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Abstract In this chapter, we briefly recall the theory of non-commutative tomog-
raphy in a pedagogical way. We then consider its applications to signal analysis.
The advantages and drawbacks of these techniques to finite samples of data are dis-
cussed. Then the method is applied, first to signals originating from reflectometry
measurements in magnetized fusion plasmas, and then to data obtained from the
advection of tracers in a two-dimensional time dependent flow generated by three
point vortices. In the first case, we show that the tomogram allows to pick a base to
represent our signal which has the advantage of isolating the reflection coming from
the plasma and then to improve the estimation of the density profile. In the second
case, we show how, with a “tricky transformation” the method allows us to detect
Lévy flights and extract some of their properties.

1 Introduction

The notion of time has been throughout the ages of constant debate and reflexion. In
physics the emergence of the theory of relativity and its consequences have related in
an intertwined maner the notions of space and time, leading for instance to the defi-
nition of the meter through the speed of light since 1983. From another perspective,
the classical mechanical time which is essential to Newton’s second law and lead
to the rise of the dynamical systems branch of physics and mathematics can be as
well challenged, essentially by data analysis. Indeed physics is grounded on experi-
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mental relevance of its laws, in order to uncover or verify these, the experimentalist
acquires data usually originating from a time dependent signal. When dealing with
time dependent systems, data acquisition and signal analysis become crucial, not
only because, as quantum mechanics taught us, measuring something changes it, but
also and quite often on the macroscopic scale because of imperfections, noise and
possible biases. When dealing with almost periodic data, such as the one acquired
by looking at our sky and planetary motion, we usually rely on Fourier series, who
introduced them in 1822. It took though a long time to develop a full mathemat-
ical theory of the basis of this approach, which eventually leads to the notion of
functional analysis, with its vector space, basis or generating ensembles, and scalar
products useful to define a norm, projections and a distance between functions. In
some way, using this approach we try to describe an unknown function (signal) with
a set of functions that are well known. Fourier analysis was then able to be deployed
using the integral formalism and the full Fourier transform. At the same time, the
notion of wave-length and frequency could be seen as dual representation of time
and space, and hence the notion of time or its representation could become fuzzier,
leading to the notion of time-frequency representations. Following this trend, the
switch to numerical treatment, the development of new algorithms such as the Fast
Fourier Transform, especially tailored for finite sampled data, lead to the uncovering
of some of the short-comings of Fourier analysis, and most notably for un-stationary
signals, for which the time-frequency representations becomes crucial. This paved
the way for the development of new signal processing tools such as for instance
wavelet analysis. In this chapter we focus on another approach to signal analysis, it
of course comes like most other approaches for the original vein of Fourier analy-
sis, and is as well somewhat inspired from wavelet analysis. It however adds a new
degree of freedom, in the sense that we use a parametric generating set, that allows
us to tune this parameter to “optimize” our signal representation for certain desired
tasks, such as isolating some components or signature from an un-stationary signal.

Most of signals are non-stationary with a time-dependent spectral content. There-
fore an adequate joint time and frequency representation is desired for a character-
ization of such signals. Several types of linear transforms, as Gabor transform or
wavelets transforms are widely used.

The Wigner-Ville quasi distribution is considered to be optimal in the sense that
the spread in the time-frequency plane is minimal. But the Wigner-Ville distribution
has in general positive and negative values and the interference terms (artifacts) may
be non-zero and the interpretation of its representation could be delicate.

Tomograms transforms are recent mathematical techniques, based on group the-
ory. Associated to a linear combination of non-commutative operators, tomograms
are quadratic positive signal transforms. Then, in contrast to a time-frequency rep-
resentation, the tomogram is the the exact probability distribution of the signal on
the variable X , corresponding to a linear combination of the chosen operators. We
may define as a component of the signal any distinct feature (ridge, peak, etc.) of
the representation.

In section 2 we will give an overview of several transformations as linear trans-
forms, quasi-distibutions and tomograms, which can be used to characterize unsta-
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tionary signals. Non-commutative tomograms, elaborated with the generators of the
one-dimensional conformal group will be presented, with a particular emphasis to
the time-frequency tomogram. Then, two applications of this transformation will be
extensively presented. In section 3, tomograms are used for the analysis of measure-
ments of reflectometry on magnetized plasma, allowing to isolate the only reflection
on the plasma, and then to estimate with accuracy the density profile. In section 4,
the anomalous transport of particles in a flow generated by three points vortices will
be detected and characterized. After a transformation of the arclength of chaotic tra-
jectories as the instantaneous frequency of a signal, the time-frequency tomogram
transformation is used for the detection and characterization of Lévy flights .

2 Non commutative tomograms

Several types of integral transform [1, 2] are used in signal processing and are ap-
plied in different fields as engineering, acoustic, communications, radar, medicine,
etc.. We will consider here an analytic signal f (t) = x(t)+ iy(t), where y(t) is the
Hilbert transform of x(t), where x(t) is the real measured signal.

In addition to the traditional Fourier analysis [3] widely used, other transforms
have been developed like the wavelet [4, 5, 6]. Recently the non commutative to-
mograms, based on the linear combination of non commutative operators, was sug-
gested [7, 8]. We will present in this section a unified picture of different methods
of signal processing using linear or bilinear transform in the Hilbert space. Mutual
relations of the Wavelets, Wigner-Ville and tomographic transformations will be
exhibited.

2.1 Linear transforms, quasi-distributions and tomograms

A unified framework to characterize linear transforms, quasidistributions and tomo-
grams was developed in [8]. This is briefly summarized here.

Consider:

• a normalized analytic signal f (t) as vectors | f 〉 in a dense nuclear subspace
N of a Hilbert space H with dual space N ∗ (with the canonical identification
N ⊂N ∗)

• a family of operators {U(α) : α ∈ I, I ⊂ Rn} defined on N ∗, satisfying the
completeness conditions (which is the case when U (α) generates a unitary group
U (α) = eiB(α)).

• a reference vector 〈h ∈N ∗ be a reference vector chosen in such way that the
linear span of {U(α)h| ∈N ∗ : α ∈ I} is dense in N ∗. This means that, out of
the set {U(α)h}, a complete set of vectors can be chosen to serve as a basis.
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If U (α) is a unitary operator, there is a self-adjoint operator B(α), such that
U (α) = eiB(α).

In this setting three types of integral transforms are constructed.

1. Linear transform: W (h)
f (α) = 〈U(α)h | f 〉

• Fourier transform [3] is the representation of the analytic signal as a linear
superposition of planes waves which are the eigenvectors |ω〉 of the frequency
operator ω̂ =−i d

dt . The plane wave signals reads

fω(t) = 〈t | ω〉=
1√
2π

eiωt ,

and the Fourier transform of the analytic signal is

Ff (ω) = 〈ω | f 〉= 1√
2π

∫
f (t)e−iωtdt .

This transformation is invertible and gives the possibility to reconstruct the
signal f (t) by means of the inverse Fourier transform

f (t) = 〈t | f 〉= 1√
2π

∫
F(ω)eiωtdω .

The main problem with the Fourier transform is that the signal f (t) has a
finite duration and the plane waves fω(t) are supposed of infinite duration.
And in the case of unstationary signals, this transformation will not give any
information of the spectral evolution in time. In fact, it is necessary to use a
joint time-frequency description of the signal to get the evolution of the phase
derivative (instantaneous frequency) as a function of time.

• Gabor transform [9] or Short-Time Fourier transform [10, 11, 12] gives the
possibility to represent the spectral evolution of the signal f (t), using a win-
dow function of fixed width. The signal will be projected on ”wave packets”
of finite duration :

hτ,ω(t) = h(t− τ)eiωt ,

and the Gabor transform is

G f (τ,ω) = 〈hτ,ω | f 〉= 1√
2π

∫
f (t)h∗(t− τ)e−iωtdt .

For each τ , the window h(t) will take only a portion of the signal before-
hand the Fourier transform. To get a good resolution in time, the width of
the window h(t) should be very small, but then the resolution in frequency is
degraded. And to get a good resolution in frequency, the window has to be
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very large, and then the resolution in time is very bad. However, this transfor-
mation, also called the spectrogram, is widely used to represent unstationary
signals.

• Wavelet transform [13, 14] is the projection of the signal f (t) on a ”basic
wavelet” h(t) translated and expanded :

hs,τ(t) =
1√
s

h(
t− τ

s
)eiωt ,

and the Wavelet transform is

Wf (s,τ) = 〈hs,τ | f 〉=
∫

f (t)h∗s,τ(t)dt .

To get a finite integral, the ”basic wavelet” should satisfied the eligibility con-
ditions such

∫
h(t)dt = 0 (zero mean) and

∫
|H(ω)|2 dω

ω
= 1. A lots of ”basic

wavelets” can be used as the Mexican hat wavelet

h(t) = (1− t2)e−t2/2 ,

or the Morlet wavelet
h(t) =

1
2π

e−t2/2eiω0t .

Unlike the Short-Time Fourier transform which gives a unique resolution (in
time or in frequency) for each point of the time-frequency plane, the wavelet
transform will give different resolutions according to the frequency: for low
frequency, the resolution will be good in frequency at the cost of a bad lo-
calization in time. On the contrary, for high frequency, the compression of
the wavelet will allows to a good resolution in time to the detriment of the
frequency resolution. This transformation elaborated in the years ’80 by A.
Grossman and J. Morley [15] is now used in many applications of signal pro-
cessing.

2. Quasidistribution transform: Q f (α) = 〈U(α) f | f 〉

• Wigner-Ville transform [16, 17] is a bilinear map of the function f (t)

W (t,ω) =
∫

f (t +
u
2
) f ∗(t− u

2
)e−iωudu

Wigner-Ville quasidistribution provides information in the joint time-frequency
domain with good energy resolution. But the oscillating cross-term makes the
interpretation of this transform a difficult matter. Even if the average of the
cross-terms is small, their amplitude may be greater than the signal in time-
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frequency regions that carry no physical information. This is a consequence
of the basic fact that the time (t̂) and the frequency (ω̂ = i d

dt ) operators as-
sociated to this quasi distribution, are a pair of non-commutative operators
and then precludes the existence of joint probabilities density in the time-
frequency plane. Hence a joint probability density cannot be defined.
To profit from the time-frequency energy resolution of the bilinear transforms
while controlling the cross-terms problem, modifications to the Wigner-Ville
transform have been proposed. Transforms in the Cohen class [18, 19] make
a two-dimensional filtering of the Wigner-Ville quasidistribution.

• Ambiguity function : the analytic signal f (t) can also be described by a func-
tion called the ambiguity function of two variables

AFf (τ,ω) =
∫

f (t +
τ

2
) f ∗(t− τ

2
)e−iωtdt

This function is the two-dimensional Fourier transform of the Wigner-Ville
quasidistribution. Thus, the ambiguity function contains the same information
on a signal as the Wigner-Ville transformation W (t,ω).

3. Quadratic signal transforms: M(B)
f (X) = 〈 f | δ (B(α)−X) | f 〉

Recently, a new type of strictly positive bilinear transforms has been proposed
[7, 8], called tomograms, which is a generalization of the Radon transform [20]
to noncommutative pairs of operators.
Let X take values on the spectrum of B(α). Considering a set of generalized
eigenstates (in N ∗) of B(α), one obtains for the kernel

〈Y | δ (B(α)−X) | Y ′〉= δ (Y ′−X)δ (Y −Y ′) = 〈Y | X〉〈X | Y ′〉

Therefore, we may identify δ (B(α)−X) with the projector | X〉〈X |

δ (B(α)−X) =| X〉〈X |= PX

From this, it follows

M(B)
f = 〈 f | δ (B(α)−X) | f 〉= 〈 f | X〉〈X | f 〉= |〈X | f 〉|2 , (1)

showing the positivity of the tomogram and its nature as the squared amplitude
of the projection on generalized eigenvectors of B(α). For a normalized analytic
signal f (t), the tomogram is normalized∫

M(B)
f (X) dX = 1 .

Then, the tomogram can be interpreted as the probability distribution of the ran-
dom variable X corresponding to the observable defined by the operator B(α)
and provides a full characterization of the signal.
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Let consider the operator B(α) as a linear combination of the operators O1,O2
and its eigeinvectors {Ψ X

α (t)}. The B-tomogram, which explores the signal along
lines in the plane (O1,O2), is the projection of the analytic signal on the eigen-
vectors:

M(B)
f (X) = 〈 f ,Ψ X

α 〉=
∫

f (t)Ψ X
α (t)dt

Here, we consider one-dimensional conformal with its generators

t̂ ω̂ =−i d
dt D = (t̂ω̂ + ω̂ t̂) K = i

(
t̂2 d

dt + t̂
)
.

One may elaborate a linear combination of those non commutative operators to
construct one-dimensional tomograms.

• Time-frequency tomogram
The operator B1(α) is a linear combination of the time t̂ and frequency ω̂

operators,
B1(µ,ν) = µ t̂ +νω̂ .

The eigenvectors Ψ X
µ,ν(t), associated to the eigenvalue X are

Ψ
X

µ,ν(t) = e
−i
(

µt2
2ν
− tX

ν

)
,

and the time-frequency tomogram is the projection of the analytic signal on
the eigenvectors

M1 (µ,ν ,X) =
1

2π|ν |

∣∣∣∣∣
∫

e
i
(

µt2
2ν
− tX

ν

)
f (t)dt

∣∣∣∣∣
2

. (2)

This tomogram is studied in more details in Sec. 2.2 and two applications
using this transformation are extensively detailed in Sec.3 and Sec.4 .

• Time-scale tomogram
For this tomogram, the operator B2(α) is a linear combination of the time
t̂ and the dilatation operator D = (t̂ω̂ + ω̂ t̂) = −i

(
t̂ d

dt +
1
2

)
, instead of the

operator ω̂ used for the previous operator,

B2(µ,ν) = µ t̂ +νD .

The time-scale tomogram is defined as the projection of the signal on the
eigenvectors of the operator B2(µ,ν) associated to the eigenvalue X ,

M2(µ,ν ,X) =
1

2π|ν |

∣∣∣∣∣
∫

dt
f (t)√
|t|

e[i(
µ

ν
t− X

ν
log |t|)]

∣∣∣∣∣
2

. (3)

• Frequency-scale tomogram
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This tomogram is elaborated with the operator B3(α), a linear combination of
the frequency operator ω̂ and the dilatation operator D,

B3(µ,ν) = µω̂ +νD . (4)

and then, the projections of the signal on the eigenvectors will give the
frequency-scale tomogram

M3(µ,ν ,X) =
1

2π|ν |

∣∣∣∣∣
∫ Ff (ω)√

|ω|
e[−i( µ

ν
ω− X

ν
log |ω|)]dω

∣∣∣∣∣
2

, (5)

with Ff (ω) being the Fourier transform of the analytic signal f (t).

• Time-conformal tomogram
For this tomogram, the operator B4(µ,ν) is a linear combination of the time t̂
and the conformal operator K

B4(µ,ν) = µ t̂ +νK = µ t̂ + iν
(

t2 d
dt

+ t
)
.

Then, the tomograms related to this operator is

M4(µ,ν ,X) =
1

2π|ν |

∣∣∣∣∫ dt
f (t)
|t|

e[i(
X
νt +

µ

ν
log |t|)]

∣∣∣∣2 . (6)

For more details on noncommutative tomograms defined on the one-dimensional
conformal group, see [21, 8].

4. Quantum mechanics formalism
The linear and the quasidistribution transforms can be written using group theory
formalism.
If U (α) are unitary operators, by Stone’s theorem, there are self-adjoint opera-
tors B(α) such that U (α) = eiB(α). The linear and quasidistribution transforms
can be written as

W (h)
f (α) = 〈h|eiB(α)| f 〉

Q(B)
f (α) = 〈 f |eiB(α)| f 〉

For B(α) = α1t̂ +α2ω̂ and h a generalized eigenvector of the time-translation
operator, the linear transform W (h)

f becomes the Fourier transform. For B(α) plus

the parity operator π(t̂2+ω̂2−1
2 , the Q f (α) would be the Wigner -Ville transform.
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Similarly, for B(α) = α1D+α2ω̂ where D is the dilatation operator D = 1
2 (t̂ω̂ +

ω̂ t̂), the linear transform W (h)
f is a wavelet transform and the Q f (α) the Bertrand

transform.
The relations between the transformations are established in [8].

2.2 Time-frequency tomogram

For an analytic signal f (t), the time-frequency tomogram is defined as :

M f (X ,µ,ν) =
1

2π|ν |

∣∣∣∣∫ f (t)exp
(

iµ
2ν

t2− iX
ν

t
)

dt
∣∣∣∣2 , (7)

For each (µ,ν) pair corresponding to a linear combination of the time and frequency
operators the tomogram provides a probability distribution on the variable X [see
Eq. (3)]. The tomogram M f (X ,µ,ν) is an image in the (X ,(µ,ν)) hyper-plane of
the probability flow from the t-description of the signal to the frequency-description,
through all the intermediate steps of the linear combination.

For an easy interpretation of the time-frequency tomogram, we consider a partic-
ular case µ = cosθ ,ν = sinθ with the self-adjoint operator B(θ) = cosθ t̂+sinθω̂ .
The tomogram is defined as :

M f (X ,θ) =
1

2π|sinθ |

∣∣∣∣∫ f (t)exp
(

icosθ

2sinθ
t2− iX

sinθ
t
)

dt
∣∣∣∣2 . (8)

Then, in the plane (X ,θ) the tomogram M f (X ,θ) can be interpreted as the probabil-
ity distribution on the variable X . For this particular case, the tomogram M f (X ,θ)
coincides with the Radon transform [22], which has already been used for signal
analysis by several authors [23, 24, 25] in a different context.

For θ = π

2 , the tomogram M f (X , π

2 ) is the frequency-description of the signal,

M f (X ,
π

2
) =

1
2π

∣∣∣∣∫ f (t)e−iXt dt
∣∣∣∣2 .

For θ = 0, the operator B(θ) = t̂ and the tomogram M f (X ,0) is the time-description
of the signal. The limit of the Fresnel tomogram MF

f (X ,θ) defined for small θ in
[26], is

lim
θ→0

MF
f (X ,θ) = |s(t)|2 .

The variable X is the time for θ = 0, the frequency for θ = π/2 and is a generalized
variable X , mixture of time and frequency, for other values of θ .

We can make the link between the time-frequency tomogram M f (X ,θ) and the
fractional Fourier transform [27], defined as:
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Fs(x,θ) =C(θ)e
iπx2
tanθ

∫
s(t)exp

(
iπ cosθ

sinθ
t2− 2πx

sinθ
t
)

dt . (9)

Up to a phase factor exp(ix2/2tanθ) and a normalization constant C(θ), the
fractional Fourier transform is similar to the time-frequency tomogram M f (X ,θ).
They can be both interpreted as the projection of the analytic signal f (t) on a basis
of chirp signals [28]

ψθ ,x(t) = ei[(π/2tanθ)t2−(x/sinθ)t] .

2.3 Time frequency tomogram and data analysis

2.3.1 Signal of finite duration T

For a signal of duration T the time frequency tomogram, can be written as:

Ms(x,θ) =
∣∣∣∣∫ s(t)Ψ θ ,T

x (t)dt
∣∣∣∣2 = ∣∣∣< s,Ψ θ ,T

x >
∣∣∣2 , (10)

with

Ψ
θ ,T

x (t) =
1√
T

exp
(
−icosθ

2sinθ
t2 +

ix
sinθ

t
)
. (11)

The family
{

Ψ
θ ,T

xn (t)
}

is orthogonal and normalized basis : <Ψ
θ ,T

xm ,Ψ θ ,T
xn >= δm,n

for a family of values {xn = x0 +
2nπ

T sinθ}, where x0 is freely chosen (in general
we take x0 = 0).

The time-frequency tomogram can be written, for each angle θ1, . . . ,θk, . . . ,θP,
as :

M(xn,θk) =
∣∣∣cθk(xn)

∣∣∣2 . (12)

For a digital signal {s[n}n=0,...,N−1, of length NT , cθk(xn) is the Fast Fourier
Transform of the digital signal :

cθk(xn) = FFT
(

s[n]exp
[

icosθk

2sinθk
n2
])

. (13)

The fast implementation of the time-frequency tomogram is of complexity O(N logN),
for each θk.

It is then possible, from the projections cθk(xn) to recover the original signal s[n]:

s[n] = IFFT
(

cθk(xn)
)
.exp

[
−icosθk

2sinθk
n2
]

(14)
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2.3.2 Density of magnetized plasma from reflectometry measurements

Reflectometry measurements on magnetized plasma are difficult to analyze. Indeed
the signal is a mixture of components such as reflections on the porthole, on the
wall of the machine and, that which is of interest, the reflection on the plasma. For
this application, we use the time-frequency tomogram as a kind of ”chirp filter”.
For an angle θk, the probability distribution of the signal on the variable x allows
to separate the three components. Then, from the tomogram projections cθk(xn),
we will ”re-synthesize” each component and their phase derivative. We are able to
extract the component of interest, the reflection on the plasma, and then to extract
information of the plasma density. This application is developed in section 3.

2.3.3 Detection and characterization of Lévy flights

Transport of advected passive particles in two dimensional flows with coherent
structures (vortex) is anomalous when it contains Lévy flights. The arclength of the
particles trajectories are characterized by a linear behavior with respect to the time
(ballistic motion). The arclength of the trajectory will be transformed as the phase
derivative of a new signal to emphasize the linear part of the trajectory. Then, the
time-frequency tomogram will be used to detect linear chirps in a two dimensional
time-frequency representation. This application is develop in section 4.

3 Measurement of the density profile of magnetized plasma

3.1 Context

The energy confinement in ITER is predicted with scaling laws extrapolated from
measurements on smaller machines as Tore Supra, Jet, etc. tokamaks. When rewrit-
ten with dimensionless parameters, large uncertainties remain on some parameter
dependence such as the ratio of plasma pressure to magnetic pressure. The under-
standing of the anomalous transport of particles in magnetized plasmas is a key issue
for a fusion reactor. The large heat and particle transport is attributed to drift wave
turbulence destabilized by temperature and density gradients [29].

Density measurements play an important role in the study of the anomalous
transport of magnetically confined plasma for a better understanding of the turbu-
lence. Microwave reflectometry is a radar-like technique, widely used to measure the
electronic density profile in tokamak plasmas. Reflectometers have been developed
along two main applications: density profile and density fluctuations measurements
[30, 31].
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In the years 2010, we participated in the analysis of data coming from new re-
flectometers on Tore Supra [32, 33]. The goal was to extract from a mixture of multi
reflections (reflectometry measurements), the sole reflection on the plasma.

In this part, we will first explain the principle of reflectometry measurements in
magnetized plasma, and then give some results of tomographic data analysis, and
its future applications to reflectometers.

3.2 Principle of reflectometry

Derived from radar principles, reflectometry measures the amplitude and the phase
variation of a microwave ER(t) reflected inside the plasma at a cut-off layer where
the refractive index n becomes zero, by mixing the reflected wave with the probing
wave (reference) E0(t).

For measuring the density profile, a standard method uses a frequency sweeping
of the probing wave.

E0(t) = cos{Ω(t).t)} with
∂Ω(t)

∂ t
= a.t +b . (15)

Then the reflected wave is equal to ER(t) = A(t)cos{Ω(t).t) + φ(t)} This signal
is multiplied by a pure frequency cos{Ω(t).t)} and low-pass filtered afterwards in
order to get, at the output of the mixer, the signal :

s(t) = A(t)cos{φ(t)} . (16)

In the mixer output, the amplitude A(t) of the reflected wave ER(t) depends on
the variation of the reflectivity of the cutoff layer. This is due to geometrical effects
like the divergence of the microwave beam or the tilting of the cutoff layer when a
large perturbation modifies the flux surfaces. The phase φ(t), that contains the most
reliable information about the plasma density, is the main quantity of interest. In
part 3.3, the experimental setup, which allows us to get the amplitude and the phase
of the reflected wave, are exposed in details.

There is two modes of polarization of the probing wave : the ordinary polariza-
tion, where the wave polarization is in the direction of the magnetic field B of the
plasma (E ‖ B), so called the 0–mode, and the extraordinary polarization, X-mode,
where the wave polarization is orthogonal to the magnetic field (E ⊥ B). The value
of the refractive index is depending on the polarization of the probing wave, as it is
shown in part 3.2.1.

3.2.1 Wave propagation in a Plasma

With the hypothesis of cold (the particles are static), homogeneous (the character-
istics lengths are large in comparison to the wavelength) and stationary plasma (the
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evolution time is large in comparison to the wave period), it is possible to write the
equation of propagation of a plane wave [34, 35, 36]. Then, the dielectic tensor is:

εxx = εyy = 1− ω2
pe

ω2−ω2
ce

εxy = εyx = −ωce
ω

ω2
pe

ω2−ω2
ce

εzz = 1− ω2
pe

ω2

εxz = εzx = εyz = εzy = 0

(17)

Where ω is the pulsation of the probing wave, ωpe =
√

e2ne
ε0me

the electronic plasma
pulsation and ωce = eB/me the cyclotronic electronic pulsation, ne is the electron
density, e and me the electronic charge and mass, ε0 the permittivity of the vacuum.

The propagation equation of a wave, perpendicular to the direction 0y, when the
magnetic field B is constant and Oz oriented, can be written as : εxx −iεxy 0

iεxy εxx−N2 0
0 0 εzz−N2

Ex
Ey
Ez

= 0 (18)

With N the refractive index, N = kc/ω .

• Ordinary polarization (O-mode)
In the ordinary polarization (O-mode), the wave polarization is in the direction of
the magnetic field of the plasma (E ‖ B) . In this case Ex = 0, and the propagation
equation have a unique solution:

N2
O = 1−

ω2
pe

ω2 . (19)

Then, the cutoff frequency fO is equal to the plasma frequency ωpe/2π and de-
pends only on the electron density ne.

fO =
1

2π

√
e2ne

ε0me
. (20)

The O-mode is widely used in reflectometry, but the measurements can be done
only for density gradient between 0.3 and 0.8. The edge and the center density of
the plasma can’t be reached with this kind of measurements.

• Extraordinary polarization (X-mode)
In the extraordinary polarization, the wave polarization is orthogonal to the mag-
netic field (E ⊥ B). Then, the refractive index is equal to :
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N2
X = 1−

ω2
pe(1−

ω2
pe

ω2 )

ω2−ω2
pe−ω2

ce
. (21)

If the frequency f of the probing wave is equal to 1
2π

√
ω2

pe−ω2
ce, then the wave

will become evanescent and will be absorbed by the plasma.
The wave will be reflected when NX = 0. There are two cut-off frequencies,
namely the upper- f up

X and lower- fX low :

f up
X =

1
2π

√
ω2

ce +4ω2
pe +ωce

2
and f low

X =
1

2π

√
ω2

ce +4ω2
pe−ωce

2
. (22)

The edge density can be probed using the upper cutoff frequency since the fre-
quency is finite. It allows us to measure weak density at the edge of the plasma.

3.2.2 Density profile reconstruction

Using the WKB approximation [38] along the propagation path (1D approximation),
the phase variation between the antenna at r = 0 and the reflecting layer at r = rco
can be estimated:

φp =
4π

c
. f .
∫ r=rco

r=0
N(r, f , t)dr− π

2
. (23)

Where f is the frequency of the probing wave, N(r,f,t) the plasma refractive index
at the frequency f . The term −π

2 indicate that the reflection inside the plasma is
nonmetallic.

A variation of the phase φp can be due either to a variation of the probing fre-
quency or a variation of the optical path length between the antenna and the cut-off
layer along the line of sight. Temporal changes of the phase can thus be written as:

∂φp

∂ t
=

4π

c
.
∂ f
∂ t

.
∫ r=rco

r=0
N(r, f , t)dr+

4π

c
. f .

∂

∂ t

(∫ r=rco

r=0
N(r, f , t)dr

)
. (24)

The first term is proportional to the optical path length
∫ r=rco

r=0 N(r, f , t)dr, i.e. the
position rco of the reflecting layer, when the frequency f is swept.

The second term describes the phase changes introduced by fluctuations of the
optical path length arising from temporal and spatial fluctuations of the electron
density.

The beat frequency is defined as:

fb =
1

2π

∂φp

∂ t
, (25)

and the group delay of the reflected wave, namely the time of flight :
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τg =
1

2π

∂φp

∂ f
= fb/

∂ f
∂ t

. (26)

• Ordinary polarization (O-mode)
It is possible to reconstruct a monotonic density profile, with the estimation of
the group delay τg of the reflected wave. The localization of the reflecting layer
rc(Fp) for the frequency Fp is given by the analytic expression [37]:

rc(Fp)−a =
c
π

∫ Fp

0

τg( f )√
F2

p − f 2
d f . (27)

• Extraordinary polarization (X-mode)
In the extraordinary polarization (X-mode), the density profiles are recovered
from the phase using the Bottolier algorithm [39]. Initialization of the profile
is the most interesting feature of the X-mode polarization. Contrary to the O-
mode polarization, where at zero density the cutoff frequency equals zero, in X
mode the edge density profile position can be setup with the rise of the detected
amplitude. Assuming that the first cutoff is for a null density, the start of the
plasma can be set providing knowledge of the local magnetic field.

3.3 Experimental setup

A broadband reflectometer operating in the frequency range 50-75 GHz (V-Band)
in extraordinary mode polarization has been developed on Tore Supra to measure
edge density profiles [40, 41, 42].

Fast sweeping improves greatly the profile reconstruction. On Tore-Supra, the
cut-off layer displacement during the turbulence correlation time (microsecond
range) is comparable to the turbulence correlation length (centimeter range). At a
sweeping rate of 1 GHz µs−1, the wavelength rate is 30 cm µs−1, which is compa-
rable to the displacement of the cutoff layer. With the experimental setup described
on Fig. 1, the probing wave operates in the range 50-75 GHz with a sweeping rate
of 20 µs.

The output of a HTO (Hyperabrupt varactor Tuned Oscillator) providing fast
linear frequency sweeps from 12-19 GHz in 20 µs, is mixed to a low frequency
signal f m∼ 100 MHz.

After amplification, the frequency ω(t) + f m is multiplied by 4 to provide a
probing signal with a frequency coverage between 48-76 GHz. The probe signal
E0(t) = cos(4{ω(t)+ fm}.t) is then emitted through wave guides.

Emission and reception are done with two separate identical rectangular anten-
nas, one near of the other, outside the vacuum vessel through a porthole, around 120
cm away from the plasma edge, as it is shown in Fig. 2.

A sweep is done before every discharge and the reflection on the inner wall of the
vessel is used as a reference to correct the dispersion in waveguides and antennas.
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Fig. 1 X-mode Reflectometer working in V-Band (50-75 GHz)

Fig. 2 The experimental setup is located outside the vacuum vessel, close to the plasma edge.

The output of the HTO, at the frequency 4ω(t), is τ delayed by a delay line,
to obtain the signal : u(t) = cos(4ω(t).(t + τ)). During the time τ , the path of the
probing wave is equal to D = τ.c, where D is the distance from the emitting antenna
to the inner wall of the vessel. Then, the phase differences between the probing and
the reflected waves will be mainly due to the position of the cutoff layer.

The reflected wave, ER(t) = A(t)cos{(4ω(t) + 4 fm).(t + τR) + φ(t)}, is then
mixed to u(t) and band-pass filtered at 4 f m± 50MHz to obtain a low frequency
signal v(t) = A(t)cos{(4 fmt +φ(t)}.
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An heterodyne demodulation at 4 fm, providing in-phase and 90◦ phase detection,
leaves the reflected wave in the base-band leaving only the cutoff data of the probing
frequency s(t) = A(t)eiφ(t).

The reflectometer can achieve a repetition rate of 5µs between sweeps, so the
dynamic behavior of fast plasma events can be followed.

3.4 Data processing

The goal is to measure the density at the edge of the plasma on the extraordinary
mode polarization (X mode) on Tore Supra.

The sweep-frequency reflectometer launches a probing wave in the V band (50–
75 GHz). The reflectometry system repeatedly sends sweeps of duration 20µs. The
heterodyne reflectometers, with I/Q detection, provide a good Signal to Noise Ra-
tio, up to 40 dB.

As it is described in detail in part 3.3, for each sweep, the reflected chirp ER(t) is
mixed with the incident sweep Ere f (t) and only the interference term is recorded as
an in-phase and a 90◦ phase shifted sampled signals. Let the reflected signal be :

s(t) = x1(t)+ ix2(t) = A(t)eiϕ(t) . (28)

For one of the measurement (choc #42824) the Gabor Transform Gs(t,ω) namely
the spectrogram, gives a time-frequency representation of the signal s(t) [6].

Gs(t,ω) =
1√
2π

∫ +∞

−∞

s(τ)e−π(τ−t)2
e−iωτ dτ .

The Gabor Transform is obtained with short time Fourier transforms (STFT) of
the sampled signal broken up into M windowed chunks, which usually overlap, and
Fourier transformed. The spectrums are then ”laid side by side” to form the image
or a three-dimensional surface. For a better representation, the amplitude of the
spectrum are represented by gray scales, to obtain a two dimensional image where
the horizontal axis is the time and the vertical one the beat frequency. Each vertical
line represent the spectrum of a trunk (Fig. 3).

The signal s(t) is sampled at the frequency of 100 MHz, so we get only 2000
samples by trial. For a nice time-frequency representation, the length of the chunks
is equal to 100 samples with an overlapping equal 90%.

As it can be seen on the time-frequency representation, the base-band reflected
wave s(t) is a mixture of different signals: a reflection of the probing wave on the
inner wall of the vessel (0 < t < 10 µs ; beat frequency ∼ 20 MHz) a reflection
on the porthole, placed in front of the antennas (0 < t < 12µs; beat frequency ∼
-5 MHz) and the reflection on the cutoff layers of the plasma (7 < t < 20 µs; beat
frequency between 5 to 20 MHz). The reflections on the inner wall and the porthole
are represented by straight lines while the plasma reflection is more heckled.
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Fig. 3 Up Time-frequency representation of the base-band downshifted reflected wave A(t)eφ(t).
Down Real part of the base-band downshifted reflected wave.

The goal is then to extract only the reflection on the plasma from the base-band
reflected wave. The reflections are overlapping in time and in frequency, the reflec-
tion on the inner wall is very close to some reflections on the plasma : a band pass
filter will not give good results.

A time frequency tomographic analysis is therefore used to achieved the separa-
tion of different reflections merged in the reflected wave.

3.5 Tomographic analysis

3.5.1 Time-frequency tomograms (signal of finite duration)

In part 1, we described in much detail the time-frequency tomograms. Here, we will
describe the method of component separation for the operator :

BS
θ = cosθ t + sinθ ω , (29)
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where t and ω = i ∂

∂ t are respectively the time and frequency non commutative op-
erators.

A probability family of distributions, Ms(x,θ), is defined from a complex signal
s(t), t ∈ [0,T ] by:

Ms(x,θ) =
∣∣∣∣∫ s(t)Ψ θ ,T

x (t)dt
∣∣∣∣2 = ∣∣∣< s,Ψ θ ,T

x >
∣∣∣2 , (30)

with
Ψ

θ ,T
x (t) =

1√
T

ei(−cosθ

2sinθ
t2+ x

sinθ
t) . (31)

Note that the Ψ
θ ,T

x are generalized eigenfunctions for any spectral value x of the
operator BS

θ
. Therefore Ms(x,θ) is a (positive) probability distribution as a function

of x for each θ .
A glance at the shape of the functions (31) shows that, for fixed θ , the oscillation

length at a given t decreases when |x| increase. As a result, the projection of the
signal on the

{
Ψ

θ ,T
xn (t)

}
basis locally explores different scales. On the other hand

the local time scale is larger when θ also becomes larger, in agreement with the
uncertainty principle for a non-commuting pair of operators.

Here θ is a parameter that interpolates between the time and the frequency oper-
ators, thus running from 0 to π/2 whereas x is allowed to be any real number. For
θ = 0, the tomogram Ms(x,θ) is the probability distribution of the signal in time
|s(t)|2 and for θ = π

2 , the probability distribution of the signal in frequency |S( f )|2.
Our strategy is to search for intermediate values of θ where a good compro-

mise may be found to separate the components of the signal. For such intermediate
values it is possible to pull apart different components of the signal (see Fig. 4, a
tomographic representation (0 < θ < π

2 ) of the reflected wave).
As it can be seen on Fig. 5, an intermediate value of sinθ ∼ 0.6 (θ = π

5 ) allows
us to separate the three components, taking into account both time and frequency
information.

The Fourier transform of s(t)(left part Fig. 5), shows that it is impossible to use
a band pass-filter to get the only reflection on the plasma. With a tomogram of the
signal, for θ = π

5 , the three components can be distinguished (right part Fig. 5).

3.5.2 Components factorization

Method
First we select a subset of numbers {xn} in such a way that the corresponding

family
{

Ψ
θ ,T

xn (t)
}

n
is orthogonal and normalized:

<Ψ
θ ,T

xm ,Ψ θ ,T
xn >= δm,n . (32)

This is possible using the sequence
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Fig. 4 Time-frequency tomographic representation of the base-band reflected wave A(t)eφ(t). For
θ = 0, the tomogram Ms(x,θ) is probability distribution of |s(t)|2 and for θ = π

2 , the probability
distribution of |S( f )|2.

Fig. 5 Left: Fourier transform of the base-band signal s(t) measured at the output of the reflec-
tometer. Right: Tomogram, for θ = π

5 of the signal s(t).

xn = x0 +
2nπ

T
sinθ , (33)

where x0 is freely chosen (in general we take x0 = 0 but it is possible to make other
choices, depending on what is more suitable for the signal under study).

We then consider the projections of the signal s(t) on the orthonormal basis
{Ψ θ ,T

xn }

cs
xn,θ

=< s,Ψ θ ,T
xn >, (34)
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and use the coefficients cs
xn,θ

for our signal processing purposes.
As it is shown on the right part of the Fig. 4, it is possible, using a threshold, to

select three subsets Fk of the {xn}. A multi-component analysis of the signal [32]
is done by reconstructing the partial signals :

sk(t) = ∑
n∈Fk

cs
xn,θ

Ψ
θ ,T

xn (t) k = 1,2,3 . (35)

Results
From the projections of the signal s(t) on the orthonormal basis {Ψ θ ,T

xn }, for
θ = π

5 , using a threshold (ε = 0.04) it is possible to select the spectral projections
of three different components (see Fig 6).

Fig. 6 Tomogram of the signal s(t) for θ = π

5 , Ms(x,θ = π

5 ).

First component, the reflection on the porthole
The first component, s̃1(t) corresponds to −20≤ xn ≤ 0 and is therefore defined

as:

s̃1(t) =
0

∑
xn=−20

cθ
xn(y)Ψ

θ
xn(t) . (36)

This component is the reflection of the probing wave on the porthole. The distance
from the emitting/reception antenna to the porthole is around 80 cm. It is a constant
low frequency signal (see Fig 7): the phase derivative of the reflection is proportional
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to the distance from the antenna to the reflector. The duration of this signal is around
12 µs.

Second component, reflection on the plasma
The second component is the reflection on the cutoff frequency of the plasma (see

Fig 7). The reflection starts around 10 µs after the reflection on the porthole. The
frequency and the amplitude of this reflected wave is quite heckled. This component,
s̃2(t), corresponds to 0≤ xn ≤ 110 and is therefore defined as:

s̃2(t) =
110

∑
xn=0

cθ
xn(y)Ψ

θ
xn(t) . (37)

Third component, reflection on the inner wall of the vessel
The last component corresponds to the reflection of the probing wave on the wall

of the vacuum vessel. The frequency is quite constant (Fig. 7), and related to the
distance antenna-wall. The duration of this signal is around 10 µs. This component,
s̃3(t), corresponds to 110≤ xn ≤ 140 and is therefore defined as:

s̃3(t) =
140

∑
xn=10

cθ
xn(y)Ψ

θ
xn(t) . (38)

Fig. 7 The three components of the reflectometry signal. For visual purposes, the average of s̃1(t)
is shifted to 1 and the average of s̃3(t) to -1.
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3.5.3 Estimation of the phase derivative

Method
To compute the density profile of the plasma, with reflectometry measurements

in the X-mode, it is necessary to estimate the phase derivative of the reflection on
the cutoff layer of the plasma. The usual process is to isolate this refection and then,
to unwrap the phase using a classical gradient procedure. Given a signal s(t) =
A(t)eiφ(t), the time derivative of the phase may be obtained from

∂

∂ t
φ(t) = Im

(
∂ s
∂ t

s(t)

)
. (39)

Using a tomographic decomposition allows us to get the time derivative of the
phase directly. Let us remember that :

s̃k(t) = Ak(t)eiφk(t) = ∑
n∈Fk

cs
xn,θ

Ψ
θ ,T

xn (t) k = 1,2,3 , (40)

then,

∂

∂ t
s̃k(t) = ∑

xn

cs
xn,θ

∂

∂ t
Ψ

θ ,T
xn (t) . (41)

Notice that an explicit analytic expression for ∂

∂ tΨ
θ ,T

xn (t) is known, namely:

∂

∂ t
Ψ

θ ,T
xn (t) = i

(
−cosθ

sinθ
t +

x
sinθ

)
Ψ

θ ,T
xn (t) . (42)

Therefore we obtain a direct expression for the phase derivative in terms of the
coefficients cs

xn,θ
without having to use the values of sk for neighboring values of t.

∂

∂ t
φk(t) = Im

(
∑xn cs

xn,θ
i
(−cosθ

sinθ
t + x

sinθ

)
Ψ

θ ,T
xn (t)

∑xn cs
xn,θ

Ψ
θ ,T

xn (t)

)
k = 1,2,3 . (43)

This provides a more robust method to estimate the derivative. The phase deriva-
tive of the three components obtained with this method is plotted on the time-
frequency representation of the signal (Fig 8).

Results
The expression of the phase derivative ∂

∂ t φk(t), given by the Eq.( 43), is true for
all t ∈ [0,T ].

As it can be seen on Fig. 7, the reflections on the porthole (s̃1) and the inner wall
(s̃3) are very weak t > 11µs. The reflection on the plasma (s̃2) starts only after 7µs.
The phase derivative will be computed only when the signal exists.



24 Françoise Briolle, Xavier Leoncini

Fig. 8 The phase derivative of the three components, estimated by the tomogram method, is plotted
on the time-frequency representation of the signal s(t)

For some values of t, the denominator in Eq.(43) could be very small, and then
the estimation of the phase derivative is not good. To overcome this problem, we
use a low pass filter. More details are given in [33].

The estimation of the phase derivative of the three components, with the method
described above, are plotted on the time-frequency representation of the full signal
s(t). The method gives good results as it shown on Fig. 8.

The data processing (tomogram) will be used for the new reflectometer on Tore
Supra and on Jet [43, 44, 45, 46].

4 Detection and characterization of Lévy flights

4.1 Context : Stickiness and Lévy flights in chaotic advection

In order to detect Lévy flights, we shall consider a specific physical context namely
the stickiness phenomenon which leads to the presence of such flights. For this
purpose we shall introduce briefly this phenomenon, in the case when it occurs in
low-dimensional Hamiltonian systems[47]. To be more explicit stickiness occurs at
the border between an island of regular motion and the chaotic sea. This stickiness
induces naturally long correlations and as such memory effects and so-called Lévy
flights. We consider a specific physical context for which this phenomenon has been
explicitely exhibited. This will allow the reader to get a better intuition on physi-
cal mechanisms behind the stickiness and how it affects transport properties. The
considered system is the advection of passive tracers by a two dimensional time
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dependent flow leading to the phenomenon of chaotic advection. For this purpose
and in order to be more explicit we shall consider a specific flow generated by three
point vortices (see for instance [48]).

4.1.1 Chaotic advection

Let us start by giving some definition and clarifying the background of chaotic ad-
vection. Let us consider a flow v(r, t) of an incompressible fluid (∇ · v = 0), and a
particle advected by this flow: one can for instance picture a small object floating on
the surface of a river and transported by the stream. We then need to introduce the
notion of passive particle or passive tracer. This notion defines an idealized particle
which presence and motion in the fluid imposes no feedback on the flow and thus
does not modify it. By definition this would be true for a fluid particle itself, but
for other type of particles or tracers this is usually not true. However if the size of
particle is small enough with respect to the length scales involved in the system and
governing the flow, and other factors such as density, rugosity etc are more or less
those of the considered fluid this ideal hypothesis is a good approximation. We can
then derive the equation of motion of a passive particle which transported by the
fluid so that its speed equals that of the fluid and hence its motion is governed by:

ṙ = v(r, t) , (44)

where r = (x,y,z) refers to the tracer’s position, and the ˙ to the time derivative.
We shall see now how this relates to Hamiltonian chaos. In fact for an incom-

pressible flow, we can define a stream function which resumes to a scalar field for a
two dimensional system, such that the fluid velocity can be written as

v = ∇∧ (Ψ z) , (45)

where z corresponds to the unit vector perpendicular to the two dimensional space.
Using Ψ , we can rewrite the equations governing the motion of a passive tracer
Eq. (44) projected on each coordinate, as

ẋ =
∂Ψ

∂y
, ẏ =−∂Ψ

∂x
. (46)

And we recognize Hamilton equation of motion, where the space coordinates (x,y)
are actually canonically conjugated and the stream function Ψ acts as an Hamilto-
nian.

When the flow is time independant, then the Hamiltonian Ψ reduces to an au-
tonomous one degree of freedom system and is therefore integrable, which trans-
lates into the particular considered case that our passive tracers are following ve-
locity field lines. However, it is possible and likely that the stream function Ψ is
actually time-dependent. In this case, we have actually an non-autonomous system
and we have a time dependent Hamiltonian system, meaning a system with 1− 1

2
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degrees of freedom. And it is know that generically, such systems generate so-called
Hamiltonian chaos. Note that this choatic phenomenon can also occur in a station-
ary incompressible flow, but then the flow has to be three-dimensional, and we talk
about chaos of field lines, see for instance [49] and references therein.

In the context of the advection of particles in flows, this chaotic nature of tra-
jectories was called as a phenomenon of chaotic advection [50, 51, 52]. One of the
major consequence of this phenomenon concerns the mixing of trajectories. Indeed
chaotic advection can enhance drastically the mixing properties of the flow, mean-
ing that the mixing process generated by the chaotic motion is much more efficient
than the one occurring through molecular diffusion. And this effect is even more
patent when the flow is laminar [53, 54, 55, 56, 57]. When dealing with mixing
in micro-fluid experiments and devices, chaotic advection becomes crucial. Indeed
since the Reynolds number are usually small, chaotic mixing becomes, de facto,
an efficient way to mix. There are also numerous domains of physics, displaying
chaotic advection-like phenomena, for instance in geophysical flows or magnetized
fusion plasmas [58, 59, 60, 61, 62, 63, 64, 65, 66].

To detect the Lévy flights we use data coming from the simulation of passive
tracers advected by the flow generated by three point vortices. We now shall re-
call quickly what is a point vortex and how they appear and can be useful in two-
dimensional flows.

4.1.2 Definition of a point vortex

In order to describe the notion of a point vortex it is convenient to start with Euler
equation. In fact, when considering a perfect two-dimensional incompressible flow
governed by the Euler equation, if we are interested in the dynamics of the vorticity
field Ω , we simply take the rotational of the Euler equation. This helps getting rid of
the pressure and other potential forces gradients and we end up with the following
equation

∂Ω

∂ t
+{Ω ,Ψ}= 0 , Ω =−∇

2
Ψ , (47)

where {·, ·} corresponds to the Poisson brackets. In order for the point vortices to
“appear“, we assume a vorticity field given by a superposition of point concentrated
vorticities (Dirac functions) written as

Ω(r, t) =
N

∑
i=1

kiδ (r− ri(t)) , (48)

where, ki is the vorticity of a point vortex, and the vortex is localized by the point
ri(t) in the plane. This singular distribution is actually an exact solution of the Euler
equation (47) when each of the N vortices obeys a specific and prescribed motion
[67]. In fact the dynamics of the vortices ends up being equivalent to the one coming
from an N-body Hamiltonian dynamics. The form of the Hamiltonian is strongly
related to the Green function and therefore depends on the considered boundary
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conditions. Typically if one considers no specific boundary conditions, meaning
that we allow the flow to evolve on the whole plane. In this case, the Hamiltonian is
quite simple and writes

H =
1

2π
∑
i> j

kik j ln |ri− r j| , (49)

where the canonically conjugated variables are kiyi and xi. This is reminiscent of
the passive tracer Hamiltonian as the canonical variables are intimely linked to the
vortex position ri(t) in the plane, however it is important to recall that the phase
space corresponds now to a 2N dimensional space.

The equations of motion derived from Hamiltonian (49) juste state the fact that
each vortex is advected by the velocity field generated by the other vortices. We also
can note that since we know in time the positions of the point vortices, we know as
well the stream function (the Hamiltonian governing passive tracers) of the flow:

Ψ(r, t) =− 1
2π

N

∑
i=1

ki ln |r− ri(t)| . (50)

As a last remark and important point concerning point vortex dynamics, it is
important to notice that the Hamiltonian (49) is invariant by translation and by rota-
tion. There are thus three constant of the motion besides the ”energy“ associated to
these symmetries. However only three integrals are really in involution and Hamilto-
nian chaos appears in point vortex motion when we have more than N = 3 vortices
[68, 69, 70, 71]. Note that point vortices can be also useful to model some geo-
physical flows [72]. And that three vortices can have singular solution, leading to
finite time singularities which can lead to interesting properties and considerations
[70, 73].

In order to obtain a regular (laminar) and time dependent flow, the flow generated
by three vortices is a good compromise. Indeed the integrable motion of three point
vortices shows a larges variety of behaviors, quasi-periodic and aperiodic flows are
both possible [68, 69, 70], and are more easy to tackle than flows with more vor-
tices see for instance [74, 71], as Poincaré maps can be computed [75, 76, 48]. In
order to choose among the different possibilities, we would like to point out that
usually, to address transport properties, asymptotic (large times) behavior and time
translational properties are desired. So in order to achieve a situation where these
features exist, we have had to consider the quasi-periodic motion of vortices. Note
that these discussions are inspired by the work related to transport of passive tracers
in the case of three identical vortices found in [75, 76] and the one reported in [48]
corresponding to a situation of vortices with vorticities with different signs.
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4.1.3 Stickiness and Anomalous transport

Until now, we have briefly reviewed the notion of chaotic mixing in a flow generated
by three point vortices. As a matter of fact transport in these systems is potentially
anomalous [48]. In order to emphasize what we mean by anomalous, we would like
to remind the reader that the type of transport can be defined by considering the
behavior of the second moment of the displacement distribution and for instance
extracting a value of a characteristic exponent. If we proceed as mentionned, we
end up with a rough definition of anomalous transport, meaning that transport is
said to be anomalous when it is not Gaussian (diffusive), meaning that

〈X2−〈X〉2〉 ∼ tµ , (51)

with µ 6= 1 and as such:

1. If µ < 1 transport is anomalous and sub-diffusion is present.
2. If µ = 1 transport is Gaussian and we have diffusion.
3. If µ > 1 transport is anomalous and super-diffusion is present.

Going back to our point vortex system, the motion of passive tracers is depicted
in the Poincaré section depicted in Fig. 9. We can notice, that there are islands of
regular motion, surrounded by a finite chaotic sea. When measuring transport, we
shall consider only initial conditions in the stochastic sea, but since this chaotic re-
gion is bounded. Measuring plain dispersion is not convenient, it is however possible
to circumvent this problem by working instead with length of trajectories and then
to measure the dispersion of distance travelled among different trajectories.

si(t) =
∫ t

0
|vi(τ)|dτ , (52)

where vi(τ) denotes the speed of particle i at time τ .
Once we have the length we can compute transport properties by computing the

moments of the distribution

Mq(t)≡ 〈|s(t)−〈s(t)〉|q〉 , (53)

where 〈. . .〉 corresponds to ensemble averaging (average over different trajectories).
Finally once we have the moments, we shall estimate the characteristic exponent of
each moment, from its time evolution.

Mq(t)∼ tµ(q) . (54)

As a result of this analysis the transport properties are found to be super-diffusive
and multi-fractal [48], and this is the results of the memory effects engendered by
stickiness. Stickiness is a phenomenon which is often found in Hamiltonian systems
with mixed phase spaces, meaning phase spaces where regions of regular motion
coexists with region of chaotic motion. When this is the case, in the vicinity of
an island, trajectories can stay for for arbitrary large times, we can think of them
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Fig. 9 Left: Poincaré section of passive particle in a flow generated by three point vortices. Right:
localization of sticky regions contributing to different types of flights (see [48] for details).

mimicking the behavior of the regular trajectories nearby inside the island, these
sticky borders act then as pseudo-traps [77, 78, 79, 80].

In the end, stickiness induces memory effects and implies a slow decay of cor-
relations. This affects strongly transport properties and ends up in an anomalous
super-diffusive transport.

In order to visualize the effect of stickiness, we have extracted from transport data
the points which were corresponding to Lévy flights and then localized them on the
Poincaré section. We can see clearly that sticky regions are responsible for these
flights and are located near regular islands (note that not all islands are necessary
sticky, see for instance[81]). The plot is drawn in Fig. 9 (see [48, 80] for details).
To resume, once a trajectory sticks near an island, its length starts to grow almost
linearly with time, it does so usually with an average speed generically different
from the average peed over the chaotic sea. When looking at the transport data, this
statement will imply the presence of of Lévy flights in. In Fig. 9, we can see that
four different sticking regions are present. We can thus expect to have four different
types of Lévy flights in our advected data.

4.2 Data processing

We shall now introduce the particularities of the data set from a signal processing
point of view and describe the first step of the analyzing method.

A typical trajectory s is a one-dimensional signal of N = 1000 sampling points
s(t), t ∈ [1,N]. An example of such signal is shown on Fig. 10 (left) and a set of tra-
jectories on Fig. 10 (right). Several parts can be distinguished: a random fluctuation
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(Brownian motion) and some almost linear segments of different length correspond-
ing to Lévy flights.
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Fig. 10 Left: Arclength of the trajectory of a single particle, where several Lévy flights can be
observed. Right: A set of trajectories of advected particles

4.2.1 A time frequency transformation

The robustness of our method relies on an uncertainty principle which is reminis-
cent of quantum mechanics. It can be shown that one can not measure exactly both
frequency and time of a given signal. We use this latter relation to our advantage.
Through an elementary transformation we turn random fluctuations of the signal
amplitude into random fluctuations of the frequency of a new signal. When these
frequencies are rapidly varying, as it is the case for random behaviors or noise in the
signal, the uncertainty principle makes it impossible to have precise information on
these variations. In the meantime, coherent behavior is emphasized since it is less
fluctuating.

It is then important to notice that thanks to the uncertainty principle:

• random fluctuations in frequency cannot be rendered precisely in the time-
frequency plane. It requires to be precise both in time and frequency, which is
forbidden.

• linear parts or more generally slowly varying frequency components are empha-
sized by the time-frequency representation. Moreover, linear parts, called chirp
signals, can be detected efficiently using the fractional Fourier transform.

It is then interesting and natural to take advantage of this fact for the analysis of the
data set. To perform our analysis we shall therefore interpret the arclength s(t) as
the phase derivative (the fluctuation of the “frequency component“) of a new signal
S(t). This corresponds to the first step of the process: Let us introduce the phase



Non-commutative Tomography : applications to data analysis 31

ϕ(t) =
t

∑
τ=1

s(τ), (55)

and the signal
S(t) = eiϕ(t). (56)

The signal S(t) is a non-stationary signal of magnitude one and made of a single
frequency component which fluctuations are the one of the initial function s(t).
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Fig. 11 Left: tracer trajectory s with fluctuating regions and linear regions (Lévy flights). Right:
Gabor Transform (spectrogram) of S (absolute value of the short-time Fourier transform of S).
Darker regions are associated to high values of |VS|.

The time-frequency representation (Gabor transform [6]) of S presented on
Fig. 11 (right) is the absolute value of the short-time Fourier transform of S. One
single frequency component can be seen which mimic the behavior of the signal s
plotted on the left. But the important difference is now, because of the uncertainty
principle, that brownian fluctuations become diffuse stains in Fig. 11 (right).

A consequence of this time frequency transformation is that the random behavior
is blurred even more, spread over a neighborhood zone, whereas the linear parts
remain relatively sharp.

Our first objective is attained: the linear behavior has been emphasized over the
brownian motion, thanks to the uncertainty principle.

4.3 Tomographic analysis

For the detection of linear behavior in chaotic signals, we need a method able to de-
tect these straight line patterns. In a 2 dimensional image, one would use techniques
such as the Hough transform. In our case, we need a similar tool retrieving straight
lines which would appear when a time-frequency decomposition is done (such as the
short-time Fourier transform, the Gabor transform, or the Wigner-Ville transform).
The appropriate tool for this purpose is based on the time-frequency tomogram.
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In part 3.5 we describe in details the time-frequency tomogram applied to a re-
flectometry signal of finite duration T.

In this application, projections of the reflectometry signal an orthogonal basis{
Ψ

θ ,T
xn (t)

}
x0,...,xN

are used to extract the different components of the signal (see

part 3.5.2). Each element of the basis Ψ
θ ,T

xn (t) is equal to :

Ψ
θ ,T

xn (t) =
1√
T

ei(−cosθ

2sinθ
t2+ xn

sinθ
t) =

1√
T

eiα(t) . (57)

We can notice that the phase derivative dα

dt is linear :

dα

dt
(t) =− 1

tanθ
t +

xn

sinθ
. (58)

That means that the projections of a signal on such basis will be appropriate to
detect linear part of its phase derivative. Considering a signal with a linear phase
derivative such s(t) = ei( b

2 t2+ct), it is easy to demonstrate that the set of projections
on an orthogonal basis :

cs
xn,θ

=< S,Ψ θ ,T
xn >, (59)

is maximal for θM = arctan( 1
b ) and xM = csinθm.

The time-frequency tomogram will then be used to detect linear part in the phase
derivative of the signal S(t) = eiϕ(t) (Eq. 56), where the phase derivative is the ar-
clength s(t) of the particle (Eq.55).

In order to detect the different slopes of the Lévy flights it is necessary to apply
the time-frequency tomogram for different θk regularly spaced and search the max-
ima in the projections cS

xn,θk
.The number of selected θk is fixed by the user depending

on how accurate he wants to be and is independent of the length of the signal N. The
fast implementation of the time-frequency tomogram is of complexity O(N logN),
hence the overall complexity is of the same order.

The time-frequency tomogram can be reversed and it is possible to detect a lin-
ear part with slope 1/ tanθ inside the signal then erase it in the (θ ,µ) space and to
re-synthesize the signal without this linear part by applying a time-frequency tomo-
gram of angle (−θ).

4.4 Detection and characterization of Lévy flights

4.4.1 Method

On the signal shown in Fig. 11, one can see several Lévy flights (left) which have
been turned into linear chirps in the frequency-time plane (right). For a specific an-
gle θM1, the time-frequency tomogram defined (Eq. 59) will produce one sharp peak
corresponding to the presence of a chirp as it is illustrated in Fig. 12 (left), where
|cθM1(xn)| is plotted. For xM1 ∼ 830, the sharp peak |cθM1(xM1)| gives evidence that
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there is a Lévy flight with a particular slope related to θM1 and length related to am-
plitude of the peak. This search for maxima is the process that detects linear parts in
the time-frequency plane.
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Fig. 12 Left: for θM , signal projections |cθM (xn)|. Right : short-time Fourier transform of the signal
S1, partial reconstruction of S. The longest Lévy flight has been removed.

Since the time-frequency tomogram is invertible (see part 3.5.2), we can re-
synthesize the signal back to the initial representation after setting the values of the
transform in red region of Fig. 12 (left) to zero. This result is illustrated on Fig. 12
(right), which represents the short-time Fourier transform of the newly recreated
signal S1. The largest frequency slope of S has been completely removed, the rest
remaining untouched. This shows that indeed the peaks in the FRFT correspond to
Lévy flights.

The method to detect linear parts of the phase derivative of the signal S(t) is
described by the following steps :

• compute the time-frequency tomogram of the signal S(t), |cS
θk
(xn)| for K values

θk and N samples xn:

cθk(xn) =< S,Ψ θk,T
xn >=

1√
T

∫ T

0
S(t)e−i(−cosθ

2sinθ
t2+ xn

sinθ
t)dt , (60)

• extract the maximum from the N×K projections |cS
θk
(xn)|,

θM , xM will give the slope and the position of the first detection.
• reconstruction of the signal S1(t), where the linear part of the phase derivative is

removed. A set cS1
θM

(xn) is obtained with the projections at the angle θM , where
|cS

θM
(xM)| and some coefficients of a small neighborhood are put to zero.

S1(t) = ∑
xn

cS1
θM

(xn)Ψ
θM ,T

xn (t) , (61)

• repeat the process with S1(t) for other detections.
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When the signal Sp(t) = eiφP(t) is obtained, after p detections of Lévy flights in
the phase derivative, we will estimate the arclength of trajectory sp(t) where the
Lévy flights are removed :

sP(t) =−i
∂Sp(t)/∂ t

Sp(t)
. (62)

Then sp(t) will be compared to s(t) and the Lévy flights will be characterized by
their length in time, ∆ l and their velocity vs = ∆h/δ l.

This process is applied to the tracer trajectory s plotted on Fig 11 (left). After
two iterations, the linear part of the phase derivative of S(t) are removed, as it can
be see on Fig. 13 (left). The tracer trajectory s2(t) where the Lévy flights have been
removed is compared to the original s(t) on Fig. 13 (right). Then, the flights are
characterized by their length and velocity.
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Fig. 13 Left: short-time Fourier transform of the signal S2 where two Lévy flights have been
removed. Right : original signal s (black) and partial reconstruction s2, without Lévy flights (red).

4.4.2 Results

We now consider blindly data obtained from the advection of 250 tracers in the
point vector flow described in the previous subsection. That is to say, we analyze
with our method 250 signals. We set up a threshold on the modulus of the projection
coefficients in order to select only the most relevant Lévy flights. Similar transport
data was analyzed in [48], with traditional tools and found to be anomalous and
super diffusive. As mentioned, the starting point of the anomaly was traced back
to a multi fractal nature of transport linked to stickiness on four different regular
regions. One would thus expect four different types of Lévy flights in the data (see
Fig. 9).

In the present case, the method described above has been applied to the data
set. Our goal is to detect the multi-fractal nature of the transport resulting from the
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sticky islands, which would serve as a proof of concept and pave the way to apply
the method to numerical and experimental data. The results are presented in Fig. 14.
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Fig. 14 Left: duration of the Lévy flights as a function of the velocity. Right: the velocity of the
main Lévy flight is plotted for each trajectory.

For each trajectory, Lévy flights have been detected and characterized by their
length in time, ∆ l, and velocity, ∆h/∆ l = s. The process described in detail above,
gives, for each flight, its slope (related to the velocity) and length.

The Fig. 14 (left) is an illustration of the duration of the flights as a function of
the velocity: four different values have been estimated (∼ −170,∼ 75,∼ 190 and
∼ 510), which means that there are four different types of Lévy flights, as antici-
pated. We mention as well that for some trajectories no Lévy flights have been de-
tected. A few few typical trajectories with Lévy flights have been plotted on Fig. 14
(right). The color coding corresponds to the one already used in Fig. 9, so that each
specific detected flight can be easily associated to its originating sticky region. The
agreement with the results found in [48], confirms that our method is successful,
and is thus ready to be applied to various numerical and experimental data.

5 Perspectives

After a first time frequency transformation, where the signal s is transformed as
the phase derivative of a new signal S, the time frequency tomogram is used to
detect Lévy flights which are transformed as a linear phase derivative of S. This
transformation makes use of the uncertainty principle : there is a ”dilution effect” on
the rapidly varying chaotic parts of the signal s while coherent patterns (Lévy flights)
are only slightly affected. This part is critical for the robustness of the detection.
Numerical simulations show that our technique is indeed extremely robust.

The time-frequency tomogram will give a sparse representation of the data of
interest: Lévy flights become sharp peaks in the set of projections cθ k(xn). The key
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point is that we knew the pattern we want to detect and chose the transformation in
consequence.

The door is open to further extension and generalization of our method, providing
that one knows a priori the patterns to detect which may not be linear but curved
or some other slowly varying shape (slowly varying with respect of the chaotic
fluctuations). A different representation from the tomogram should be used based
on the shape information. One may use a basis or a set of vectors different from the
set of linear chirps. Possible alternatives may be found in e.g.[8, 21] where what
they call ”tomograms” are bases of bended chirps and other more general time-
frequency forms, associated to one or more parameters (equivalent of θ in the time-
frequency tomogram case). One may also think of Gabor frames made of chirped
windows[82]. Once the representation in which the relevant information is sparse
has been found, the peak detection process remains the same.

6 Conclusion

This chapter is an attempt to show how non-commutative tomography can be used as
an efficient and powerful signal processing tool. The approach is based on the phys-
ical analogies with the the non-commutative nature between time and frequency,
and actually use this to our advantage in order to ”clean“ signals from undesirable
noise. For such purposes we started this chapter with a slow step by step introduc-
tion of the mathematical notions behind non-commutative tomography. We tried to
emphasize on some simple specific examples in order to give the non-mathematical
reader some possible intuitions on the nature of the considered transforms.

From then on we considered data originating from magnetized fusion plasmas,
namely reflectometry data of the plasma. We first briefly introduce the field of toka-
mak plasmas and then discussed the ideas behind reflectometry and how reflectome-
ters work, as well as how data is acquired and processed. We then showed how using
tomogram techniques allowed to clearly separate relevant data from unnecessary re-
flections on the tokamak walls or on the initial porthole. In this context, the fact that
the original signal sent into the plasma is a chirp, meaning a signal whose frequency
varies linearly in time allowed us to select a specific family reminiscent of frac-
tional Fourier transform, which are particularly adapted for such signals. The actual
experimental data was then analyzed and for some specific value of frequency-time
mixture, we were able to clearly distinguish between the different reflection of the
original signal. Hence using the reconstructing technique we were able to filter out
on the fly the data, in order to recover only the useful reflection on the plasma which
is useful for instance in order to reconstruct time dependent density profiles.

As a second application we considered data corresponding to the advection of
so-called passive tracers in the flow generated by three point vortices. The dynam-
ics of these tracers is Hamiltonian but due to the time dependent nature of the two
dimensional flow, their trajectories are chaotic. Actually the phase space of passive
tracers corresponds to the so-called mixed phase spaces, meaning that there are re-
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gions where regular non-erratic motion is possible called regular islands, while there
is a so called stochastic sea, where the motion is chaotic. In these mixed phase space
the phenomenon of stickiness is able to generate long memory effects which affects
transport properties, generating anomalous diffusion of tracers and the existence of
long lasting Lévy flights. Using the analogy of considering a flight similar to the
chirp signal used in the reflectometer, we performed a first simple transform of the
signal in order to detect the chirp in the modified signal, which actually are flights in
the original data. The method was shown to be successful in detecting the different
Lévy flights present in the data, which were of different nature, as different sticking
regions existed in the phase space.

In summary, we have showed in different contexts the efficiency of the signal
processing method in two different cases, namely the case of reflectometry data and
Lévy flights in advected data. Since in the context of magnetized fusion plasma
there are some strong indications that transport is as well anomalous in the sense
that it could be super-diffusive. It could be interesting to perform the Lévy analysis
on reflectometer data, after the chirp flight trick has been performed. Should we
detect as well some flights, it could be probably interesting to hard-code such signal
processing treatment in a reflectometer to allow for fast plasma monitoring.
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