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Following a recent work by Yoshino @J. Phys. A 29, 1421 ~1996!#, we study the aging dynamics of a
directed polymer in random media, in 111 dimensions. Through temperature quench and temperature cycling
numerical experiments similar to the experiments on real spin glasses, we show that the observed behavior is
comparable to that of a well-known mean-field spin glass model. The observation of various quantities ~cor-
relation function, ‘‘clonation’’ overlap function, etc.! leads to an analysis of the phase space landscape.
@S1063-651X~97!00704-6#

PACS number~s!: 02.50.Ey, 74.60.Ge, 75.10.Nr

I. INTRODUCTION

The study of directed polymers in random media has trig-
gered a lot of interest and of works ~for a recent review, see
@1#!, since it is related to many fields, from the fluctuations of
interfaces @2# to quantum-mechanical problems in a time-
dependent random potential @3#, or the very topical problem
of vortex lines in high-temperature superconductors @4#. It
also has connections with spin glasses, as has been shown by
Derrida and Spohn @5#, who studied a mean-field version ~on
a Cayley tree! of the random polymer, showing the existence
of a low-temperature phase similar to the random energy
model of Derrida @6#.

In finite dimensions (d11, with d transverse dimen-
sions!, the existence of a phase transition has been shown for
d>2 @7–9#, whereas the system is always in a low-
temperature phase for d51, and has been called a ‘‘baby
spin glass’’ in @10#.

The dynamics of such a model has not been much studied
so far. A recent numerical work by Yoshino @11# has made
clear the existence of aging for the directed polymer in ran-
dom media in dimensions 111, with violation of time trans-
lation invariance and of the fluctuation-dissipation theorem.
The observed behavior for the correlation function is similar
to the scaling properties for the simulations of a three-

dimensional spin glass model @12#. It is analyzed along the
lines of a scenario similar to the droplets model for spin
glasses @13,14#: the polymer moves in a network of ‘‘tubes’’
where its probability of presence ~calculated at equilibrium
with a transfer matrix method! is high. The network has a
quite complicated spatial structure, and the tubes form loops
of various sizes. The dynamics consists then of rapid fluc-
tuations inside the tubes ~acting as traps! combined with
thermally activated jumps between different tubes. These
thermal excitations are compared to the droplets excitations.
Besides, the fact that the loops display a broad distribution of
sizes @15# induces a broad distribution of relaxation times,
and thus aging.

On the other hand, Cugliandolo, Kurchan, and Le Dous-
sal, following the study of the aging dynamics of a mean-
field spin glass model @16#, and of a particle in an infinite
dimensional random potential @17,18#, have proposed an ana-
lytical treatment of the long times off equilibrium dynamics
of an elastic manifold embedded in an infinite dimensional
space, in the presence of a quenched random potential @19#
~the statics of such a model has been studied by Mézard and
Parisi with a replica variational Gaussian approximation, be-
coming exact in this infinite dimensional limit @20#!. This
corresponds here to an infinite d . The finite dimension of the
manifold leads to the study of the relaxation of its Fourier
modes k . The two-times correlation and response functions
Ck(t ,t8) and rk(t ,t8) satisfy dynamical equations where two
regimes can be separated, as for the case of the particle
@17,18#: a stationary regime, and a regime displaying aging,
where the properties of equilibrium dynamics ~namely, time
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translation invariance and fluctuation dissipation theorem!
are violated. Various equations can be written for the long-
times behavior of the functions, for example, the measure of
the violation of the fluctuation dissipation theorem X(C)
does not depend on k .

We will here focus on the same model as @11#; after de-
scribing this model, the used dynamics, we perform several
numerical experiments for aging dynamics. Preparing the
polymer in its ground state, we also show that it can display
stationary dynamics, and compare the two kinds of dynamics
in order to analyze the phase space landscape.

A. Model

The polymer is defined on a square lattice of linear size
N: it consists of N monomers lying on the sites
$(i ,x i),i51, . . . ,N%, and the Hamiltonian is

H@$x i%#5(
i52

N

@ ux i2x i21u1V~ i ,x i!# , ~1!

where V is a Gaussian random potential, with zero mean and
variance s , uncorrelated from site to site. The first term
gives the elastic energy; moreover, the steps ux i2x i21u are
restricted to 0 or 1, and one of the extremities is fixed, so
that a Boltzmann measure can be defined: x15N/2.

The transfer matrix method can be used to study the stat-
ics of this model @10#. In particular, the Edwards-Anderson
~EA! parameter can be calculated, following @10#: we take
two replicas of the polymer, with the same realization of the
disordered potential; if Z(x ,y ,L) is the partition function for
the pairs of polymers arriving at transverse coordinates x and
y after L steps ~or monomers!, and if Z̃(x ,y ,q ,L) is the
partition function restricted to such pairs having an overlap
q , it is possible to write recursion relations in L for Z and
Y (x ,y ,L)5(qqZ̃(x ,y ,q ,L), and therefore to evaluate

lim
L→`

1

L

(
x ,y
Y ~x ,y ,L !

(
x ,y
Z~x ,y ,L !

, ~2!

and to average it over disorder to obtain qEA . We will use
this value to check some expected long time limits of dy-
namical quantities ~see below!.

The directed polymer is evolving with Monte Carlo dy-
namics in a heat bath in the following way: a monomer and
a move are chosen at random, and the move is performed
with probability min@1,exp(2bDE)# ~Metropolis algorithm!,
b being the inverse temperature, and DE the change of en-
ergy involved. One Monte Carlo step consists in N such
tries.

B. Numerical experiments

The transfer matrix method allows us to find the ground
state in a given realization of a potential; we have studied the
dynamics in two cases: the initial configuration is either
taken at random, or as the ground state. The polymer, there-
fore, coming from an infinite temperature or from a zero
temperature thermalized state, is then free to evolve at the
temperature of the heat bath. We then measure the evolution
of the energy, the two-times correlation function defined by

C~ tw1t ,tw!5K (
i51

N

dx i~ tw1t !,x i~ tw!L , ~3!

where ^ & is a mean over thermal noise and the overline
denotes a mean over realizations of the quenched disorder,
and the overlap between two copies of the polymer evolving
in the same realization of the potential, with the same ther-
mal noise until tw , and then decoupled @21–24# ~a process
called ‘‘clonation’’ in @21#!; if these copies are labeled by ~1!
and ~2!, this overlap is

Q tw
~ tw1t ,tw1t !5K (

i51

N

dx
i
~1 !~ tw1t !,x i

~2 !~ tw1t !L . ~4!

Besides, we have performed temperature cycling experi-
ments in the same way as for real spin glasses @25#. Most of
the runs have been made with a polymer of length N5500,
and some with N5800: no finite size effects were seen for
the used simulation times.

II. AGING DYNAMICS

A. Quench at initial time

The initial configuration of the polymer is chosen at ran-
dom, with the constraint ux i2x i21u50 or 1; then it evolves
at a fixed temperature. It has already been observed @11# that
the correlation function C(tw1t ,tw) previously defined dis-
plays aging behavior: it depends explicitly on tw and t ~see
Fig. 1!; as the system ages, it becomes more rigid, in the
sense that it evolves slower and gets away from itself always
slower.

For times t much lower than tw , the dynamics has the
characteristics of equilibrium dynamics: C(tw1t ,tw) de-
pends only on t ~time translation invariance!, and it has been
checked numerically @11# that the fluctuation-dissipation
theorem is valid. Besides, we have also checked the validity
of the relation Q tw

(tw1t ,tw1t)5C(tw12t ,tw) @24#. In this
regime, we have therefore a quasiequilibrium dynamics.
Some well-known spin glass models ~like, for example, the
p-spin spherical model @16# or the random manifold @17,19#!
present a correlation function decaying from 1 to qEA , with a
power law approach to the qEA plateau: qEA1At2n.

We have been able to fit the results of the simulations
with such form, using the values of qEA obtained by the
transfer matrix method: this fit therefore uses only two pa-
rameters, and not three ~see Fig. 2 for the values, and Fig. 1
for examples of the fits!. The obtained values of n ~typically
in the range 0.120.2) are displayed in Fig. 3.

For times t comparable to or bigger than tw , the correla-
tion function C(tw1t ,tw) depends explicitly on tw : the dy-
namics is no more time translation invariant. For t@tw , it
decays as a power law,

C~ tw1t ,tw!. f ~ tw ,T !~ t/tw!2l. ~5!

We are therefore in the presence of a weak-ergodicity break-
ing behavior, limt→`C(tw1t ,tw)50 @26#. The obtained val-
ues of l are comparable to the values of n ~see Fig. 3!, and
both exponents are increasing functions of temperature, like
in real spin glasses @25#.
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It is important to note that the n exponent is different
from the x exponent studied by Yoshino @11#: this x is ob-
tained by the scaling form

C~ tw1t ,tw!.t2x ~6!

for the t!tw part, with a global form

C~ tw1t ,tw!5t2xF~ t/tw!. ~7!

If we take the limit limtw→`limt→` we obtain the same be-
havior, but the opposite order of limits,
limt→`limtw→`C(tw1t ,tw) yields 0, in contradiction with
the expected static limit

limt→`limtw→`C~ tw1t ,tw!5qEA , ~8!

which is also obtained by the form qEA1At2n.
With numerical data, however, it is difficult to prefer one

of these forms, and much longer simulations ~much bigger
values of tw) would be necessary.

If we now look at the overlap between two replicas sepa-
rated at tw ,Q tw

, it seems that this function has a finite limit at

large times t ~see Fig. 4!, with a value compatible with the
value of qEA , for big enough tw . This constatation puts this
model in the class I of the classification of @24#, which in-
cludes domain-growth models, and the p52 spherical
p-spin model @23#: it indicates that the evolution in phase
space takes place in ‘‘corridors’’ @21#, of size qEA . On the
contrary, the case of the manifold embedded in an infinite
dimensional space yields limtw→`limt→`Q tw

(tw1t ,tw
1t)50, and therefore belongs to type II, which probably
indicates a much more complex phase-space landscape, and
occurs also, for example, for the p-spin spherical model with
p>3 @24#.

B. Temperature cycling experiments

A spin glass quenched under its transition temperature,
and then submitted to temperature changes, shows a very
puzzling behavior ~see @25# for a review, and references
therein! that we briefly describe now. After a quench at time
t50, the temperature cycle is as follows ~see Fig. 5!: the
temperature is T from t50 to t5t1, then T1DT from
t5t1 to t5t2, and again T after t5t2; DT can be negative as
well as positive. For a positive DT , one observes a reinitial-
ization of the dynamics, with, e.g., for a thermoremanent
magnetization, a relaxation after t2 identical to the one ob-
tained after a quench at t50 and a waiting time
teff5tw2t2. On the contrary, for a negative DT , the system

FIG. 1. ~a! From bottom to top, C(tw1t ,tw) versus t for
tw550, 500, 5000, and 100 000, at T51, and the fit
Cas(t)50.6510.25t20.08. ~b! C(tw1t ,tw) versus t for T53 and
tw52000, 50000, and 100 000, and Cas(t)50.2410.545t20.185. In
both cases, qEA(T51)50.65 and qEA(T53)50.24 have been ob-
tained by the transfer matrix method.

FIG. 2. Values of qEA obtained by the transfer matrix method,
versus temperature.

FIG. 3. Exponents l ~for T51,2,3,4,5) and n ~for T51,2,3)
versus temperature.
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keeps memory of its evolution, and its relaxation corre-
sponds to an effective age between tw and tw2t21t1.

We have performed these jumps numerically with
T52, DT51,2,21, t15500, and t251500. We have then
monitored the evolution of the energy of the polymer, as well
as C jump(tw1t ,tw) with tw52000, comparing these quanti-
ties with the ones obtained for DT50 ~constant tempera-
ture!.

It is clear ~Fig. 6! that C jump(tw1t ,tw) corresponds to a
certain C(teff1t ,teff), teff being an effective age for the sys-
tem, depending on t22t1 and on DT; teff is less than tw for
a negative DT , which means that the dynamic has been
slowed down by the time spent at a lower temperature; here
we estimate teff510005tw2t21t1 @for DT521, the data
corresponding to C jump(20001t ,2000) with
t15500, t251500 are superimposed on the curve
C(10001t ,1000)#. For smaller values of DT , or longer times
t22t1 , teff can be bigger than tw2t21t1: the time spent at
T1DT can contribute a little to the aging. For positive val-
ues of DT , teff is bigger than tw ~in Fig. 6, teff53000),
showing that the time spent at T1DT has contributed to the
approach to equilibrium more than the same time at T .

The behavior of the directed polymer is therefore sym-
metrical for positive or negative variations of temperature.
No reinitialization of dynamics is found. This type of behav-
ior is similar to the one observed for mean-field spin glasses

@25,23#, and thus very different from the one observed in real
experiments on spin glasses.

It should be remarked that real experiments deal with a
response function, whereas we are monitoring correlation
functions. However, numerical simulations of a three-

FIG. 4. ~a! Q tw
(tw1t ,tw1t) for tw550, 500, 5000,

at T51, in logarithmic scale and ~b! Q tw
(tw1t ,tw1t) versus

C(tw1t ,tw) for tw550, at T51. At T51, qEA'0.65.

FIG. 5. Temperature cycles.

FIG. 6. Results of the temperature cycling experiments: The
symbols show C(tw1t ,tw) at constant temperature T52 for
tw51000 ~squares!, tw52000 ~crosses!, and tw53000 ~diamonds!.
The temperature cycles are done and with t15500, t251500, and
tw52000, at T52, and yield C jump(tw1t ,tw): the corresponding
curves are superimposed on C(10001t ,1000) for DT521 and on
C(30001t ,3000) for DT51.
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dimensional Ising spin glass model have shown also for the
correlation functions @27# a partial reinitialization of the dy-
namics for positive DT , and asymmetric outcomes of nu-
merical experiments with positive or negative temperature
cycles. Nothing of this kind is found here.

III. RELAXATION FROM THE GROUND STATE

The transfer matrix method allows us to find the ground
state of the polymer, given a realization of the potential. We
then let the polymer evolve at temperature T as before.

The measure of the correlation function C(tw1t ,tw) for
various tw and t shows in this case a simple t dependence:
the system is time translation invariant ~Fig. 7!. Besides,
C(tw1t ,tw) does not seem to go to zero for large t , or at
least stays well above the correlation at the same times, for a
system with random initial condition, for the accessible
times: no power law decay t2l is found. It seems that ergod-
icity is really, and not simply weakly, broken.

We have also studied the dynamics for an initial configu-
ration of energy close to the ground state energy, but spa-

tially well separated. In this case, we observe a similar be-
havior, with a time translation invariant correlation function.

Such behavior has been observed, for example, in the
TAP states of the p-spin spherical model with p>3 @28#.

IV. ENERGY

We have monitored the evolution of the energy density
Eal of the polymer; for a random initial condition the initial
energy is high, so the initial behavior is a fast decay, fol-
lowed by a much slower evolution.

When the polymer is prepared in its ground state, on the
contrary, its energy E f grows quickly because of the thermal
bath, and then stays constant.

We show in Fig. 8 the difference between the energy
densities for both situations, in logarithmic scales: this plot
shows that the evolution is compatible with a power law
decay of Eal towards E f . All the aging dynamics, therefore,
take place at higher energy densities than those of the low
lying states, where the dynamics is stationary.

V. DISCUSSION

Whereas the previous analysis of the dynamics made by
Yoshino was based on an analogy with the droplets model
@13,14#, we focus here more on a phase space analysis.

FIG. 7. C(tw1t ,tw) versus t , in logarithmic scales: comparison
of the evolutions for various initial conditions. For each figure, the
three lower curves correspond to random initial conditions
@~a! for T51, tw5500, 5000, 100 000, and ~b! for T52, tw
510 000, 50 000, 100 000#, while three curves corresponding to
the system being prepared in its ground state at initial time are
superimposed onto each other ~with the same waiting times tw as
for the lower curves!, showing that C(tw1t ,tw) depends only on
t in this case.

FIG. 8. ~a! Evolution of the energies as a function of time, for
T52, for random initial conditions ~upper curve!, or for a system
prepared in its ground state ~lower curve!. ~b! Eal2E f versus time,
for T52, in logarithmic scale ~symbols!; the straight line corre-
sponds to the power law t20.15.
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It must, however, be clear that, as for many numerical
simulations, especially for glassy systems, the available time
scales remain quite small, and that the results should there-
fore be considered as tendencies, indications of behavior.
They allow us, with these precautions, to present the follow-
ing analysis.

The observed behavior is quite similar to the one found
for the spherical p-spin model with p52: the dynamic con-
sists in a slow search of the ground state, with a slowly
decaying energy. There exists many states with low energy,
but the polymer is not able to find them, during its aging
dynamics: it remains at higher energy density; on the con-
trary, if it is put in one of these configurations, it stays
trapped and has a stationary dynamics.

The behavior of the overlap of two copies of the system,
having the same configurations until a certain time, and then
decoupled, shows besides that the evolution takes place in
some kind of ‘‘gutters’’ in phase space. The results of tem-
perature cycling experiments also show that the directed
polymer in 111 dimensions is a much simpler system than
real spin glasses. These two results are probably related, and
also in agreement, concerning the relative simplicity of the
phase space, with the fact @11# that the response to a tilt field
applied at the end of the polymer does not display any aging;

however, it would be nice to measure the response to a spa-
tially sinusoidal field, and the relaxation after cutting the
field, to check if such a relaxation has aging, and how it
depends from the wavelength of the field. However, the
sample-to-sample fluctuations of the response functions are
very important, and such measurements are therefore very
difficult.

These behaviors are in fact intermediate between the
p52 spherical p-spin model ~analogous to domain growth
@23#! and the p>3 case, which, despite being a mean-field
model, displays a much more complicated behavior with
long term memory and a very complex phase space @16#.

It would certainly be very interesting to study the directed
polymer dynamics in higher dimensions: these new dimen-
sions could provide a way to avoid energy barriers by going
around them. The appearance of these entropy barriers @29–
32# could yield new interesting effects and a richer dynamic
in a more complex phase space.
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@10# M. Mézard, J. Phys. ~Paris! 51, 1831 ~1990!.
@11# H. Yoshino, J. Phys. A 29, 1421 ~1996!.
@12# H. Rieger, Annu. Rev. Comput. Phys. II, 295 ~1995!.
@13# D. S. Fisher and D. A. Huse, Phys. Rev. Lett. 56, 1601 ~1986!.
@14# D. S. Fisher and D. A. Huse, Phys. Rev. B 38, 373 ~1988!.
@15# T. Hwa and D. S. Fisher, Phys. Rev. B 49, 3136 ~1994!.
@16# L. F. Cugliandolo and J. Kurchan, Phys. Rev. Lett. 71, 173

~1993!.
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