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Abstract

We review the main tools which allow for the statistical characterization of weighted

networks. We then present two case studies, the airline connection network and the scientific

collaboration network which are representatives of critical infrastructure and social system,

respectively. The main empirical results are (i) the broad distributions of various quantities

and (ii) the existence of weight-topology correlations. These measurements show that weights

are relevant and that in general the modeling of complex networks must go beyond topology.

We review a model which provides an explanation for the features observed in several real-

world networks. This model of weighted network formation relies on the dynamical coupling

between topology and weights, considering the rearrangement of new links are introduced in

the system.
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1. Introduction

Networked structures arise in a wide array of different contexts such as
technological and transportation infrastructures, social phenomena, and biolo-
gical systems. These highly interconnected systems have recently been the focus of
a great deal of attention that has uncovered and characterized their topological
complexity [1–4]. Along with a complex topological structure, real networks
display a large heterogeneity in the capacity and intensity of the connections—the
weight of the link. In ecology, the diversity of the predator–prey interaction is
believed to be a critical ingredient of ecosystems stability [5] and in social systems,
the weight of interactions is very important in the characterization of the
corresponding networks [6]. Similarly, the Internet traffic [3] or the number
of passengers in the airline network [4,7,8] are crucial quantities in the study of
these systems.
We first review here the appropriate metrics which combine weighted and

topological observables that enable one to characterize the complex statistical
properties of weighted networks. Specifically, we present results on the scientific
collaboration network and the worldwide air transportation network [8] which show
that weights cannot be overlooked in the description of these systems. Motivated by
these observations, we review a model for weighted networks that we have recently
proposed in Ref. [9] and which naturally produces topology-weight correlations and
broad distributions.
2. Tools for the characterization of weighted networks

We briefly review the different tools which allow for a first statistical
characterization of weighted complex networks.

Weights: The properties of a graph can be expressed via its adjacency matrix aij ;
whose elements take the value 1 if an edge connects the vertex i to the vertex j and 0
otherwise (with i; j ¼ 1; . . . ;N; where N is the size of the network). Weighted
networks are usually described by a matrix wij specifying the weight on the edge
connecting the vertices i and j (wij ¼ 0 if the nodes i and j are not connected). In the
following, we will consider only the case of symmetric positive weights wij ¼ wjiX0:

Connectivity and weight distributions: The standard topological characterization of
networks is obtained by the analysis of the probability distribution PðkÞ that a vertex
has degree k. Complex networks often exhibit a power-law degree distribution
PðkÞ � k�g with 2pgp3: Similarly, a first characterization of weights is obtained by
the distribution PðwÞ that any given edge has weight w.

Weighted connectivity: strength: Along with the degree of a node, a very
significative measure of the network properties in terms of the actual weights is
obtained by looking at the vertex strength si defined as [8,20,28]

si ¼
X

j2VðiÞ

wij ; (1)
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where the sum runs over the set VðiÞ of neighbors of i. The strength of a node
integrates the information both with its connectivity and the importance of the
weights of its links, and can be considered as the natural generalization of the
connectivity. When the weights are independent from the topology, we obtain s ’

hwik where hwi is the average weight. In the presence of correlations we obtain in
general s ’ Akb with b ¼ 1 and Aahwi or b41:

Weighted clustering: The topological clustering [10] does not take into account the
fact that some neighbors are more important than others. We thus have to introduce
a measure of clustering that combines the topological information with the weight
distribution of the network. The weighted clustering coefficient is defined as [8]

cwðiÞ ¼
1

siðki � 1Þ

X
j;h

ðwij þ wihÞ

2
aijaihajh : (2)

This quantity cwðiÞ is the counting for each triple formed in the neighborhood of the
vertex i; the weight of the two participating edges of the vertex i. The normalization
factor siðki � 1Þ ensures that 0pcw

i p1 and that cw
i recovers the topological clustering

coefficient in the case that wij ¼ const: It is customary to define Cw and CwðkÞ as the
weighted clustering coefficient averaged over all vertices of the network and over all
vertices with degree k, respectively. The ratio Cw=C (and similarly CwðkÞ=CðkÞ which
allows an analysis with respect to the degree k) indicates if the interconnected triples
are more likely formed by the edges with larger weights.

Weighted assortativity: affinity: Along with the weighted clustering coefficient, we
introduce the weighted average nearest neighbors degree, defined as

kw
nn;i ¼

1

si

XN

j¼1

aijwijkj : (3)

This definition implies that kw
nn;i4knn;i if the edges with the larger weights are

pointing to the neighbors with larger degree and kw
nn;ioknn;i in the opposite case. k

w
nn;i

thus measures the effective affinity to connect with high or low-degree neighbors
according to the magnitude of the actual interactions. As well, the behavior of the
function kw

nnðkÞ (defined as the average of kw
nn;i over all vertices with degree k) marks

the weighted assortative or disassortative properties [11] considering the actual
interactions among the system’s elements.

Disparity: For a given node i with connectivity ki and strength si different
situations can arise. All weights wij can be of the same order si=ki: In contrast, the
most heterogeneous situation is obtained when one weight dominates over all the
others. A simple way to measure this ‘‘disparity’’ is given by the quantity Y 2
introduced in other context [12,13];

Y 2ðiÞ ¼
X

j2VðiÞ

wij

si

� �2
: (4)

If all weights are of the same order then, Y 2 � 1=ki (for kib1), and if a small
number of weights dominate then, Y 2 is of the order 1=n with n of order unity. This
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quantity was recently used for metabolic networks [14] which showed that for these
networks one can identify dominant reactions.
3. Empirical results

3.1. Weighted networks data

Prototypical examples of weighted networks can be found in the worldwide airport
network (WAN), [7,8] and the scientific collaboration network (SCN) [15,16]. In the
airport network each given weight wij is the number of available seats on direct flights
connections between the airports i and j and for the SCN the nodes are identified with
authors and we follow the definition of weight introduced in Ref. [15]: The intensity
wij of the interaction between two collaborators i and j is defined as wij ¼P

p

dp
i d

p
j =ðnp � 1Þ; where the index p runs over all papers, np is the number of authors

of the paper p, and dp
i is 1 if author i has contributed to paper p and 0 otherwise. For

the WAN, we analyze the International Air Transportation Association (IATA)1

database for the year 2002 and for the SCN we consider the network of scientists who
have authored manuscripts submitted to the e-print archive relative to condensed
matter physics (http://xxx.lanl.gov/archive/cond-mat) between 1995 and 1998.

3.2. Empirical results

3.2.1. Topological properties

The topological properties of the SCN network and other similar networks of
scientific collaborations have been studied in Ref. [15] and we report on Fig. 1(A) the
connectivity distribution showing a relatively broad law. As shown in Fig. 1(B), the
topology of the WAN exhibits both small-world and scale-free properties as already
observed in different dataset analyses [7,17]. In particular, the average shortest path
length shows the value h‘i ¼ 4:37; very small compared to the network size N � 104:
The degree distribution, on the other hand, takes the form PðkÞ ¼ k�gf ðk=kxÞ; where
g ’ 2:0 and f ðk=kxÞ is an exponential cut-off [4,7].

3.2.2. Strength distribution

The probability distribution PðsÞ that a vertex has strength s is heavy tailed in both
networks and the functional behavior exhibits similarities with the degree
distribution PðkÞ (see Fig. 1). This behavior is not unexpected since it is plausible
that the strength si increases with the vertex degree ki; and thus the slow decaying tail
of PðsÞ stems from the slow decay of the degree distribution.

3.2.3. Topology-weight correlations

In Fig. 2, we report the behavior obtained for both the real-weighted networks and
their randomized versions, generated by a random redistribution of the actual
1http://www.iata.org.

http://xxx.lanl.gov/archive/cond-mat
http://www.iata.org.
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Fig. 1. (A) Degree and strength distribution in the scientific collaboration network. The degree k

corresponds to the number of co-authors of each scientist and the strength represent its total number of

publications. The distributions are heavy tailed. (B) The same distributions for the worldwide airport

network. The degree is the number of non-stop connections to other airports and the strength is the total

number of passengers handled by any given airport. A fit gives PðkÞ � k�g with g ¼ 1:8� 0:2: The strength
distribution has a heavy tail extending over more than four orders of magnitude.
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Fig. 2. Average strength sðkÞ as function of the degree k of nodes. (A) In the scientific collaboration

network, the real data are very similar to those obtained in a randomized weighted network. Only at very

large k values it is possible to observe a slight departure from the expected linear behavior. (B) In the world

airport network real data follow a power-law behavior with exponent b ¼ 1:5� 0:1: This denotes
anomalous correlations between the traffic handled by an airport and the number of its connections.
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weights on the existing topology of the network. For the SCN, the curves are very
similar and well-fitted by the uncorrelated approximation sðkÞ ¼ hwik: Strikingly,
this is not the case of the WAN and Fig. 2(B) clearly shows a very different behavior
for the real data set and its randomized version. In particular, the power-law fit for
the real data gives an ‘‘anomalous’’ exponent bWAN ¼ 1:5� 0:1: This implies that the
strength of vertices grows faster than their degree, i.e., the weight of edges belonging
to highly connected vertices tend to have a value higher than the one corresponding
to a random assignment of weights. This denotes a strong correlation between the
weight and the topological properties in the WAN, where the larger is an airport, the
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more traffic it can handle. The fingerprint of these correlations is also observed [8] in
the behavior of the average weight as a function of the end points degrees hwiji �

ðkikjÞ
y with an exponent y ¼ 0:5� 0:1: In the SCN, instead, hwiji is almost constant

leading to the value y ’ 0 and confirming in this case a general lack of correlations
between the weights and the vertices degree.

3.2.4. Weighted clustering and assortativity

We present the results [8] obtained for both the SCN and the WAN by comparing
the regular topological quantities with the weighted ones introduced above.

3.2.4.1. Case of the SCN. We find that (i) the authors with few collaborators
usually work within a well-defined research group in which all the scientists
collaborate together (high clustering). Authors with a large degree collaborate with
different groups and communities, which on their turn, do not have often
collaborations (creating a lower clustering coefficient). (ii) Authors with many
collaborators tend to publish more papers with interconnected groups of co-authors
and is a signature of the fact that influential scientists form stable research groups
where the largest part of their production is obtained. Finally, (iii) The SCN exhibits
an assortative behavior in agreement with the general evidence that social networks
are usually denoted by a strong assortative character [11].

3.2.4.2. Case of the WAN. A different picture is found in the WAN, where the
weighted analysis provides a richer and somehow different scenario. (i) Large
airports provide stop connections to very far destinations on an international and
inter-continental scale. These destinations are usually not interconnected among
them, giving rise to a low-clustering coefficient for the hubs. (ii) The traffic is
accumulating on interconnected groups of vertices. (iii) High-degree airports have a
progressive tendency to form interconnected groups with high traffic links. Since
high traffic is associated to hubs, we have a network in which high degree nodes tend
to form cliques with nodes with equal or higher degree, the so-called rich-club

phenomenon [19]. (iv) The analysis of the weighted kw
nnðkÞ shows that high degree

airports have a larger affinity for other large airports where the major part of the
traffic is directed.
4. Modeling weighted networks

Previous approaches to the modeling of weighted networks focused on growing
topologies where weights were assigned statically, i.e., once for ever, with different
rules related to the underlying topology [20,21] (See also [29,30] for other recent
models.) These mechanisms, however, overlook the dynamical evolution of weights
according to the topological variations. We can illustrate this point in the case of the
airline network. If a new airline connection is created between two airports it will
generally provoke a modification of the existing traffic of both airports. In the
following, we review a model that takes into account the coupled evolution in time of
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topology and weights. The model dynamics starts from an initial seed of N0 vertices
connected by links with assigned weight w0: At each time step, a new vertex n is
added with m edges (with initial weight w0) that are randomly attached to a
previously existing vertex i according to the probability distribution,

P
n!i

¼
siP

jsj

: (5)

This rule of ‘‘busy get busier’’ relaxes the usual degree-preferential attachment [25],
focusing on a strength-driven attachment in which new vertices connect more likely
to vertices handling larger weights and which are more central in terms of the
strength of interactions. This weight driven attachment (Eq. (5)) appears to be a
plausible mechanism in many networks [9].
The presence of the new edge ðn; iÞ introduces variations of the existing weights

across the network. In particular, we consider the local rearrangements of weights
between i and its neighbors j 2 VðiÞ; according to the simple rule

wij ! wij þ Dwij ; with Dwij ¼ d
wij

si

: (6)

This rule considers that the establishment of a new edge of weight w0 with the vertex
i, induces a total increase of traffic d that is proportionally distributed among the
edges departing from the vertex according to their weights (see Fig. 3), yielding
si ! si þ dþ w0: We will focus on the simplest model with d ¼ const; but one can
consider different choices [22–24] of Dwij depending on the specific properties of each
vertex (wij ; ki; si). After the weights have been updated the growth process is iterated
by introducing a new vertex with the corresponding re-arrangement of weights.
The model depends only on the dimensionless parameter d (rescaled by w0), that is

the fraction of weight which is ‘‘induced’’ by the new edge onto the others. If d 
 1;
the traffic generated by the new connection will be dispatched in the already existing
connections. In the case of do1; we face situations where a new connection is not
triggering a more intense activity on existing links. Finally, d41 is an extreme case in
which a new edge generates a sort of multiplicative effect that is bursting the weight
or traffic on neighbors.
si    si+w0+δi

n

w0

Fig. 3. Illustration of the construction rule. A new node n connects to a node i with probability

proportional to si=
P

j sj : The weight of the new edge is w0 and the total weight on the existing edges

connected to i is modified by an amount equal to d:
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The network’s evolution can be inspected analytically by studying the time
evolution of the average value of siðtÞ and kiðtÞ of the ith vertex at time t, and by
relying on the continuous approximation that treats k, s and the time t as continuous
variables [1,2,8]. One obtains siðtÞ ¼ ð2dþ 1ÞkiðtÞ which implies b ¼ 1 and a
prefactor different from hwi which indicates the existence of correlations between
topology and weights. The fact that s / k is also particularly relevant since it
states that the weight-driven dynamics generates in Eq. (5); an effective degree
preferential attachment that is parameter independent. This highlights an alternative
microscopic mechanism accounting for the presence of the preferential attachment
dynamics in growing networks. The behavior of the various statistical distribution
can be easily computed and one obtains in the large time limit PðkÞ � k�g and
PðsÞ � s�g with

g ¼
4dþ 3
2dþ 1

: (7)

This result shows that the obtained graph is a scale-free network described by an
exponent g 2 ½2; 3� that depends on the value of the parameter d: In particular, when
the addition of a new edge does not affect the existing weights (d ¼ 0), the model is
topologically equivalent to the Barabasi–Albert model [25] and the value g ¼ 3 is
recovered. It is also possible to show analytically [9] that PðwÞ � w�a; where a ¼

2þ 1=d: The exponent a has large variations as a function of the parameter d and
this feature clearly shows that the weight distribution is extremely sensitive to
changes in the microscopic dynamics ruling the network’s growth.
5. Conclusions and perspectives

A more complete view of complex networks is thus provided by the study of the
interactions defining the links of these systems. The analysis of the weighted
quantities and the study of the correlations between weights and topology provide a
complementary perspective on the structural organization of the network that might
be undetected by quantities based only on topological information. The empirical
results—broad distributions and topology-weight correlations—show that purely
topological models are inadequate and that there is a need for a model which goes
beyond pure topology. The model we have presented is possibly the simplest one in
the class of weight-driven growing networks. A novel feature in the model is the
weight dynamical evolution occurring when new vertices and edges are introduced in
the system. This simple mechanism produces a wide variety of complex and scale-free
behavior depending on the physical parameter d that controls the local microscopic
dynamics. While a constant parameter d is enough to produce a wealth of interesting
network properties, a natural generalization of the model consists in considering d as
a function of the vertices degree or strength. Similarly, more complicated variations
of the microscopic rules may be implemented to mimic in a detailed fashion–
particular networked systems [22–24,31]. In particular, space should be included in
the description of the airline network [26]. Finally, in this perspective the present
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model appears as a general starting point for the realistic modeling of complex
weighted networks [18].
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