
January 4, 2012 19:1 WSPC - Proceedings Trim Size: 9in x 6in CCT11˙briolle˙ricaud˙leoncini˙2

1

Detection and characterization of Levy flights in chaotic

advection phenomena

B. RICAUD∗

Laboratoire d’Analyse, Topologie, Probabilité, AMU,
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1. Introduction

In order to analyse chaotic transport phenomena and quantify anomalous

transport, several tools are being used in the nonlinear physics community

such as a fractal analysis of the trajectories[], giving Lyapunov exponents,

multifractal analysis [?], or statistical analysis [?] and analysis of long-tailed

probability density functions of polynomial decrease. In this article, we sug-

gest a new method for analysing a particular case of anomalous transport.

In this special case, the particles involved in the transport encounter typi-
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cally short periods of balistic transport (Lévy flights) in between standard

random walks (Brownian motion). From a statistical point of view, this is

a anomalous transport phenomenon and this anormality can be estimated

by the usual techniques to obtain one or several global estimators. But it

can be caracterized in a more accurate way by detecting and counting the

amount and duration of these levy flights. Moreover, in the case of real data

(not simulations), noise is present in the signal to analyze. The standard

methods fail to discriminate the statistical behavior of the signal from the

one of the noise. Our signal processing analysis is able to detect and ex-

tract levy flights even embedded in noise (of reasonable amplitude). This

is definitively an asset in view of using it on practical applications.

The signal processing method relies on the use of the uncertainty prin-

ciple. This principle states that time and frequency (momentum and posi-

tion in quantum mechanics) cannot be known simultaneously with arbitrary

precision. If we call ∆t the accuracy of the measure in time and ∆f the

accuracy in frequency, the Heisenberg principle states that:

∆t ·∆f ≥ c,

where c is a strictly positive constant. This phenomenon is usually seen as

a problem and large efforts have been done to minimize uncertainty. How-

ever, in the present work we are taking advantage of it. Indeed, we propose

to transfer the tracer trajectory seen as a signal to the time-frequency

plane: the Brownian motion becomes a fuzzy stain whereas the levy flights

remain relatively sharp. The detection of Lévy flights turns into the de-

tection of straight lines in the time-frequency plane, something which can

be efficiently done with the Fractional Fourier transform. The uncertainty

principle gives to our detection algorithm the ability to accurately detect

flights even in the presence of noise. Moreover, it can be implemented in

a fast manner relying on the fast Fourier transform: the complexity is of

O(N2 logN), where N is the size of the sampled signal giving the advection

of one particle.

In part 2 we present the physical problem which motivated the establish-

ment of our new signal processing technique. The notion of transport and

Lévy flight is stated with precision along with the type of data to analyze.

In part 3 the method for analyzing this particular anomalous transport

is described in details. It is illustrated with its application to data from

part 2, the results of the detection of Lévy flights are presented at the end.
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2. Chaotic advection phenomena

In this section we introduce the phenomenon of stickiness that occurs in low-

dimensional Hamiltonian systems, for this purpose we consider sepcifically

the phenomenon of chaotic advection of passive tracers in a flow generated

by three vortices.

2.1. Definitions

We consider the flow v(r, t) of an incompressible fluid (∇·v = 0). A particle

can be considered a passive particle if once it is placed in the fluid, its

presence has no impact on the flow itself. In this setting the trajectories of

the passive particle can be deduced directly from the flow, since the speed

of the passive particle is identical to the one of the fluid itself. The motion

is then a solution of the following differential equation:

ṙ = v(r, t) , (1)

where r = (x, y, z) corresponds to the passive particle position. If we con-

sider a two-dimensional flow the motion can be cast in a Hamilotnioan

formalism. Indeed, we have ∇ · v = 0, thus up to some gradient a stream

function Ψ can be defined such that v = ∇∧Ψ, and in a two-dimensional

case, Ψ = Ψ z resumes to a scalar field Ψ, z being the unit vector perpen-

diculare to the two dimensional plane. In this setting Eq. (1) become

ẋ =
∂Ψ

∂y
, ẏ = −∂Ψ

∂x
. (2)

We shall notice that the couple (x, y) corresponds either to the canonical

conjugate variables of the Hamiltonian Ψ. We have obtain a one dimen-

sional integrable Hamiltonian system if Ψ is independent of time, stating

the simple fact that particles follow stream lines. If Ψ depends on time,

we generically obtain Hamiltonian chaos and a system with 1− 1
2 degree of

freedom. This chaotic nature of the trajectories is in this context referred to

the phenomenon of Chaotic advection. Indeed even if the flow has a laminar

(non turbulent structure), passive particles or tracers have chaotic trajec-

tories.?,?,? As a consequence mixing is considerably enhanced in chaotic

regions of the flow, in the sense that chaotic motions mixes much faster

than molecular diffusion.?,?,? This phenomenon is of crucial importance

when dealing with mixing in micro-fluidic devices, as Reynolds number are

usually small and chaotic mixing becomes, de facto, the preferred tool. there

are moreover a multitude of physical systems and applications dsipalying

such chaotic motion for instance in geophysical flows or magnetized fusion
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plasmas.?,?,?,?,?,?,?,?,? To generate the flows from which we will analyze the

data we consider flows generated by a system with three point vortices.

2.2. A system of point vortices

In order tpo describe a system of point vortices, it is best to start with the

Euler equation for the vorticity in a two-dimensional incompressible flow:

∂Ω

∂t
+ [Ω,Ψ] = 0 , Ω = −∇2Ψ , (3)

where [·, ·] and denotes the Poisson brackets. We now consider a vorticity

field given by a superposition of Dirac functions:

Ω(r, t) =

N∑
i=1

kiδ (r− ri(t)) . (4)

Here, ki designate the vorticity of the point vortex localized at point ri(t).

This point vortex distribution is a solution of the Euler equation if the

N positions of the vortices xi(t) have a specific dynamics.? In fact the

dynamics of the vortices corresponds to N -body Hamiltonian dynamics

and when the flow is considered on the plane, the Hamiltonian writes

H =
1

2π

∑
i>j

kikj ln |ri − rj | , (5)

where kiyi and xi are the canonically conjugate variables of the Hamilto-

nian (5) and locate the position ri(t) in the plane.

The vortex motion resulting from Hamiltonian (5) just states that each

vortex is advected by the velocity field generated by the other vortices. We

then also have access to the stream function which acts as the Hamiltonian

of the passive tracers

Ψ(r, t) = − 1

2π

N∑
i=1

ki ln |r− ri(t)| . (6)

Before moving on, we notice that the Hamiltonian (5) is invariant by trans-

lation and by rotation in the plane. Given this, it can be shown the system

is integrable if the number of point vortices N is such that N ≤ 3, on

the other hand vortex motion is not integrable and consequently chaotic if

N > 3.?,? In order to generate a laminar time-dependent flow we consider

the flow generated by three vortices.

Also since we are interested in asymptotic transport properties we have

considered a periodic motion of the vortices. Work related to transport for
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Fig. 1. Left: Poincaré section of a system of three point vortices. Vorticities are

(−0.2, 1, 1). Right: Deviation from average arc-length (s(t) − V t) versus time for an
ensemble of 30 particles advected in the flow. We notice the presence of Lvy flights. The

run is performed over 20000 (quasi-)periods of the vortex motion.

the case of three identical vortices can be found in.?,? Here we want to have

vortices of different signs and check the influence on transport of the finite

time singularity

2.3. Stickiness and anomalous transport

We just have discussed chaotic mixing in a flow generated by three point

vortices. In fact transport in a complex system can be anomalous. To be

more precise in the nomenclature, there exist classification of the type of

transport based on the value of the characteristic exponent of the evolution

of the second moment.

Transport is said to be anomalous if it is not diffusive in the sense

〈X2〉 ∼ tµ, µ 6= 1

(1) If µ < 1 transport is anomalous and one refers to it as sub-diffusion

(2) If µ = 1 transport is Gaussian and one refers to it as diffusion

(3) If µ > 1 transport is anomalous and one refers to it as super-diffusion

When considering system of three point vortices, as the one depicted in

Fig. 1, one notices that the chaotic sea is finite. Moreover, transport prop-

erties are quite obvious when we are within an island of stability where

motion is regular, thus we are interested in transport properties resulting

from trajectories living in the chaotic sea which results from chaotic advec-

tion. Since the sea is bounded, it is not convenient to consider transport for
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long times based on particle positions (the sea being filled quite fast). We

are thus considering transport properties based on the length of trajectories

and measure the curvilinear arc-length, and the transport and dispersion

associated to this quantity

si(t) =

∫ t

0

|vi(τ)|dτ , (7)

where vi(τ) is the speed of particle i at time τ . Then to characterize and

study transport we compute the moments

Mq(t) ≡ 〈|s(t)− 〈s(t)〉|q〉 , (8)

where 〈. . . 〉 corresponds to ensemble averaging over different trajectories. In

fact since the the ergodic measure may not be uniform, in order to sample

it properly it is best to consider different portions of length t of trajectories

computed for a long time, rather than a large number of initial conditions

computed for “short” times, i. e. when dealing with numerics it is best

to have a strong processor, rather than a parrallel computer. From teh

evolution of the different moments, we we get a characteristic exponent

Mq(t) ∼ tµ(q) . (9)
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Fig. 2. Localization of the regions contributing to the type of flights depicted in Fig. 1.
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It was shown that for the point vortex flow, the transport is superdiffu-

sive and multi-fractal.? These anamalous features were traced back to the

phenomenon of stickiness: when a trajectory arrives in the neighbourhood

of an island of stability it can get stuck around the island for arbitrary

large times which act as pseudo-traps. This generates strong memory ef-

fects (slow decay of correlations) and as a consequence displays anomalous

transport properties. In Fig. 2, the sticky region are identified (see? for de-

tails). Once a trajectory gets stuck around an island after a transient its

length grows almost linearly with time, with a speed generically different

then the ensemble average one, which translates in the presence of Lvy

flights. We have drawn in Fig. ?? the relative evolution of the length with

respect to the mean of an ensemble of 30 different particles. Indeed One can

see that the time evolution is reminiscent of some random walks by parts

coming from the chaotic sea and there are some parts where the evolution

looks regular and ballistic usually referred to as Levy flights, each different

slope corresponding to a different sticky region (Fig. 2).

3. Time-frequency technique

We shall now introduce the particularities of the data set from a signal

processing point of view and describe the analysing technique. For clarity,

the result of each step will be illustrated with applications to the simu-

lated data of the previous part (trajectories of tracers evolving in the flow

generated by three vortices).

3.1. The data set

A typical trajectory s is a one-dimensional signal of N = 1000 sampling

points s(t), t ∈ [1, N ]. An example of such signal is shown on Fig. 3 (left)

and a set of trajectories on Fig. 1 (right). Several parts can be distinguished:

a random fluctuation (Brownian motion) and some almost linear segments

of different length corresponding to Lévy flights. Our technique is dedicated

to the detection these linear parts and the measure of their length and slope.

3.2. The detection method

As illustrated in Fig. 1 (right) and Fig. 3 (left), Lévy flights correspond to

an almost linear evolution of the arclength. It is then important to notice

that due to the uncertainty principle:

• random fluctuations in frequency cannot be rendered precisely in the
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time-frequency plane. It requires to be precise both in time and fre-

quency, which is forbidden.

• linear parts or more generally slowly varying frequency components

are emphazised by the time-frequency representation. Moreover, linear

parts, called chirp signals, can be detected efficiently using the frac-

tional Fourier transform.

It is then interesting and natural to us to take advantage of this fact for the

analysis of the data set. To perform our analysis we shall therefore interpret

the arclength s(t) as the phase derivative (the fluctuation of the “frequency

component“) of a new signal S(t). This corresponds to the first step of the

process: Let us introduce the phase

ϕ(t) =

t∑
τ=1

s(τ), (10)

and the signal
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Fig. 3. Left:Length of a single particle. Right: Short-time Fourier transform of S.

S(t) = eiϕ(t). (11)

The above signal is a non-stationary signal of magnitude one and made

of a single frequency component which fluctuations are the one of the ini-

tial function s(t). To better understand what it means, the time-frequency

representation of S has been drawn on Fig. 3 (right). It is also called the

spectrogram1 and it is the absolute value of the short-time Fourier trans-

form of S. One single frequency component can be seen which mimick the

behavior of the signal s plotted on the right. But the important difference
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is now, because of the uncertainty principle, that brownian fluctuations be-

come diffuse stains in Fig. 3 (right). As a consequence pure random behavior

is blurred, but linear parts remain sharp. Our first objective is attained: le

linear behavior has been emphazised over the brownian motion, thanks to

the uncertainty principle.

We now move on to the second part of the process. We search for lines in

the time-frequency ‘picture’. For this purpose we project the signal S(t) on

several orthogonal basis of chirps signals. Given a parameter θ ∈ (−π, π),

we introduce the basis of chirps {ψθ,µ}µ with a frequency slope of 1
tan θ ,

ψθ,µ(t) = ei(
1

2 tan θ t
2+ µ

sin θ t). (12)

Since t ∈ [1, N ], µ = 2πn/N with n ∈ [1, N ]. Notice that µ/ sin θ is the

frequency value at t = 0 (frequency offset) of the chirp ψθ,µ. The projection

of the signal is described by the following procedure and it is equivalent2

to applying the Fractional Fourier transform (up to a normalizing factor):

C(θ, µ) =

N∑
t=1

S(t)ψθ,µ(t), (13)

where the bar denotes the complex conjugate. Since Lévy flights may have

different slopes, it is necessary to project onto several basis of chirps, each

one having a different θ. Several θ (M = N values between (−π) and π)

are chosen for the projection giving the M ×N matrix C(θ, µ). When the

characteristics of a chirp (frequency slope and offset) match the one of a

”frequential picture”-Lévy flight present in the signal, a peak is obtained

for |C|. The amplitude of this peak is directly proportional to the length of

the flight.

Taking the signal shown in Fig. 3 as an example, there is a specific

direction θm (related to the slope of the largest Levy flight) where a peak

in localized in the row |C(θm, ·)|, as illustrated in Fig. 4. For µm ∼ 420,

the sharp peak |C(θm, µm)| gives evidence that there is a Lévy flight with

a particular slope 1
tan θm

, with a length proportional to |C(θm, µm)|. This

search for maxima is the process that detects linear parts in the time-

frequency plane.

Once the first maximum is identified, we can make several choices. The

simplest one is to look for the second highest peak, third and so on until

the amplitude of the n-th peak detected reaches a chosen threshold. The

output of the algorithm gives a set of n values for θ (slopes) and for |C(θ, µ)|
(lengths). This finishes the analysis of one particle trajectory.



January 4, 2012 19:1 WSPC - Proceedings Trim Size: 9in x 6in CCT11˙briolle˙ricaud˙leoncini˙2

10

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

µ (nb samples)

M
ag

ni
tu

de
 (a

. u
.)

Fig. 4. For θm, signal projections |C(θm, µ)|.

The second choice is more complex but potentially more interesting.

Since we have projected S onto a orthogonal basis, we can set the detected

peak at θm, µm to zero and reconstruct a signal S1 by calculating:

S1 = S − C(θm, µm)ψθm,µm .

This step is illustrated in Fig. 5 (left), which represents the short-time
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Fig. 5. Short-time Fourier transform of the signal S1 and S2. Left : the longest Lévy
flight have been removed. Right : two Lévy flights have been removed.

Fourier transform of the newly recreated signal S1. The largest frequency

slope of S has been completely removed, the rest remaining untouched. This

shows the efficiency of our method. The signal S1 can then be processed

similarly to S, i.e. projecting on chirp bases, finding the maximum and tak-

ing it out, to lead to a new signal S2 where the second longest linear part
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has been removed, Fig. 5 (right). Again, one clearly sees the efficiency of

the algorithm. Indeed, in this example, after two iterations of the process

we managed to remove the two longest Lévy flights. This iterative process

leading to S1, S2, · · · , Sn is the principe of the matching pursuit4 decom-

position of a signal. The advantage of this method is that the random part

of the signal is not affected by the decomposition and this allow for fu-

ture analyses of the random part without the flights (in the time-frequency

picture).

The steps of the process can be summarized as follow :

• Trajectory as a phase derivative of a signal S(t) : time-frequency trans-

formation

• Search for lines in the time-frequency ‘picture’ : projection on a basis

of chirps

• Lévy flight detection : peak picking on the matrix C and matching

pursuit.

Remark 1: The computational complexity for obtaining the matrix C is of

order N2 logN . For each θ the projection onto the chirp basis is performed

via a fast Fourier transform2,3 of complexity N logN . This is done for a

number of θ proportional to N .

Remark 2: For Lévy flights with steep slopes, numerical problems may

arise due to the discretization. The solution used here is to make a 90 de-

grees rotation of the signal in the time-frequency plane before the projection

on chirps and adapt the values of θ in consequence: this rotation is simply

obtained by applying a Fourier transform to the signal S.

3.3. Robustness to noise

3.4. Blind characterization of Lévy flights in the advected

data

As a test of the method we now consider the data obtained from the ad-

vection of 253 tracers in the point vortex flow described in section 1. Our

goal is to detect the multi-fractal nature of the transport resulting from the

sticky islands, which would serve as a proof of concept and pave the way

to apply the method to numerical and experimental data.
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4. Conclusions

The first step of the method help emphasing the straight lines over random

fluctuations.

The second step consists in the detection of straight lines in the time-

frequency image. The Fractional Fourier transform applied to a one-variable

signal is similar to a Radon transform or Hough transform of a standard

image.

This method and its first results open the way to more systematic de-

tections of Levy flights in anomalous transport phenomena. The detection

algorithm is efficient and fast, allowing the analysis of a large number of

tracers trajectories in a short time. The output, yielding the number Levy

flight and their duration, can be analysed in a second step by statistical

tools (e.g. mean number of flight in a trajectory, mean length, variance,...).

This will lead to a more accurate characterization of this particular case of

anomalous transport.

Open Questions

• How to analyse other coherent shapes in the signal (more complex than

linear)?

• Can we analyse the remaining random signal Sn and recover brownian

motion?

• This method can detect noisy flights, what is the maximal level of noise

admitted?

• What is the minimal length of a Levy flight?

• Is it possible to quantify anomalous transport with this technique?
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