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Abstract

Tomograms, a generalization of the Radon transform to arbitrary pairs of noncommuting operators, are
positive bilinear transforms with a rigorous probabilistic interpretation that provide a full characteri-
zation of the signal and are robust in the presence of noise. Tomograms, based on the time–frequency
operator pair, were used in the past for a robust characterization of many different signals. Here we
provide an explicit construction of tomogram transforms for many other pairs of noncommuting oper-
ators in one and two dimensions and describe how they are used for denoising, component separation,
and filtering.
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1. Introduction

Integral transforms [1,2] are very useful for signal processing in communications, engineering, medicine,
physics, etc. Linear and bilinear transforms have been used. Among the linear transforms, Fourier [3] and
wavelets [4–6] are the most popular. Among the bilinear ones, the Wigner–Ville quasidistribution [7, 8]
provides information in the joint time–frequency domain with good energy resolution. A joint time–
frequency description of signals is important, because in many applications (biomedical, seismic, radar,
etc.) the signals are of finite (sometimes very short) duration. However, the oscillating cross-terms in
the Wigner–Ville quasidistribution make the interpretation of this transform a difficult matter. Even if
the average of the cross-terms is small, their amplitude may be greater than the signal in time–frequency
regions that carry no physical information. To profit from the time–frequency energy resolution of the
bilinear transforms while controlling the cross-terms problem, modifications to the Wigner–Ville trans-
form have been proposed. Transforms in the Cohen class [9, 10] make a two-dimensional filtering of the
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Wigner–Ville quasidistribution, and the Gabor spectrogram [11] is a truncated version of this quasidis-
tribution.

The difficulties with the physical interpretation of quasidistributions arise from the fact that time
and frequency correspond to two noncommutative operators. Hence a joint probability density can never
be defined. Even in the case of positive quasiprobabilities like the Husimi–Kano function [12, 13], an
interpretation as a joint probability distribution is also not possible because the two arguments of the
function are not simultaneously measurable random variables.

Recently, a new type of strictly positive bilinear transforms has been proposed [14, 15], called tomo-
grams, which is a generalization of the Radon transform [16] to noncommutative pairs of operators. The
Radon–Wigner transform [17,18] is a particular case of such noncommutative tomography technique (see
also some aspects of the technical applications in quantum mechanics [19]). The tomograms are strictly
positive probability densities, provide a full characterization of the signal, and are robust in the presence
of noise.

A unified framework to characterize linear transforms, quasidistributions, and tomograms was devel-
oped in [15]. This is briefly summarized in Sec. 2. Then Secs 3–7 contain an explicit construction of
tomogram transforms for many pairs of noncommuting operators in one and two dimensions. Some of
these transforms have been used in the past [20,21]; others are completely new. It is in the time–frequency
plane that most signal-processing experts have developed their intuition, not in the eigenspaces associated
to the new tomograms. Therefore, to provide a qualitative intuition on the way the tomograms explore
the time–frequency plane, we have provided graphical spectrograms of the eigenstates on which the signal
is projected by the tomograms. In Sec. 5, an interpretation of the tomograms is given as operator symbols
of the set of projection operators in the space of signals. This provides a very general framework to deal
with all kinds of custom-designed integral transforms both for deterministic and random signals. It also
provides an alternative framework for an algebraic formulation of signal processing. Finally, we provide a
detailed description of how tomograms may be used for denoising, component separation, and filtering of
finite-time signals. The purpose of the present paper is to provide a unified mathematical construction of
the tomogram transforms. For the specific applications of time–frequency tomograms, done in the past,
we refer to [14,20–23].

2. Linear Transforms, Quasidistributions, and Tomograms

Consider signals f(t) as vectors |f〉 in a dense nuclear subspace N of a Hilbert space H with dual
space N ∗ (with the canonical identification N ⊂ N ∗) and a family of operators {U(α) : α ∈ I, I ⊂ R

n}
defined on N ∗. In most cases of interest, U (α) generates a unitary group U (α) = eiB(α). Whenever a
ket-bra notation is used, |f〉 ∈ N and 〈f | ∈ N ∗. In this setting, three types of integral transforms are
constructed.

Let 〈h |∈ N ∗ be a reference vector and let U be such that the linear span of {〈U(α)h |∈ N ∗ : α ∈ I}
is dense in N ∗. In {〈U(α)h |}, a complete set of vectors can be chosen to serve as basis.

1 - Linear Transforms
W

(h)
f (α) = 〈U (α) h | f〉. (1)

2 - Quasidistributions
Qf (α) = 〈U (α) f | f〉. (2)

104



Volume 33, Number 2, March, 2012 Journal of Russian Laser Research

3 - Tomograms

If U (α) is a unitary operator, there is a self-adjoint operator B (α) such that U (α) = eiB(α), with
B (α) having a spectral projection B (α) =

∫
XP (X) dX. Let P (X) � |X〉 〈X| be the projector∗ on

the (generalized) eigenvector 〈X| ∈ N ∗ of B (α). Then the tomogram is

M
(B)
f (X) = 〈f |P (X) |f〉 = 〈f | X〉 〈X |f〉 = |〈X |f〉|2 . (3)

Therefore, the tomogram M
(B)
f (X) is the squared amplitude of the projection of the signal |f〉 ∈ N on

the eigenvector 〈X| ∈ N ∗ of the operator B (α), putting in evidence the positivity of the tomogram.
Furthermore, for normalized | f〉, 〈f | f〉 = 1, the tomogram is normalized

∫
M

(B)
f (X) dX = 1,

and is interpreted as a probability distribution on the set of generalized eigenvalues of B (α), that is,
a probability distribution for the random variable X corresponding to the observable defined by the
operator B (α).

If, by a unitary transform S, B(α) is transformed to SB(α)S† = B
′
(α), and {| Z〉} is the set of

(generalized) eigenvectors of B
′
(α),

{
S† | Z〉} is the set of eigenvectors for B. Therefore,

M
(B)
f (Z) = 〈f | S† | Z〉〈Z | S | f〉 = |〈Z | S | f〉|2.

The tomogram is a homogeneous function M
(B/p)
f (X) = |p|M (B)

f (pX).
Examples:

If U (α) is unitary generated by BF (−→α ) = α1t + iα2
d

dt
and h is a (generalized) eigenvector of the

time-translation operator, the linear transform W
(h)
f (α) is the Fourier transform. For the same BF (−→α ),

the quasidistribution Qf (α) is the ambiguity function.
The Wigner–Ville transform [7,8] is the quasidistribution Qf (α) for the following B-operator:

B(WV)(α1, α2) = −i2α1
d

dt
− 2α2t +

π
(
t2 − d2

dt2
− 1

)
2

. (4)

The wavelet transform is W
(h)
f (α) for BW (−→α ) = α1D + iα2

d

dt
, with D being the dilation operator

D = −1
2

(
it

d

dt
+ i

d

dt
t

)
. The wavelets hs, τ (t) are kernel functions generated from a basic wavelet h(τ)

by means of a translation and a rescaling (−∞ < τ < ∞, s > 0),

hs, τ (t) =
1√
s

h

(
t − τ

s

)
. (5)

Using the operator
U (A)(τ, s) = exp(iτ ω̂) exp(i log sD), (6)

we have
hs,τ (t) = U (A)†(τ, s)h(t). (7)

∗Another convenient notation for the projector on a generalized eigenvector of B(α) with eigenvalue X is δ (B(α) − X) �
P (X).
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For normalized h(t), the wavelets hs, τ (t) satisfy the normalization condition
∫ |hs, τ (t)|2 dt = 1. The

basic wavelet (reference vector) may have different forms, for example,

h(t) =
1√
π

eiω0t e−t2/2, (8)

or
h(t) = (1 − t2) e−t2/2 (9)

called the Mexican hat wavelet.
The Bertrand transform [24,25] is Qf (α) for BW .
Linear, bilinear, and tomogram transforms are related to one another as follows:

M
(B)
f (X) =

1
2π

∫
Q

(kB)
f (α) e−ikX dk, Q

(B)
f (α) =

∫
M

(B/p)
f (X) eipX dX,

Q
(B)
f (α) = W

(f)
f (α), W

(h)
f (α) =

1
4

∫
eiX

[
M

(B)
f1

(X) − iM
(B)
f2

(X)

−M
(B)
f3

(X) + iM
(B)
f4

(X)

]
dX,

with | f1〉 =| h〉+ | f〉, | f3〉 =| h〉− | f〉, | f2〉 =| h〉 + i | f〉, and | f4〉 =| h〉 − i | f〉.

3. One-Dimensional Tomograms

As shown in (3), a tomogram corresponds to projections on the eigenstates of the B operators. These
operators are linear combinations of different (commuting or noncommuting) operators, B = μO1 +νO2.
Therefore, the tomogram explores the signal along lines in the plane (O1, O2). For example, for

B (μ, ν) = μt + νω = μt + iν
d

dt
,

the tomogram is the expectation value of a projection operator with support on a line in the time–
frequency plane X = μt + νω. Therefore, M

(S)
f (X, μ, ν) is the marginal distribution of the variable

X along this line in the time–frequency plane. The line is rotated and rescaled when one changes the
parameters μ and ν. In this way, the whole time–frequency plane is sampled, and the tomographic
transform contains all information on the signal.

It is clear that, instead of marginals collected along straight lines on the time–frequency plane, one
may use other curves to sample this space. It has been shown in [15] that the tomograms associated to
the affine group, when

B (μ, ν) = μt + ν
tω + ωt

2
, (10)

correspond to hyperbolas in the time–frequency plane. This point of view has been further explored
in [26] defining tomograms in terms of marginals over surfaces generated by deformations of families
of hyperplanes or quadrics. However, not all tomograms may be defined as marginals on lines in the
time–frequency plane.

Here we construct the tomograms corresponding to a large set of operators. Of particular interest are
the tomograms associated to finite-dimensional Lie algebras.
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3.1. 1D Conformal Group Tomograms

The generators of the one-dimensional conformal group are

ω = i
d

dt
, D = i

(
t
d

dt
+

1
2

)
, K = i

(
t2

d

dt
+ t

)
. (11)

One may construct tomograms using the following operators:

Time–frequency

B1 = μt + iν
d

dt
; (12)

Time–scale

B2 = μt + iν

(
t
d

dt
+

1
2

)
; (13)

Frequency–scale

B3 = iμ
d

dt
+ iν

(
t
d

dt
+

1
2

)
; (14)

Time–conformal

B4 = μt + iν

(
t2

d

dt
+ t

)
. (15)

The construction of the tomograms reduces to calculating the generalized eigenvectors of each one of
the Bi operators:

B1ψ1 (μ, ν, t,X) = Xψ1 (μ, ν, t,X),

ψ1 (μ, ν, t,X) = exp i

(
μt2

2ν
− tX

ν

)
, (16)

with normalization ∫
dt ψ∗

1 (μ, ν, t,X) ψ1

(
μ, ν, t,X ′) = 2πνδ

(
X − X ′) ; (17)

B2ψ2 (μ, ν, t,X) = Xψ2 (μ, ν, t,X),

ψ2 (μ, ν, t,X) =
1√|t| exp i

(
μt

ν
− X

ν
log |t|

)
, (18)

with normalization ∫
dt ψ∗

2 (μ, ν, t,X) ψ2

(
μ, ν, t,X ′) = 4πνδ

(
X − X ′) ; (19)

B3ψ3 (μ, ν, ω,X) = Xψ3 (μ, ν, ω,X),

ψ3 (μ, ν, t,X) = exp (−i)
(

μ

ν
ω − X

ν
log |ω|

)
, (20)

with normalization ∫
dω ψ∗

1 (μ, ν, ω,X) ψ1

(
μ, ν, ω,X ′) = 2πνδ

(
X − X ′) ; (21)
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B4ψ4 (μ, ν, t,X) = Xψ4 (μ, ν, t,X),

ψ4 (μ, ν, t,X) =
1
|t| exp i

(
X

νt
+

μ

ν
log |t|

)
, (22)

with normalization ∫
dt ψ∗

4 (μ, ν, t, s) ψ4

(
μ, ν, t, s′

)
= 2πνδ

(
s − s′

)
. (23)

Then the tomograms are

Time–frequency tomogram

M1 (μ, ν, X) =
1

2 π|ν|
∣∣∣∣
∫

exp
[
iμt2

2 ν
− itX

ν

]
f(t) dt

∣∣∣∣
2

; (24)

Time–scale tomogram

M2(μ, ν, X) =
1

2π|ν|

∣∣∣∣∣
∫

dt
f(t)√|t| exp

{[
i

(
μ

ν
t − X

ν
log |t|

)]}∣∣∣∣∣
2

; (25)

Frequency–scale tomogram

M3(μ, ν, X) =
1

2π|ν|

∣∣∣∣∣
∫

dω
f(ω)√|ω| exp

{[
−i

(
μ

ν
ω − X

ν
log |ω|

)]}∣∣∣∣∣
2

, (26)

with f(ω) being the Fourier transform of f(t);

Time–conformal tomogram

M4(μ, ν, X) =
1

2π|ν|
∣∣∣∣
∫

dt
f(t)
|t| exp

{[
i

(
X

νt
+

μ

ν
log |t|

)]}∣∣∣∣
2

. (27)

The tomograms M1, M2, and M4 interpolate between the (squared) time signal and its projection
on the ψi (μ, ν, t,X) functions for μ = 0. Figure 1 shows the typical behavior of the real part of these
functions.

Figures 2–4 illustrate how the tomograms M1, M2, and M4 explore the time–frequency space by
plotting the spectrograms of typical vectors ψ1, ψ2, and ψ4.

In a similar way, tomograms may be constructed for any operator of the general type

B4 = μt + iν

(
g (t)

d

dt
+

1
2

dg (t)
dt

)
,

the generalized eigenvectors being

ψg (μ, ν, t,X) = |g (t)|−1/2 exp i

(
−X

ν

∫ t ds

g (s)
+

μ

ν

∫ t s ds

g (s)

)
.
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Fig. 1. Typical behavior of the real part of the functions ψ1, ψ2, and ψ4 at μ = 0.

Fig. 2. Modulus of the short-time Fourier
transform of four vectors of the time–frequency
tomogram for some fixed θ, μ = cos θ, and
ν = sin θ. A vector is a linear chirp, hence a line
in the time–frequency plane. Moreover, each
vector is a frequency-translated version of the
one which starts at the origin. Since it forms
an orthogonal basis, the sum of all the vectors
covers the entire time–frequency plane. The pa-
rameter θ allows one to change the slope of the
line in the time–frequency plane.

3.2. Another Finite-Dimensional Algebra

Another finite-dimensional Lie algebra that may be used to construct tomograms, exploring other
features of the signals, is generated by 1, t, and

ω = i
d

dt
, D = i

(
t
d

dt
+

1
2

)
, F = −1

2

(
d2

dt2
− t2 + 1

)
, σ =

1
2

(
d2

dt2
+ t2 + 1

)
.

Of special interest are the tomograms related to the operators BF = μt + νF and Bσ = μt + νσ.
As before, the construction of the tomograms relies on finding a complete set of generalized eigen-

vectors for the operators BF and Bσ. With y = t + μ/ν, one defines the creation and annihilation
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operators

a =
1√
2

(
y +

d

dy

)
, a† =

1√
2

(
y − d

dy

)
,

obtaining

BF = ν
(
a†a − μ2/2ν2

)
, Bσ = ν

(
aa − μ2/2ν2

)
.

Therefore, for BF one has an orthonormalized complete set of eigenvectors ψ
(F )
n (t) = un (t + μ/ν), with

Fig. 3. Modulus of the short-time Fourier transform of four vectors of the time–scale tomogram for μ = 0,
ν = 1 (left) and μ =

√
(2)/2, ν =

√
(2)/2 (right). Each vector is an hyperbolic chirp. Two of them correspond to

positive X and two of them to negative X. Due to the sampling used in the numerical computation, some aliasing
phenomenon occurs at times close to zero. There is an axis of symmetry – the line of zero frequency on the left
graph. This axis is shifted in frequency when μ and ν are changed.

Fig. 4. Modulus of the short-time Fourier
transform of four vectors of the time–conformal
tomogram for μ = 0 and ν = 1. Due to the sam-
pling used in the numerical computation, some
aliasing phenomenon occurs at times close to
zero. Some interferences between the vectors
occur for large time. Two vectors correspond
to positive X and two to negative X.
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a discrete set of eigenvalues BF ψ
(F )
n (t) = Xnψ

(F )
n (t), Xn = ν (n + 1/2) − μ2/2ν, the function un being

un (y) =
(
π1/22nn!

)−1/2
(

y − d

dy

)n

e−y2/2. The tomogram M
(F )
f (μ, ν, Xn) is

M
(F )
f (μ, ν, Xn) =

∣∣∣∣
∫

ψ(F )∗
n (t) f (t) dt

∣∣∣∣
2

.

For Bσ, one uses a basis of coherent states

φλ (y) = eλa†−λ∗au0 (y) = e|λ|
2/2

∑
n=0

λn

√
n!

un (y) ,

with decomposition of identity
1
π

∫
φλ (y) φ∗

λ (y) d2λ = 1. Then, a set of generalized eigenstates of Bσ is

ψ
(σ)
λ (μ, ν, t) = φλ (t + μ/ν). With eigenvalues Bσψ

(σ)
λ (μ, ν, t) = Xλψ

(σ)
λ (μ, ν, t) , Xλ = ν

(
λ2 − μ2/2ν2

)
,

the tomogram reads

M
(σ)
f (μ, ν, Xλ) =

∣∣∣∣
∫

ψ
(σ)∗
λ (μ, ν, t) f (t) dt

∣∣∣∣
2

.

This tomogram is closely related to the Sudarshan–Glauber P -representation [27–29].

4. Multidimensional Tomograms

Several types of multidimensional tomograms may be obtained from generalizations of the one-
dimensional ones. Consider a signal f(t1, t2). The tomogram depends on a vector variable X = (X1, X2)
and four real parameters μ1, μ2, ν1, and ν2. For example, the two-dimensional time–frequency tomogram
reads

M( X, μ, ν) =
1

2π|ν1|
1

2π|ν2|
∣∣∣∣
∫

f(t1, t2) exp
(

iμ1

2ν1
t21 −

iX1

ν1
t1 +

iμ2

2ν2
t22 −

iX2

ν2
t2

)
dt1 dt2

∣∣∣∣
2

. (28)

From this, one may also construct a center-of-mass tomogram

Mcm(Y, μ, ν) =
∫

M( X, μ, ν) δ(Y − X1 − X2) dX1 dX2 =
∫

δ(Y − X1 − X2)
1

2π|ν1|
1

2π|ν2|

×
∣∣∣∣
∫

f(t1, t2)dt1 dt2 exp
(

iμ1

2ν1
t21 −

it1X1

ν1
+

iμ2

2ν2
t22 −

it2X2

ν2

)∣∣∣∣
2

dX1 dX2.

The center-of-mass tomogram is normalized
∫

Mcm(X, μ, ν) dX = 1 and a homogeneous function

Mcm(λX, λμ, λν) =
1
|λ| Mcm(X, μ, ν). The generalization to N channels is straightforward.

As in the one-dimensional case, useful tomograms may be constructed from the operators of Lie
algebras. For example, from the generators of the conformal algebra in R

d, d ≥ 2,

ωk = i
∂

∂tk
, D = i

(
t • ∇ +

d

2

)
, Rj,k = i

(
tj

∂

∂tk
− tk

∂

∂tj

)
, Kj = i

(
t2j

∂

∂tj
+ tj

)
.

111



Journal of Russian Laser Research Volume 33, Number 2, March, 2012

Let, in two dimensions, t1 = t and t2 = x. The tomograms, corresponding to the operators

Bω = μ1t + μ2x + ν1ω1 + ν2ω2, BD = μ1t + μ2x + νD, Bω = μ1t + μ2x + ν1K1 + ν2K2,

are, as in (28), straightforward generalizations of the corresponding one-dimensional ones.
For the operator BR = μ1t + μ2x + νR1,2, the eigenstates are

ψ(R)
(→

μ, ν, x, t, X
)

= exp
i

ν

(
μ1x − μ2t + X tan−1 t

x

)
,

and the tomogram reads

Mf

(→
μ, ν,X

)
=

∣∣∣∣
∫

ψ(R)∗
(→

μ, ν, x, t, X
)

f (x, t) dx dt

∣∣∣∣
2

.

5. The Tomograms as Operator Symbols

Tomograms may be described not only as amplitudes of projections on a complete basis of eigenvectors
of a family of operators, but also as operator symbols. That is, as a map of operators to a space of
functions where the operators noncommutativity is replaced by a modification of the usual product to a
star-product.

Let Â be an operator in the Hilbert space H, and Û(x) and D̂(x) two families of operators called
dequantizers and quantizers, respectively, such that (see, e.g., [30])

Tr
{

Û(x)D̂(x′)
}

= δ(x − x′). (29)

The labels x (with components x1, x2, . . . , xn) are coordinates in a linear space V where the functions
(operator symbols) are defined. Some of the coordinates may take discrete values, then the delta-function
in (29) should be understood as a Kronecker delta. Provided the property (29) is satisfied, one defines
the symbol of the operator Â by the formula

fA(x) = Tr
{

Û(x)Â
}

, (30)

assuming the trace to exist. In view of (29), one has the reconstruction formula Â =
∫

fA(x)D̂(x) dx.

The role of quantizers and dequantizers may be exchanged. Then fd
A(x) = Tr

{
D̂(x) Â

}
is called the

dual symbol of fA(x), and the reconstruction formula is Â =
∫

fd
A(x)Û(x) dx. Symbols of operators can

be multiplied using the star-product kernel as follows:

fA(x) � fB(x) =
∫

fA(y)fB(z)K(y, z, x) dy dz, (31)

the kernel being K(y, z, x) = Tr
{

D̂(y)D̂(z)Û(x)
}

. The star-product is associative,

(fA(x) � fB(x)) � fC(x) = fA(x) � (fB(x) � fC(x)) , (32)

and this property corresponds to the associativity of the product of operators in the Hilbert space.
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With the dual symbols, the trace of an operator may be written in integral form

Tr
{

ÂB̂
}

=
∫

fd
A(x)fB(x) dx =

∫
fd

B(x)fA(x) dx. (33)

For two different symbols fA(x) and fA(y) corresponding, respectively, to the pairs
(
Û(x), D̂(x)

)
and(

Û1(y), D̂1(y)
)
, one has the relation fA(x) =

∫
fA(y)K(x, y) dy, with intertwining kernel K(x, y) =

Tr
{

D̂1(y)Û(x)
}

.
Let now each signal f (t) be identified with the projection operator Πf on the function f (t), denoted

by
Πf = |f〉 〈f | . (34)

Then the tomograms, and also other transforms, are symbols of the projection operators for several
choices of quantizers and dequantizers.

Some Examples:

# The Wigner–Ville function is the symbol of | f〉〈f | corresponding to the dequantizer

Û(x) = 2D̂(2α)P̂ , α =
t + iω√

2
, (35)

where P̂ is the inversion operator P̂ f(t) = f(−t), and D̂(γ) is a displacement operator,

D̂(γ) = exp
[

1√
2
γ

(
t − ∂

∂t

)
− 1√

2
γ∗

(
t +

∂

∂t

)]
. (36)

The quantizer operator reads

D̂(x) := D̂(t, ω) =
1
2π

Û(t, ω), (37)

with t and ω being time and frequency.
The Wigner–Ville function is

W (t, ω) = 2Tr
{
| f〉〈f | D̂(2α)P̂

}
(38)

or, in integral form

W (t, ω) = 2
∫

f∗(t)D̂(2α)f(−t) dt. (39)

# The symplectic tomogram or time–frequency tomogram of | f〉〈f | corresponds to the dequantizer

Û(x) := Û(X, μ, ν) = δ
(
X 1̂ − μt̂ − νω̂

)
, (40)

where the notation δ
(
X 1̂ − μt̂ − νω̂

)
stands for the projector on the eigenvector of μt̂+νω̂ corresponding

to the eigenvalue X,

t̂f(t) = tf(t), ω̂f(t) = −i
∂

∂t
f(t), (41)
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and X, μ, ν ∈ R. The quantizer of the symplectic tomogram is

D̂(x) := D̂(X, μ, ν) =
1
2π

exp
[
i
(
X 1̂ − μt̂ − νω̂

)]
. (42)

# The optical tomogram is the same as above for the case μ = cos θ and ν = sin θ.
Thus the optical tomogram reads

M(X, θ) = Tr
{| f〉〈f | δ

(
X 1̂ − μt̂ − νω̂

)}
=

1
2π

∫
f∗(t)eikX exp

[
ik

(
X − t cos θ + i

∂

∂t
sin θ

)]
f(t) dt dk

=
1

2π| sin θ|
∣∣∣∣
∫

f(t) exp
[
i

(
cot θ

2
t2 − Xt

sin θ

)]
dt

∣∣∣∣
2

. (43)

One important feature of the formulation of tomograms as operator symbols is that one may work
with deterministic signals f (t) as easily as with probabilistic ones. In this latter case, the projector in
(34) would be replaced by

Πp =
∫

pμ |fμ〉 〈fμ| dμ, (44)

with
∫

pμdμ = 1, the tomogram being the symbol of this new operator.

This also provides a framework for an algebraic formulation of signal processing, perhaps more general
than the one described in [31,32]. There, a signal model is a triple (A,M, Φ), with A being an algebra
of linear filters, M a A-module, and Φ a map from the vector space of signals to the module. With
the operator symbol interpretation, both (deterministic or random) signals and (linear or nonlinear),
transforms on signals are operators. By the application of the dequantizer [Eq. (30)], they are mapped
onto functions, the filter operations becoming star-products.

6. Rotated-Time Tomography

Now we consider a version of tomography where a discrete random variable is used as an argument of
the probability-distribution function. We call this tomography rotated-time tomography. It is a variant
of the spin-tomographic approach for the description of discrete spin states in quantum mechanics. For
a finite-duration signal f(t), with 0 ≤ t ≤ T , we consider discrete values of time f(tm) ≡ fm where, with
the labeling m = −j,−j + 1,−j + 2, . . . , 0, 1, . . . , j − 1, j, they are like the components of a spinor | f〉.
This means that we split the interval [0, T ] onto N parts at time values t−j , t−j+1, . . . , tj and replace the
signal f(t), a function of continuous time, by a discrete set of values organized as a spinor. By dividing
by a factor, we normalize the spinor, i.e., 〈f | f〉 =

∑j
m=−j |fm|2 = 1. Without loss of generality, we

consider the “spin” values to be integers, i.e., j = 0, 1, 2, . . ., and use an odd number N = 2j+1 of values.
In this setting, | f〉 being a column vector, we construct the N×N matrix ρ =| f〉〈f |, with matrix

elements ρmm′ = fmf∗
m′ . The tomogram is defined as the probability-distribution function

M(m,u) = |〈m | u | f〉|2, m = −j, . . . , j − 1, j, (45)
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where u is an unitary N×N matrix uu† = 1N . For this matrix, we use an unitary irreducible represen-
tation of the rotation group [or SU(2)] with matrix elements

umm′(θ) =
(−1)j−m′

(m + m′)!

[
(j + m)!(j + m′)!
(j − m)!(j − m′)!

]1/2 (
sin

θ

2

)m−m′ (
cos

θ

2

)m+m′

×Fj−m

(
2m + 1,m + m′2 θ

2

)
, (46)

with Fj−m being a function with the Jacobi-polynomial structure expressed in terms of hypergeometric
functions as

Fn(a, b, t) = F (−n, a + n, b; t) =
(b − 1)!

(b + n − 1)!
t1−b(1 − t)b−a

(
d

dt

)n [
tb+n−1(1 − t)a−b+1

]
.

(47)

The dequantizer in the rotated-time tomography is

Û(x) ≡ U(m,n) = δ(m1 − u†Jzu) = δ
(
m1 − n J

)
, (48)

where Jz is the matrix with diagonal matrix elements (Jz)mm′ = mδmm′ .
The vector n = (sin θ cos ϕ, sin θ sin ϕ, cos θ) determines a direction in 3D space. The matrix (46) was

written for ϕ = 0 but, if this angle is nonzero, the matrix element has to be multiplied by the phase
factor eimϕ.

The quantizer can take several forms:

In integral form, it reads

D̂(m,n) =
2j + 1

π

∫ 2π

0
sin2 γ

2
exp(−i Jn)γ dγ(· · · ). (49)

The tomogram M(m,u) is a nonnegative normalized probability distribution depending on the direction
n, i.e., M(m,u) ≥ 0 and

∑j
m=−j M(m,u) = 1. To compute the tomogram for a given direction with

angles ϕ = 0 and θ, one has to estimate

M(m, θ) =
j∑

m′′,m′=−j

u∗
mm′(θ)fmf∗

m′′um′′m(θ), (50)

where the matrix um′′m(θ) is given by (46).
The following form for the matrix um′m(θ) is more convenient for numerical calculations:

um′m(θ) =
[
(j + m′)!(j − m′)!
(j + m)!(j − m)!

]1/2 (
cos

θ

2

)m′+m (
sin

θ

2

)m′−m

Pm′−m,m′+m
j−m′ (cos θ), (51)

where P a,b
n are Jacobi polynomials.

In principle, one could use not only the unitary matrix in (46) but arbitrary unitary matrices. They
contain a larger number of parameters (equal to N2 − 1) and can provide additional information on the
signal structure.
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Fig. 5. Modulus of the short-time Fourier transform of
the sum of four vectors of the rotated-time tomogram.
Each um′,0(θ, j) is a bent line in the time-frequency plane
where θ fixes the size. Here N = 1571 and θ = π/8, 2π/8,
3π/8, and π/2. As θ increases, the line is stretched to
the right until it breaks in two parts for π/2.

Fig. 6. Modulus of the short-time Fourier transform of
the sum of four vectors of the rotated-time tomogram.
Here N = 1571 and θ = 5π/8, 6π/8, 7π/8, and π−π/16.
Each um′,0(θ, j) is made of two bent lines in the time–
frequency plane, one in the upper-half plane and one in
the lower-half plane.

How the time-rotated tomogram explores the time–frequency plane is, as before, illustrated by spec-
trograms of the eigenstates (Figs. 5 and 6). For m = 0, formula (51) reduces to the set of normalized
associated Legendre functions Lm′

j ,

um′,0(θ) =
√

2
2j + 1

Lm′
j (cos θ).

The normalized associated Legendre functions are related to the non-normalized ones Pm′
j through

Lm′
j (cos(θ)) =

√
2j + 1

2
(j − m′)
(j + m′)

Pm′
j (cos θ).

In the tomogram, θ is the parameter labeling the vectors of the basis associated to m = 0 and m′. The
index j is the variable. In order to illustrate the effect of this tomogram, we computed numerically some
vectors in the time–frequency plane (Figs. 5 and 6). In the discrete setting, if we choose m′ = N , where
N is the number of points, the {LN

j }j form an orthonormal basis of the discrete time–frequency plane.
Hence the projection on the eigenvectors of the rotated tomogram with m = 0 and m′ = N can be seen
as the projection on bent lines in the time–frequency plane. This tomogram should be appropriate for
studying the functions with similar symmetry properties in the time–frequency plane.

7. Hermite-Basis Tomography

Here we consider a dequantizer

Û(n, α) = D̂(α) | n〉〈n | D̂†(α), α = |α|eiθα (52)
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and a quantizer

D̂(n, α) =
4

π(1 − λ2)

(
λ + 1
λ − 1

)n

D̂(α)
(

λ − 1
λ + 1

)n

D̂(−α), (53)

where −1 < λ < 1 is an arbitrary parameter and n is related to the order of an Hermite polynomial.
This is analogous to the use of a photon-number basis in quantum optics.

For any signal f(t), one has the probability distribution (tomogram)

Mf (n, α) = Tr | f〉〈f | Û(n, α) (54)

and, from the tomogram, the signal is reconstructed by

| f〉〈f |=
∞∑

n=0

∫
d2αM(n, α)D̂(n, λ). (55)

One has M(n, α) ≥ 0 and
∑∞

n=0 Mf (n, α) = 1 for any complex α.
For an arbitrary operator Â, one has

ÎÂ =
∞∑

n=0

∫
d2α D̂(n, α)Tr

(
Û(n, α)Â

)
, (56)

where Î is the identity operator.
The explicit form of the tomogram for a signal function f(t) is

Mf (n, λ) =
∣∣∣〈f | D̂(α) | n〉

∣∣∣2 =
∣∣∣∣
∫

f∗(t)fn,α(t) dt

∣∣∣∣
2

, (57)

where
fn,α(t) = D̂(α)

[
π−1/4(2nn!)−1/2e−t2/2Hn(t)

]
, (58)

with Hn(t) being an Hermite polynomial.
Thus, one has

fn,α(t) = π−1/4(2nn!)−1/2e−(α2−α∗2)/4e[(α−α∗)t]/
√

2e−t̃2/2Hn(t̃) (59)

and t̃ = t − (α + α∗)/
√

2. For fixed |α|, the tomogram is a function of the discrete set n = 0, 1, . . . and
the phase factor θα.

How the Hermite-basis tomogram explores the time–frequency plane is, as before, illustrated by
spectrograms of the eigenstates (Fig. 7). In the particular case where α = 0, the functions fn,0 are the
Hermite functions. Their time–frequency representation has been calculated in Fig. 7. It shows that
the tomogram at α = 0 is suited for rotation-invariant functions in the time–frequency plane. One can
see that for real α this pattern is shifted in time, and for purely imaginary α the pattern is shifted in
frequency. The pattern can be shifted in both time and frequency by choosing the appropriate complex
value for α.
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Fig. 7. Modulus of the short-time Fourier
transform of the sum of four Hermite functions.
Each ring is a Hermite function. Here, the num-
ber of points is N = 2000. The picture has
been centered, the origin has been set to time
t = 1000 and frequency f = 0. That is to say,
t = −N/2 + lΔt for l ∈ [0, N) and Δt = 1. The
smallest circle is for n = 5 and in increasing
size order n = 500, n = 1000, and n = 1500,
respectively.

8. Denoising, Component Separation, and Filtering

A few detailed applications of the tomograms associated to the operator B (μ, ν) = μt + νω may
already be found in the literature [14,20–23]. Here we simply include a few details of the methodology to
be used by any type of tomogram to analyze complex signals. We also list the normalization modifications
that are needed when dealing with finite-time signals. For example, for the time–frequency tomogram,
instead of (24), we consider the finite-time tomogram, for a signal defined from t0 to t0 + T ,

M1(θ, X) =
∣∣∣∣
∫ t0+T

t0

f∗(t)ψ(1)
θ,X (t) dt

∣∣∣∣
2

=
∣∣∣〈f, ψ(1)〉

∣∣∣2 , (60)

with

ψ
(1)
θ,X (t) =

1√
T

exp
(

i cos θ

2 sin θ
t2 − iX

sin θ
t

)
, (61)

and μ = cos θ, ν = sin θ. Here, θ is a parameter that interpolates between the time and the frequency
operators, running from 0 to π/2, whereas X is allowed to be any real number.

Likewise for the finite-time time–scale tomogram M2(μ, ν, X) [Eq. (25)] and the finite-time time–
conformal tomogram M4(μ, ν, X) [Eq. (27)],

M2 (θ, X) =
∣∣∣∣
∫ t0+T

t0

f∗(t)ψ(2)
θ,X (t) dt

∣∣∣∣
2

=
∣∣∣〈f, ψ(2)〉

∣∣∣2 , (62)

ψ
(2)
θ,X (t) =

1√
log |t0 + T | − log |t0|

1√|t| exp i

(
cos θ

sin θ
t − X

sin θ
log |t|

)
, (63)

Xn = X0 +
2nπ

log |t0 + T | − log |t0| sin θ, n ∈ Z, (64)

and

M4(θ, X) =
∣∣∣∣
∫ t0+T

t0

f∗(t)ψ(4)
θ,X (t) dt

∣∣∣∣
2

=
∣∣∣〈f, ψ(4)〉

∣∣∣2 , (65)
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ψ
(4)
θ,X (t) =

√
t0 (t0 + T )

T

1
|t| exp i

(
cos θ

sin θ
log |t| + X

t sin θ

)
, (66)

Xn = X0 +
t0 (t0 + T )

T
2πn sin θ, n ∈ Z. (67)

8.1. Denoising and Component Decomposition

Most natural and man-made signals are nonstationary and have a multicomponent structure. There-
fore, separation of its components is an issue of great technological relevance. However, the concept of
signal component is not uniquely defined. The notion of component depends as much on the observer
as on the observed object. When we speak about a component of a signal we are, in fact, referring to a
particular feature of the signal that we want to emphasize. For signals that have distinct features both
in the time and the frequency domains, the time–frequency tomogram is an appropriate tool.

Consider finite-time tomograms as in (60). For all different θ’s, the U(θ), of which B (θ) is the self-
adjoint generator, are unitarily equivalent operators, hence all the tomograms share the same information.

First, we would select a subset Xn in such a way that the corresponding family
{

ψ
(1)
θ,Xn

(t)
}

is orthog-

onal and normalized, 〈ψ(1)
θ,Xn

ψ
(1)
θ,Xm

〉 = δm,n. This is possible by taking the sequence

Xn = X0 +
2nπ

T
sin θ, n ∈ Z, (68)

where X0 is freely chosen (in general, we take X0 = 0). We then consider the projections of the signal
f(t)

cθ
Xn

(f) = 〈f, ψ
(1)
θ,Xn

〉. (69)

Denoising consists in eliminating the cθ
Xn

(f) such that
∣∣cθ

Xn
(f)

∣∣2 ≤ ε for some threshold ε. This
power selective denoising is more robust than, for example, frequency filtering which may also eliminate
important signal information.

The component separation technique is based on the search for an intermediate value of θ where a
good compromise might be found between time localization and frequency information. This is achieved
by selecting subsets Fk of the Xn and reconstructing partial signals (k-components) by restricting the
sum to

fk(t) =
∑

n∈Fk

cθ
Xn

(f)ψθ,Xn(t) (70)

for each k. For examples and applications to experimental signals refer to [20–22].
If, in the linear combination B (μ, ν) = μt + νO, one chooses an operator O, that is specially tuned

to the features of the signal that one wants to extract, then, by looking for the particular values of
the set (μ, ν) where the noise effects cancel out, we may separate information of very small signals
from large noise. This provides a signal-adapted filtering technique. The construction of the operator
suited to particular signals may be done by the same techniques that are used in the bi-orthogonal
decomposition [33].
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9. Conclusions

Tomograms provide a two-variable characterization of signals which, due to its rigorous probabilistic
interpretation, is robust and free of artifacts and ambiguities. For each particular signal that one wants
to analyze, the choice of the appropriate tomogram depends not only on the signal but also on the
features that we might want to identity or emphasize. So far we have explored component separation,
denoising, and identification of small signal in noise, but other features may also benefit from the robust
probabilistic nature of the tomographic analysis. This was our main motivation to include here a long
list of many different operator choice leading to different classes of tomograms.

The description of the tomograms as operator symbols, with the corresponding quantizers and de-
quantizers, not only provides an alternative formulation but may also be used to extend the algebraic
signal processing formalism to a wider nonlinear context.
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