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Edwards’ Measures for Powders and Glasses
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Can one construct a thermodynamics for compact, slowly moving powders and grains? A few years
ago, Edwards proposed a possible step in this direction, raising the fascinating perspective that such
systems have a statistical mechanics of their own, different from that of Maxwell, Boltzmann, and Gibbs,
allowing us to have some information while still ignoring dynamic details. Recent developments in the
theory of glasses have come to confirm these ideas within mean field. In order to go beyond, we explicitly
generate Edwards’ measure in a 3D model. Comparison of the results with the irreversible compaction
data shows very good agreement. The present framework immediately suggests new experimental checks.

PACS numbers: 05.70.Ln, 05.20.–y, 45.70.Cc, 64.70.Pf

The classical way to go from the microscopic dynam-
ics to statistical mechanics proceeds in two steps: one first
identifies a distribution that is left invariant by the dynam-
ics (e.g., the microcanonical ensemble), and then assumes
that this distribution will be reached by the system, under
suitable conditions of “ergodicity.” For granular systems
this approach seems doomed from the outset: because en-
ergy is lost through internal friction, and gained by a non-
thermal source such as tapping or shearing, the dynamical
equations do not leave the microcanonical or any other
known ensemble invariant. Moreover, the compaction dy-
namics is extremely slow and does not approach any sta-
tionary state on experimental time scales. This raises the
question of characterizing the typical configurations or the
region of phase space visited dynamically.

The proposal of Edwards and collaborators [1–3] is to
use an alternative distribution for very gently vibrated or
sheared granular systems, with the static situation as a lim-
iting case. It may be summarized as follows: given a cer-
tain situation attained dynamically, physical observables
are obtained by averaging over the usual equilibrium dis-
tribution at the corresponding volume, energy, etc., but re-
stricting the sum to the “blocked” configurations defined
as those in which every grain is unable to move. This
definition leads immediately to an entropy (in the glass
literature a “complexity”) Sedw, given by the logarithm of
the number of blocked configurations of given volume, en-
ergy, etc., and its corresponding density sedw � Sedw�N .
Associated with this entropy are the state variables such

as “compactivity” X
21
edw �

≠

≠V Sedw�V � and “temperature”

T
21
edw �

≠

≠E Sedw�E�.
That configurations with low mobility should be relevant

in a jammed situation is rather obvious; the strong assump-
tion here is that, apart from the usual statistical weights,
all blocked configurations are treated as equivalent—any
extra weight of dynamical origin that might distinguish
them is disregarded. The purpose of this Letter is to argue

that this “flatness” assumption characterizing Edwards’
distributions is neither capricious (it leads to correct pre-
dictions for the compaction dynamics of a given class of
systems) nor obvious (it does not apply to other classes
of systems). To do this we devise a method to count the
blocked configurations and compute averages over them.

Let us briefly summarize the state of the art. A first clue
comes from exploiting the analogy between the settling
of grains and powders, as when we gently tap a jar with
flour to make space for more, and the aging of glassy
systems [4–6]: in both cases, the system remains out of
equilibrium on all accessible time scales, and displays very
slow relaxations.

In the late 1980s, Kirkpatrick et al. [7,8] recognized
that a class of mean-field models contains, although in
a rather schematic way, the essentials of glassy phe-
nomena. When the aging dynamics of these systems
was solved analytically, a feature that emerged was the
existence of a temperature Tdyn for all the slow modes
(corresponding to structural rearrangements) [9,10]. For
our purposes here, Tdyn can be defined by comparing the
random diffusion and the mobility between two widely
separated times t and tw of any particle or tracer in the
aging glass. Surprisingly, one finds in all cases an Einstein

relation ����r�t� 2 r�tw����2� � Tdyn
d�r�t�2r�tw ��

df , where r is
the position of the particle and f is a constant perturbing
field. While in an equilibrium system the fluctuation-
dissipation theorem guarantees that the role of Tdyn is
played by the thermodynamic temperature, the appearance
of such a quantity out of equilibrium is by no means
obvious. Tdyn is different from the external temperature,
but it can be shown to have all other properties defining a
true temperature [10].

As it turned out, despite its very different origin, this
temperature matches exactly Edwards’ ideas: Tedw and
Tdyn happen to coincide for mean-field glass models aging
in contact with an almost zero temperature bath [11–15].
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In fact, given the energy E�t� at long times, the value of
any other macroscopic observable is also given by the flat
average over all blocked configurations of energy E�t�.
Within the same approximation, one can also treat systems
that, like granulars, present a nonlinear friction and differ-
ent kinds of energy input, and the conclusions remain the
same [16].

A first partial conclusion is then that Edwards’ sce-
nario is at the very least correct within mean-field schemes
and for very weak vibration or forcing. The problem
that remains is to what extent it carries through to more
realistic models.

In this direction, there have recently been studies [17]
of Lennard-Jones glass formers from the perspective of
the so-called “inherent structures” (a partition of the phase
space in terms of the blocked configurations [18]). In
this context a “flat weight” assumption—similar in spirit
but not quite equivalent to Edwards’—also comes into
question and is tested in various ways. Though there are
caveats [19,20], the results are encouraging.

The path we follow instead is to construct the Edwards’
measure explicitly in the case of representative (non-
mean-field) systems, together with the corresponding
entropy and expectation values of observables. We thus
obtain results that are distinctly different from the equi-
librium ones, and we can compare both sets with those of
the irreversible compaction dynamics.

The first model we consider is the so-called Kob-
Andersen (KA) model [21] that, though very schematic,
reproduces rather well several aspects of glasses [22] and
of granular compaction [23]; most important, this model
is non mean field. A particle can move to a neighboring
empty site, on a three dimensional lattice, only if it has
less than four neighbors in the initial and in the final
position. (In these “hard particle” models the temperature
is irrelevant, and we set it to one.) The dynamic rule guar-
antees that the equilibrium distribution is trivially simple
since all the configurations of a given density are equally
probable. However, at densities close to rg (�0.88), the
particle diffusion becomes extremely slow due to the
kinetic constraints. In order to mimic a compaction (or
aging) process without gravity, we simulate a “piston”
by freely creating and destroying particles only on the
topmost layer with a chemical potential m [22].

(i) The dynamic measurements are taken as follows:
starting from low density, we perform a slow compression
by raising the chemical potential up to a high value m � 3.
Since the equilibrium density at m � 3 is much larger than
the jamming density rg, the system falls out of equilibrium
and very slow compaction ensues. We record the density
r�t� and the spatial structure function gdyn�r , t� defined as
the probability that two sites at distance r are occupied. We
also compute the dynamic temperature Tdyn by comparing
induced and spontaneous displacements. This is the set
of observables we use for testing the different measures,
which are obtained independently.

(ii) In the equilibrium measure all configurations
(whether they are blocked or not) have equal weight. It
is easy to obtain the exact equilibrium entropy density
per particle sequil�r� � 2r lnr 2 �1 2 r� ln�1 2 r�.

Since T � 1 as mentioned above,
dsequil� r�

dr � 2m. The
equilibrium structure factor is easily seen to be a constant
gequil�r� � r2: indeed, one main advantage of this model
is that it is particularly easy to compare small deviations
from gequil�r�, a notoriously difficult task in glassy
systems.

(iii) Finally, we obtain Edwards’ measure results as
follows: we introduce an “auxiliary model” in which
particles have energy equal to one if the dynamic rule of the
original model would allow them to move, and to zero
otherwise. Performing simulated annealing of the auxil-
iary model at a fixed number of particles is an efficient
way to sample over the configurations with vanishing
fraction of moving particles the Edwards’ ensemble
structure function gedw�r�, and to obtain (Fig. 1) Sedw�r�
as the logarithm of the number of such configurations by
thermodynamic integration of the energy of the auxiliary
model with respect to its temperature. We then compute

T
21
edw � 2

1

m

dsedw� r�
dr .

We are now in a position to compare the long-time
results of the out of equilibrium dynamics (i) with those
obtained with measures (ii) and (iii). Figure 2 shows

a plot of the mobility x�t, tw� �

1

3N

P3
a�1

P
N
k�1 3

d����r
a
k �t�2r

a
k �tw �����

df vs the mean square displacement

B�t, tw� �

1

3N

P3
a�1

P
N
k�1����r

a
k �t� 2 r

a
k �tw����2�, testing in

the compaction data the existence of a dynamical tem-
perature Tdyn [24]. (N is the number of particles and a

runs over the spatial dimensions.)
The agreement between Tdyn and the Edwards’ tempera-

ture Tedw, obtained from the blocked configurations as in
Fig. 1, is clearly excellent.
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FIG. 1. Gibbs’ and Edwards’ entropies per particle of the
Kob-Andersen model vs density. At high enough density the
curves are indistinguishable, and join exactly only at r � 1.
The slope of the tangent to sedw�r� for a generic r allows one

to extract Tedw�r� from the relation
dsedw

dr �

1

Tedw� r�

dsequil

dr .
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FIG. 2. Einstein relation in the Kob-Andersen model: plot of
the mobility x�t, tw� vs the mean-square displacement B�t, tw�.
The slope of the full straight line corresponds to the equilib-
rium temperature (T � 1), and the slope of the dashed one to
Edwards’ prescription obtained from Fig. 1 at r�tw� � 0.848.

In Fig. 3 we plot (i) the long-time dynamic gdyn�r, t�,
(ii) the equilibrium gequil�r� � r2, and (iii) the Edwards’
gedw�r� structure factors. The agreement between (i) and
(iii) is good.

From the results shown so far, a picture emerges where
the Edwards’ measure is able to correctly reproduce the
sampling of the phase space generated by the out of equi-
librium dynamics of this non-mean-field model. We have
found, however, that at short times or for excessively fast
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FIG. 3. Structure functions g�r� 2 r2 at density r � 0.87
computed with the equilibrium, Edwards’ and dynamical mea-
sure of the Kob-Andersen model. The three sets of data come
from independent Monte Carlo simulations. The dynamic struc-
ture function (circles) is obtained after slow compression rais-
ing the chemical potential continuously from m � 1 to m � 3
in 106 Monte Carlo sweeps. The Edwards’ structure function
(open squares) is obtained from the auxiliary model. Although
the equilibrium value of g�r� 2 r2 is exactly 0, we also obtain
it by a Monte Carlo simulation (full squares) in order to show
that the difference in the short distance behavior is not an arti-
fact of the numerical simulation. The size of the typical error
bar on dynamical data is shown at r � 3.

compressions, the quality of the agreement becomes worse,
possibly due to heterogeneities. We refer to a longer, more
technical paper for a discussion of these issues, as well as
a study of other models (in particular the so-called Tetris
model [25] for which one recovers the same conclusions
as for the KA model) and more technical details on our
numerical methods [26].

As already mentioned, Edwards’ construction can be
inappropriate for certain models, even though they may
have a logarithmically slow dynamics. As a representative
example of this we consider the low temperature domain
growth dynamics of a 3D Ising model in a weak random
magnetic field, a model relevant to many physical prob-
lems [27]. At large times the domain walls are pinned
by the field, and the dynamics proceeds by thermal ac-
tivation. The mean energy decreases slowly towards the
ground state energy. In a large system, the long-time con-
figurations are made of domains of “up” and “down” spins
having similar volumes, the global magnetization being
zero. This is quite different from the equilibrium configu-
rations at the same energy, which are instead magnetized
(since the energy is near the ground state energy).

The question in the present context is therefore whether
a long-time configuration of (low) energy E0 is well re-
produced by the typical “blocked” configuration of the
same energy. By simulating the corresponding “auxiliary”
model (with auxiliary energy equal to the number of spins
not aligned with their local field, i.e., to the number of
“mobile” spins), we have checked that this is not the case:
the blocked configurations constituting Edwards’ distribu-
tion at energy E0 are also magnetized. Therefore, neither
Gibbs’ nor Edwards’ distributions describe the typical con-
figurations obtained dynamically.

When is, then, the flatness assumption characterizing
Edwards’ argument justified? A natural criterion, sug-
gested by glass theory [14,28–30], consists of studying
how a system explores its phase space, i.e., its “chaotic-
ity” properties. After aging for a time tw , two copies
(clones) are made of the system, and allowed to evolve
subsequently with different realizations of the randomness
in the updating procedure. We have checked that in the
KA model the two clones always diverge (the slower the
larger tw : see Fig. 4), while for the 3D random field Ising
model they do not. It is thus tempting to conjecture that
this form of chaoticity is a necessary condition to have flat
statistical weights for the blocked configurations. Note that
for this criterion to make sense, it should always be applied
at nonzero (though weak) tapping or shearing. The condi-
tion of chaoticity is, however, not sufficient: Bouchaud’s
“trap model” [9] is chaotic, but its fluctuation-dissipation
properties are not directly related to the density of states.

To summarize, our study suggests that the proposal
made by Edwards does indeed make sense and opens a
door towards a statistical (thermodynamic) description
of compact granular matter under very weak driving. In
order to generalize these ideas to stronger forcing, lower
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FIG. 4. Mean overlap Qtw �t� between two clones in the
KA model: the two clones are separated at tw and evolve
subsequently with different noises. Qtw �t� always decreases
to zero (the slower the larger tw), showing that the clones
always diverge.

chemical potential, or higher temperatures (as required to
analyze the experiments in [31]), one has to learn how
to go from the concept of “blocked configuration” to
that of “metastable state,” and this requires other tools
[32]. The inherent structure construction could provide a
practical shortcut.

The present setting of the problem immediately sug-
gests experiments to check these ideas, e.g., by study-
ing diffusion and mobility of tracer particles within driven
granular media.

Finally, let us note that even in the simplest cases the
correspondence between Edwards’ distribution and long-
time dynamics is at best checked but does not follow from
any principle. The situation is thus as if one would have
checked that the microcanonical distribution gives good
results for gases, without knowing Liouville’s theorem that
proves that such a distribution is indeed left invariant by the
equations of motion. Such more refined arguments would
be very welcome.
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