechanics tools in order to test if such a macroscopic description is
possible. In other words, an interesting question is to investigate whether one
can model granular media, when close to a liquid-like state for example, using
viscosity, temperature, and so on, as one does for normal liquids. With this aim in
view, we have developed a non-equilibrium version of the classical Brownian
motion experiment. In particular, we have observed the motion of a torsion
oscillator immersed in an externally vibrated granular medium of glass spheres,
and have collected evidence that the motion is Brownian-like. An approximate
fluctuation–dissipation relation holds, and we can define temperature-like and
viscosity-like parameters.
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1. Introduction

This work presents an experimental method devised to test standard equilibrium statistical
mechanics results on vibrated granular matter. These concepts, notably the fluctuation–
dissipation theorem [1], are well-known, and numerous experimental [2]–[6] and theoretical
(see for instance [7]–[9] and references therein) studies have been carried out in order to
investigate to what extent they are violated in systems far from equilibrium, or to propose possible
generalizations in such complex situations.

In vibration-fluidized granular materials, like shaken sand, the assembly of particles
featuring a large number of degrees of freedom interact by contact forces, and energy is
continuously dissipated as grains collide into one another. Such a system is not in equilibrium
in the thermodynamic sense, since the thermal energy kBT at room temperature is too small
to produce any macroscopic grain rearrangement, and the fluctuation–dissipation theorem is
therefore not expected to be valid. However, because of the sometimes liquid-like behaviour of
granular matter [10], one can wonder how far the analogy can be pursued, namely how close
such a system is to a ‘thermal bath’, exhibiting thermally induced Brownian motion. The outline
of the paper is as follows. After briefly reviewing some basic concepts about the fluctuation–
dissipation theorem (section 2), we describe the experimental setup in section 3. The main
experimental findings concerning the validity of the fluctuation–dissipation theorem in vibrated
granular media [5] are reviewed in section 4, and other studies, investigating the influence of the
oscillator-bath interaction are then discussed in section 5. Finally, in section 6, we draw some
preliminary conclusions.
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2. The fluctuation–dissipation theorem

2.1. Langevin equation

The fluctuation–dissipation theorem finds its roots from the early theory made by Einstein
[11, 12] to describe the irregular Brownian motion of particles suspended in a liquid [13]. It
was first formulated in its modern form by Callen and Welton [1] by establishing a link between
the fluctuations in a system at thermal equilibrium and the macroscopic response that is observed
when an external perturbation is applied.

Let us consider the seemingly simple following situation: a one-dimensional harmonic
oscillator, of mass m and stiffness K, is immersed into a fluid at temperature T . We suppose
(Langevin hypothesis [14]) that the effect of this perturbing environment can be split into
two parts: a viscous friction force, proportional to the oscillator velocity v (slowly varying
contribution), and a random, fluctuating force ξ(t) (rapidly varying contribution). Moreover,
the latter part ξ is assumed to be a Gaussian white noise of zero mean; namely, it satisfies the
following basic general properties:

〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = qδ(t − t′), (1)

where 〈. . .〉 denotes the statistical average over all possible realizations, and q is the amplitude of
the random correlations, which will be related to simple parameters, such as the bath temperature,
in the following.

The equation of motion for the oscillator position x thus reads

mẍ(t) + mγẋ(t) + mω2
0x(t) = ξ(t) + fext(t), (2)

where γ is a parameter related to the viscosity of the system, ω0 = √
K/m is the natural angular

frequency of the oscillator and fext denotes a possible other external force to which the system
may be subjected.

2.2. Fluctuations (power spectral density S)

Let us first consider the situation where no external force is applied (fext = 0) and focus on the
fluctuations of the oscillator around its equilibrium position due to its interaction with the bath. In

that case, given the parameters � =
√

1
4γ

2 − ω2
0 and λ± = γ

2 ± �, the solution of (2) with initial
conditions x(0) = x0 and ẋ(0) = v0 reads

x(t) = xh(t) +
1

2m�

∫ t

0
dt′

(
e−λ–(t−t′) − e−λ+(t−t′)

)
ξ(t′), (3)

where xh(t) = Ae−λ+t + Be−λ−t is the solution of the equation without the stochastic term ξ(t),
and A, B are constants depending on the initial conditions, given by A = −(1/2�) (v0 + λ–x0) ,
and B = (1/2�) (v0 + λ+x0).

Note that, even though � is complex when γ < 2ω0, the solution (3) is real in all cases. The
time correlation functionGx0v0(t1, t2) = 〈x(t1)x(t2)〉x0v0 can be calculated by using the solution (3)
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and the conditions (1) to obtain

Gx0v0(t1, t2) = xh(t1)xh(t2) +
q

4m2γ�2

(
�

λ–
e−λ–|t1−t2| − �

λ+
e−λ+|t1−t2| − γ

2λ–
e−λ–(t1+t2)

− γ

2λ+
e−λ+(t1+t2) + e−λ–t1−λ+t2 + e−λ–t2−λ+t1

)
. (4)

Taking t1 = t2 = t in the above result gives, in the limit t → ∞ (stationary regime)

〈x(t)2〉 t→∞−→ q

2m2γω2
0

. (5)

It is important to underline that the equipartition of energy principle 1
2K〈x(t)2〉 = 1

2kBT requires
the amplitude q of the white noise correlations to be connected to the temperature T of the
thermal bath according to the simple relation

q = 2mγkBT. (6)

We notice that the time correlation function Gx0v0(t1, t2), as obtained in (4), still depends on
x0, v0, through the term xh(t1)xh(t2). It is possible to avoid this by assuming that these initial
conditions are themselves distributed in accordance with the equipartition of energy:

1
2K〈x2

0〉 = 1
2kBT and 1

2m
〈
v2

0

〉 = 1
2kBT.

The deterministic term xh(t1)xh(t2) can thus also be averaged over the initial conditions, which
yields

〈xh(t1)xh(t2)〉 = kBT

2m�2

(
γ

2λ–
e−λ–(t1+t2) +

γ

2λ+
e−λ+(t1+t2) − e−λ–t1−λ+t2 − e−λ–t2−λ+t1

)
.

Using this averaged result in (4) shows that the two-time correlation function only depends on the
time difference t1 − t2, thus exhibiting the stationary nature of the process: G(t1, t2) = G(t1 − t2),
with

G(t) = kBT

2m�

(
e−λ–|t|

λ–
− e−λ+|t|

λ+

)
. (7)

A useful quantity is the power spectral density S, defined as twice the Fourier transform of the
correlation function:

S(ω) ≡ 2
∫ ∞

−∞
dte−iωt G(t) = 4γkBT

m
[
(ω2 − ω2

0)
2 + γ2ω2

] . (8)

2.3. Response function (susceptibility)

Let us study what happens when the system is subjected to an external force fext(t). Focusing
on large timescales compared to the typical relaxation time of the random force ξ(t), we will
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consider the deterministic equation (here, no bracket will be written and the use of the averaged
quantities is implied)

mẍ(t) + mγẋ(t) + mω2
0x(t) = fext(t). (9)

The linear response function χ(t), which gives information on how the system reacts to an
externally applied perturbation, is defined as

x(t) =
∫

dt′χ(t − t′)fext(t
′). (10)

The validity of this linear relation implies that the external force should be small enough to
guarantee that other terms involving powers of fext are negligible.

In the Fourier representation, this definition becomes x̃(ω) = χ̃(ω)f̃ ext(ω). Therefore,
writing (9) in the same representation immediately yields

χ̃(ω) = 1

m
(
ω2

0 − ω2 + iγω
) . (11)

2.4. Fluctuation–dissipation theorem

The two situations considered above are very different, the power spectral density S exhibits the
fluctuations that the Brownian oscillator undergoes when it is left to move freely in a thermal
bath. Logically, it is found in (8) that the fluctuations are proportional to the temperature of the
bath.

On the other hand, the susceptibility χ gives information on the response to an external
force, assumed to vary much more slowly than the rapid random force, which can be ignored in
that case. The complex function (11) obtained can be split into a real and an imaginary part: we
write χ̃ = χ̃′ − iχ̃′′, where in particular

χ̃′′(ω) = γω

m
[ (

ω2 − ω2
0

)2
+ γ2ω2

] . (12)

Comparison of (8) and (12) shows very similar results, and there exists a simple relation between
those very different concepts (fluctuation–dissipation theorem):

S(ω) ω

4χ̃′′(ω)
= kBT. (13)

It appears that the ratio on the left-hand side of (13) only depends on the temperature of
the thermal bath, and is independent of other parameters such as the oscillator properties. It
means that the complicated many-particle problem of the fluid molecules colliding with the
oscillator can be described by few macroscopic parameters, such as the temperature and the
viscosity.
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θ

Γ

Cext

Figure 1. Sketch of the torsion oscillator immersed into the ‘granular
bath’. The granular medium, composed of glass beads of diameter 1.1 ± 0.05 mm
is placed in a cylindrical container of height 60 mm and diameter 94 mm. An
accelerometer measures the intensity of the external perturbations, � (see text
for details). Notice that the oscillator cannot move in the vertical or horizontal
directions.

3. Experiment

In order to investigate how much of this standard equilibrium formalism survives in shaken
granular materials [5], the following experimental setup is used: a thin torsion oscillator, with
moment of inertia I and elastic constant G, is immersed at some depth into the ‘granular bath’,
made of millimetre-size glass beads (figure 1). Note the analogy with the situation described in
[15] for a system at thermal equilibrium.

The container in which the beads are placed is continuously shaken by a vertical vibrator,
with a high-frequency filtered white noise (cut off above 900 Hz and below 300 Hz in the
experiments described). This vibration mode is chosen in order to ensure a homogeneous agitation
and avoid undesired effects (such as pattern formation and convection rolls), which are observed
when sinusoidal vibrations are used. It is not meant to provide a random torque with white noise
spectrum to the oscillator; in any case, its motion is observed in a much lower frequency range
than the vibrations applied (10–50 Hz, around the oscillator’s natural frequency, where a useful
signal can be measured).
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The resulting vibrational intensity is quantified by an accelerometer fixed on the container,
which measures the parameter �, defined as

� =
√∫

A(f )df , (14)

where A(f ) is the acceleration spectrum, normalized to the acceleration of gravity, and the
integration is taken in the frequency range of about 1 Hz to 10 kHz.

For sinusoidal vibrations, � = 1 is the ‘fluidization’ threshold, above which a single grain
starts to fly. Here, we typically use vibrational intensities between � = 1 and 15. The oscillator
angular position θ is detected optically (see figure 1). For susceptibility measurements, two
external coils and a permanent magnet fixed on the oscillator axis permit to apply a sinusoidal
torque Cext(t) = Ce sin(ωt).

Note that if the experiment were performed in equilibrium conditions (with a plain liquid
for example), the formalism developed in section 2 would be totally applicable to this situation.
The Langevin equation (2) would then read as

Iθ̈(t) + αθ̇(t) + Gθ(t) = R(t) + Cext(t), (15)

where α is the friction coefficient and R(t) is a random torque analogous to the random force ξ(t)

introduced in section 2. The corresponding expressions (8) and (11) for S(ω) and χ̃(ω) would
be adapted as follows:

S(ω) ≡ 2
∫

dte−iωt〈θ(t)θ(0)〉 = 4αkBT

I2
(
ω2 − ω2

0

)2
+ α2ω2

and

χ̃(ω) ≡ θ̃(ω)

C̃ext(ω)
= 1

I
(
ω2

0 − ω2
)

+ iαω
,

where θ̃(ω) and C̃ext(ω) are the Fourier transforms of θ(t) and Cext(t), respectively.

4. Test of the equilibrium formalism

Analysis of the angular deflection time-series θ(t) in the free mode (Cext = 0) provides the noise
power spectral density S(ω), shown in figure 2(a) for different values of �. On the other hand,
using the oscillator in forced mode (with an externally applied torque Cext(t)) gives the complex
susceptibility χ̃(ω), whose modulus |χ̃(ω)| is shown in figure 2(b). The amplitude of the external
torque is small enough to be in the regime of linear response.

It appears that |χ̃(ω)| is fitted remarkably well by the standard expression for the damped
oscillator:

|χ̃(ω)| = 1√
I2

(
ω2

0 − ω2
)2

+ α2ω2

. (16)

This reveals that the Langevin equation of motion (15) describes well the linear response of
the immersed oscillator, and allows us to extract a granular friction coefficient α, or a granular
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Figure 2. Power spectral density (a) and modulus of the complex susceptibility
(b) versus the frequency, f = ω/2π, for different vibrational intensities �: from
top to bottom, 11.6, 10.0, 7.3, 5.4, 3.7, 2.2, 1.5 and 1.0. Results obtained with a
conical probe of apex angle 120◦, covered with a single layer of glass beads, glued
on by epoxy adhesive. The probe is immersed to about 11 mm from the granular
surface. The vibration consists of a high-frequency filtered white noise, cut off
below 300 Hz and above 900 Hz. In (b), each curve is fitted (dashed line) with
its corresponding equilibrium expression (see text for details). The moment of
inertia of the oscillator is I = 1.5 × 10−6 kg m2, and the applied torque amplitude
is Ce = 3.2 × 10−5 N m. Inset: friction coefficient α, obtained from the fit to the
curves |χ̃(ω)|, versus �. The dotted line is a power law α ∝ 1/�. This 1/�

dependence is also systematically observed using susceptibility data obtained
with probes of different shapes, as discussed later.

viscosity µ ∝ α. From the fitting parameters at different �, we observe that α ∝ 1/� (see inset
of figure 2(b)).

Moreover, the previous data allow to calculate the fluctuation–dissipation ratios
S(ω)ω/(4χ̃′′(ω)), which are shown in figure 3(a). The ratios, even though not constant, are
surprisingly ‘flat’, especially compared to what has been measured in other non-equilibrium
thermal systems, such as in glycerol [2] and laponite [3].

This means that the high-frequency driven agitation of the granular medium acts on the
oscillator as a source of random torque with white spectrum, at least in the 10–50 Hz range under
consideration. Energy is thus injected at high frequency, and spreads into a low-frequency white
spectrum.

Since those ratios do not exhibit a strong frequency dependence, this provides support for the
existence of a fluctuation–dissipation relation in off-equilibrium driven granular steady states.
The theorem can thus be used to define an effective temperature, Teff . Figure 3(b) shows the
averaged fluctuation–dissipation ratio levels, that is, kBTeff , versus � (black curve). On fitting to
a power law, we obtain kBTeff ∝ �p with p close to 2, thus giving Teff ∝ �2.

This is only a first-order approximation: close inspection of figure 3(a) reveals indeed a small
frequency dependence. However, a useful torsion signal is only detected around the oscillator
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Figure 3. (a) Fluctuation–dissipation ratios S(ω)ω/(4χ̃′′(ω)) versus the
frequency f = ω/2π for different vibrational intensities �: from top to bottom,
11.6, 10.0, 7.3, 5.4, 3.7, 2.2, 1.5 and 1.0. (b) Effective temperature versus
vibrational intensity �, as obtained from fluctuation–dissipation levels in (a)
averaged between 10 and 50 Hz (black symbols), and from experiment using
a conical probe with triple moment of inertia (red symbols). A power law
fitted to the data gives Teff ∝ �p, with p = 2.1. The dashed line has equation
kBTeff = 3.5 × 10−10 �2.

eigenfrequency, limiting the accessible frequency range. In the frame of this approximation, our
results suggest that due to the complex dissipation processes between the grains only a fixed
fraction of the energy injected by the vibrator is effectively available as granular kinetic energy
and is ‘sensed’ by the oscillator.

In fact, we notice that the order of magnitude of the thermal energy kBTeff , as measured
here, is consistent with realistic values of the mean kinetic energy per particle, as measured
by grain-tracking methods [16, 17]. Thus, the effective temperature Teff measured seems to be
related to the granular temperature, as usually defined in granular gases [18, 19].

5. Changing the ‘thermometer’ properties

This section is devoted to the presentation of results addressing the dependence of Teff on the
oscillator properties.

5.1. Influence of the moment of inertia

By fixing a cylindrical weight on the probe axis above the granular surface, it is possible to vary
the moment of inertia I of the oscillator without otherwise modifying its geometrical properties.
By changing this parameter, we obtain different susceptibilities, and different power spectral
densities as well (as expected from the formulas for χ̃(ω) and S(ω) introduced above).
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Figure 4. (a) Friction coefficient α for cylindrical probes of different diameters
and smooth surfaces, obtained from the fits to the curves |χ̃(ω)|, versus �. The
diameters are 13 mm (red curve), 10 mm (green curve) and 7 mm (blue curve).
The dotted line is a power law α ∝ 1/�. The immersion depth is about 20 mm.
(b) Effective temperature Teff versus �. Notice the deviation from the Teff ∝ �2

dependence at low � (see text for details). On both graphs, for clarity, only one
symbol for every three data values is marked.

However, we notice that the fluctuation–dissipation ratios exhibit very little variation when I

is modified. Data obtained using conical probes with different moments of inertia are presented in
figure 3(b).The effective temperature measured seems to be almost independent of this parameter.

5.2. Influence of the probe shape

Experiments made with cylindrical probes of different diameters reveal interesting features. First
of all, the susceptibility and power spectral density are very different depending on the probe
used: they exhibit a distinct peak for small diameters, which tends to flatten and disappear for
bigger diameters (at similar �). The fact that damping is more important for bigger probes is
clear in figure 4(a), which shows the friction coefficient α versus � for cylindrical probes of
different diameters.

However, even though these different friction characteristics yield very different
susceptibilities and power spectral densities, the probe diameter seems to have little influence
on the effective temperature Teff , as shown in figure 4(b).

Notice that a deviation from the Teff ∝ �2 dependence is seen close to the fluidization
threshold � ≈ 1. The main reason is that the oscillator, which cannot move in the vertical or
horizontal directions, becomes a source of localized vibration at low � and therefore ‘heats’
the granular medium around the probe. Logically, we observe that this phenomenon is more
pronounced with the bigger probes. Because of these observations, the study of the granular
dynamics for � < 1, in the so-called granular glass, requires a different approach [20, 21].
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Figure 5. Effective temperature Teff versus �, obtained with conical probes of
different apex angles. The cones are smooth (not covered with a layer of beads)
and the apex angles are, from top to bottom, 120, 90, 60 and 30◦. The probes are
immersed at a depth of 20 mm from the granular surface.

However, there exists a difference between Teff measured by conical and cylindrical probes.
Data obtained using conical probes with different apex angles are shown in figure 5 (note that
cones used here are smooth—the effect of the surface roughness is discussed below). These
results show that the effective temperature measured is smaller for narrower cones and increases
with the apex angle.

This effect is probably related to the intrinsic anisotropy of the system under gravity.
Although the diameter of the horizontal section of the probe has little effect on Teff , the angle
of inclination of the surface exposed to the granular agitation, with respect to the vertical axis,
seems to be a relevant parameter. The granular temperature is anisotropic [17], corresponding
to vertical and horizontal impulse components. One thus expects in particular the transfer of the
vertical impulse into torsion momentum to depend on the geometry and the surface state of the
probe.

5.3. Influence of the probe section

Here we consider probes whose main lateral surface is vertical, like cylinders, and study the
influence of the horizontal section. Those issues are represented in figure 6. For comparison, we
also include the previously obtained results with smooth cylinders.

It appears that probes that have a more complicated profile tend to give higher values of the
effective temperature. Teff increases when the probe ‘grips’ the granular medium better.

Another observation can be made from figure 6: while the data corresponding to the smooth
cylinders (blue curves in figure 6) exhibit a precise Teff ∝ �2 behaviour, the other results obtained
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Figure 6. Effective temperature Teff versus �, obtained using different probes
with vertical lateral surfaces. The probe sections vary, as sketched on the graph.
From top to bottom: outer diameter 22 mm with 24 teeth, about 1.2 mm high (black
curve); rectangular section 2 mm × 8 mm (purple curve); outer diameter 8 mm,
with 12 teeth, about 1 mm high (green curve); hexagons with biggest diameters
5 mm (red curve) and 8 mm (dark red curve); ellipse with axes 9 and 7 mm (yellow
curve). We also include the results obtained with cylinders of diameters 7, 10 and
13 mm (blue curves) already shown in figure 4(b). All probes are immersed at a
depth of 20 mm from the granular surface.

with ‘rougher’ probes tend to correspond to an exponent slightly lower than 2 (this phenomenon
also occurs in figure 5). This is possibly due to the fact that, as already mentioned, rougher probes
are more likely to locally fluidize the granular bath around them, and therefore maintain higher
temperature values. Note that by ‘roughness’ we mean surface irregularities or features in the
probe section with lengths of the same order as the size of the grains (we do not change the
surface roughness at the atomic scale here).

Another aspect needs to be underlined: the curves |χ̃(ω)| and S(ω), obtained using probes
with rough surface, tend to exhibit a shift of the peak towards high frequencies as the damping
increases. This behaviour is shown for |χ̃(ω)| in figure 7. We notice that, while, for a smooth
cylinder, the susceptibility peak does not shift significantly, it moves drastically to the right as �

decreases for a cylinder with a layer of beads glued on its surface. (The same phenomenon can
be observed for power spectral density measurements.)

The susceptibility modulus, according to its equilibrium expression (16), reaches a
maximum at the resonant angular frequency

ωmax =
√

ω2
0 − α2

2I2
.
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Figure 7. Modulus of the complex susceptibility versus the frequency, f =
ω/2π, for different vibrational intensities �. From top to bottom, on both graphs:
� = 11.9, 8.7, 6.7, 4.1, 2.8, 1.8 and 1.0. (a) Measurements made using a smooth
cylinder of diameter 5 mm. (b) Measurements made using a thin cylinder with
a single layer of glass beads glued on its surface, outer diameter ∼5 mm. Both
probes are immersed at a depth L = 20 mm.

Since α is inversely proportional to �, the resonant frequency should actually decrease when the
damping increases. This is verified for smooth cylinders (it requires more important damping
than that observed in figure 7(a)), but obviously not for rough probes, which thus seem to exhibit
an apparent increase of the elastic constant G.

Actually, when the probe surface is not smooth, two grain-level mechanisms can be involved
and must be considered here:

(i) The jutting probe features are likely to be sources of a network of grain-chains that resist the
rotation of the oscillator, thus effectively increasing its stiffening. This network is expected
to be stronger as the vibrations get weaker.

(ii) While rotating a cylinder with smooth surface can be done in principle without changing
the total volume of the granular medium, to rotate a cylinder with ‘rough’ section, for
instance involving teeth or a layer of glued grains, requires an increase of the total volume
of the granular medium (dilatancy). This geometrical barrier against rotation can effectively
increase the stiffness of the torsion oscillator. At high applied torque, or when the vibrational
intensity is weak, this geometrical dilatancy causes local fluidization around the probe.

5.4. Influence of the immersion depth

Figure 8 shows the effective temperature measured as a function of the immersion depth L of
the oscillator, for different probes. The data obtained for very shallow immersions are not given.
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Figure 8. Effective temperature Teff at � = 9 versus the immersion depth of the
oscillator, L, for different probes: conical, with a single layer of glass beads (red
curve); cylindrical, with a single layer of glass beads, outer diameter 7 mm (black
curve); cylindrical with smooth surface, diameter 7 mm (blue curve). Notice that
the precise position of the surface is unknown for a vibrated granular medium, but
is approximately at L = 0 (vertical dashed line). The bottom of the container is
at L = 31 mm (grey rectangle). We also note that, owing to boundary effects, in
the layer close to the surface (about 0 < L < 5 mm), the fluctuation–dissipation
ratio is no longer flat and we do not extract an effective temperature in this region.

Indeed, we observe that in a layer close to the surface, the measured fluctuation–dissipation ratios
exhibit a strong frequency dependence, and they become ‘flat’only at sufficient immersion depth
(approximately at the depth where a minimum appears in the curves of figure 8).

Underneath this surface layer, we notice that the effective temperature Teff increases with
the depth L. This is possibly related to the fact that the source of vibrations is the bottom of the
container, and thus the temperature gets higher as we approach the ‘hot’plate. It also suggests that
the density of the granular medium slightly decreases with the depth, as observed in simulations
[22] and measurements [23] (except possibly the surface layer, where we found no evidence of
the fluctuation–dissipation ratios being constant).

5.5. Discussion

In this section, we have considered to what extent the oscillator type, as well as its immersion
depth, influences the effective temperature Teff measured. Firstly, it appears that Teff is
independent of the moment of inertia of the probe, if all other characteristics are fixed. Then, we
noticed that Teff does not depend on the diameter of cylindrical probes either. However, we have
also observed that Teff had the tendency to take higher values when the probe is immersed deeper
into the granular material, or when cones with wider apex angles are used, or when the probe
surface is ‘rougher’. All these results seem to indicate that the more the oscillator can interact
with the granular medium, the higher the effective temperature is.
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In fact, it is worth mentioning that the oscillator formally conforms to the standard
equilibrium formalism only for ‘smooth’ probes, that is, when there are no features or
irregularities in the section with characteristics lengths of the same order as the grain size. In
that case, the classical Langevin equation of motion (2), for an oscillator immersed in a thermal
fluid, also seems to be a correct description for the oscillator immersed in a shaken granular
medium.

On the other hand, when such irregularities are present, the response of the oscillator is more
complex: as mentioned previously, effects occuring at the grain-level have to be considered, such
as the geometrical dilatancy and the development of a network of grain chains resisting the probe
rotation. In such a case, the equation of motion for the oscillator is expected to involve ‘non-
classical’ terms, related to these effects. This unknown equation of motion should reproduce in
particular the apparent increase of the elastic modulus observed in figure 7(b).

Similar grain-level related effects may also be invoked when the probe immersion depth
is of the same order as the dimension of the grains (figure 8). Also in this case, when the
probe immersion depth is only a few grain layers, the classical equation of motion does not
capture all the phenomenon that is actually occurring. This is not surprising: in fact, similar
problems would appear if we tried to describe the classical experiment by using an ‘atomic scale’
probe.

6. Conclusion

In this paper, we have reviewed some recent experimental results aimed at checking the validity
of the fluctuation–dissipation theorem in vibrated granular matter [5]. The main finding reported
here consists in the possibility to separate slow and fast degrees of freedom in vibration-
fluidized granular media and thus to model the many-particle problem with a simple Langevin
equation involving two instrinsic parameters: an effective friction coefficient α and an effective
temperature Teff .

In this framework, the oscillator behaves indeed as a Brownian particle, and driven granular
matter can be seen as a macroscopic ‘thermal bath’. We note that the analogy is only formal,
since the granular medium is never in equilibrium in the thermodynamic sense. The experiments
also reveal that this simple picture is only valid up to a certain extent. Mechanical and rheological
properties, as well as anisotropy and inhomogeneity effects due to gravitation, play an important
role in the specification and the measurement of thermodynamical-like properties [24], inducing
differences and complications that do not occur in ‘plain’ fluids made of atoms. This is
particularly obvious when the response involves grain level phenomena, as discussed above.
These phenomena are triggered as soon as the interaction between the probe and the granular
medium takes place on length scales that are comparable to the grain dimension. When these
complications are not present, notably with appropriate probe sections and surfaces, the formal
analogy to the classical Brownian motion experiment in equilibrium systems is surprisingly
good.

In future work, more experiments will be required to elucidate the role of the different
parameters specifying a granular medium and its interactions with the measuring devices,
also at the atomic scale, notably to investigate how the friction affects the effective
temperature.
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