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Control of Hamiltonian chaos as a possible tool

to control anomalous transport in fusion plasmas
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It is shown that a relevant control of Hamiltonian chaos is possible through suitable small pertur-
bations whose form can be explicitly computed. In particular, it is possible to control (reduce) the
chaotic diffusion in the phase space of a Hamiltonian system with 1.5 degrees of freedom which mod-
els the diffusion of charged test particles in a turbulent electric field across the confining magnetic
field in controlled thermonuclear fusion devices. Though still far from practical applications, this
result suggests that some strategy to control turbulent transport in magnetized plasmas, in partic-
ular tokamaks, is conceivable. The robustness of the control is investigated in terms of a departure
from the optimum magnitude, of a varying cut-off at large wave vectors, and of random errors on
the phases of the modes. In all three cases, there is a significant region of maximum efficiency in
the vicinity of the optimum control term.

PACS numbers: 05.45.-a; 05.45.Gg; 52.25.Fi

I. INTRODUCTION

Transport induced by chaotic motion is now a stan-
dard framework to analyze the properties of numerous
systems. Since chaos can be harmful in several contexts,
during the last decade or so, much attention has been
paid to the so-called topic of chaos control. Here the
meaning of control is that one aims at reducing or sup-
pressing chaos inducing a relevant change in the trans-
port properties, by means of a small perturbation (either
open-loop or closed-loop control of dissipative systems
[1, 2]) so that the original structure of the system under
investigation is substantially kept unaltered. Control of
chaotic transport properties still remains an open issue
with considerable applications.

In the case of dissipative systems, an efficient strategy
of control works by stabilizing unstable periodic orbits,
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where the dynamics is eventually attracted. Similarly,
a first idea to control Hamiltonian systems is to modify
the parameters of the system in order to act on periodic
orbits: One can enhance the stability of elliptic periodic
orbits by zeroing their residues [3], or by stabilizing hy-
perbolic periodic orbits [4].
Another idea to stabilize the system is to enlarge the
phase space by coupling the system with an external sys-
tem (and hence with additional degrees of freedom which
makes the large system more regular) [5]. These embed-
ding techniques are similar to the above methods on the
stabilization of unstable periodic orbits; they are based
on the construction of a dissipative system from the orig-
inal Hamiltonian system. The techniques developed for
dissipative systems can thus be applied to this modified
system, like for instance the targeting of periodic orbits.
A different approach is to modify the Hamiltonian (or
just the potential) to control the original system. This
approach is useful when one is able to act on this sys-
tem with an external forcing. The interesting point is
that the Hamiltonian structure with its number of de-
grees of freedom is preserved. So far, the modifications
of the Hamiltonian that have been proposed in the liter-
ature are: the modification of the integrable part of the
Hamiltonian [6], the control of a system with large and
non-smooth external pulses [7], a localised control with a
modification in some specific regions of phase space [8],
or a control using variations of the external field [9, 10].
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However, we notice that most of the modifications of the
potential that have been proposed so far are tailored to
specific examples (with the exception of the optimal con-
trol [9]) and the required modifications are large com-
pared with the potential.
Hamiltonian description of the microscopic origin of par-
ticle transport usually involves a large number of parti-
cles. Methods based on targeting and locking to islands
of regular motions in a “chaotic sea” are of no practical
use in control when dealing simultaneously with a large
number of unknown trajectories. Therefore, the most ef-
ficient procedure appears to be to control the transport
process with a small perturbation, if any, making the sys-
tem integrable or closer to integrable. In what follows we
show that it is actually possible to control Hamiltonian
chaos in this way by preserving the Hamiltonian struc-
ture. We describe a general method for controlling nearly
integrable Hamiltonian systems, and we apply this tec-
nique to a model relevant to magnetized plasmas.

Chaotic transport of particles advected by a turbulent
electric field with a strong magnetic field is associated
with Hamiltonian dynamical systems under the approx-
imation of the guiding center motion due to E× B drift
velocity. For an appropriate choice of the turbulent elec-
tric field, it has been shown that the resulting diffusive
transport is then found to agree with the experimental
counterpart [11]. It is clear that such an analysis is only
a first step in the investigation and understanding of tur-
bulent plasma transport. The control of transport in
magnetically confined plasmas is of major importance in
the long way to achieve controlled thermonuclear fusion.
Two major mechanisms have been proposed for such a
turbulent transport: transport governed by the fluctu-
ations of the magnetic field and transport governed by
fluctuations of the electric field. There is presently a
general consensus to consider, at low plasma pressure,
that the latter mechanism agrees with experimental ev-
idence [12]. In the area of transport of trace impurities,
i.e. that are sufficiently diluted so as not to modify the
electric field pattern, the E×B drift motion of test par-
ticle should be the exact transport model. Even for this
very restricted case, control of chaotic transport would
be very relevant for the thermonuclear fusion program.
The possibility of reducing and even suppressing chaos
combined with the empirically found states of improved
confinement in tokamaks, suggest to investigate the pos-
sibility to devise a strategy of control of chaotic transport
through some smart perturbations acting at the micro-
scopic level of charged particle motions.

As in the current literature the electric turbulent trans-
port in plasmas is mainly addressed in the Eulerian
(fluid) framework, let us first recall the difference be-
tween Lagrangian and Eulerian descriptions of transport.
We consider the advection of a scalar quantity θ(x, t)
describing, e.g., the concentration of a passively trans-
ported entity. In a given Eulerian velocity field v(x, t)

the transport of θ(x, t) is described by

∂θ(x, t)

∂t
+ v(x, t) · ∇θ(x, t) = D∇2θ(x, t), (I.1)

where D is a molecular diffusion coefficient. This equa-
tion holds for both neutral fluids and plasmas. If the
field v(x, t) is given indipendently from the field θ(x, t)
Eq. (I.1) is linear in v(x, t). The complexity of the field
θ(x, t) will then depend on both the complexity of the
field v(x, t) and on the molecular diffusion coefficient D.
When considering the simulation of Eq. (I.1), the mag-
nitude of D will govern the mesh size to store the field
θ(x, t). For a vanishingly small diffusion D, there will
be no cut-off of the small scales generated by the simu-
lation. This will require an infinite storage capability to
describe the complexity of θ(x, t) that can appear even
for a relatively smooth velocity field. To evaluate this
property, the most straightforward description is given
by a Lagrangian approach. For the same transport pro-
cess, the latter requires to solve the following equations
of motion of a passive tracer (e.g. particle, fluid drop)
whose Eulerian concentration function is θ(x, t),

ẋ = v(x, t), (I.2)

which in the case of a two dimensional incompressible
Euler flow can be given the form

ẋ =
d

dt

(

x

y

)

= v(x, t) = ∇⊥ψ =

(

−∂yψ(x, y, t)

∂xψ(x, y, t)

)

, (I.3)

where ψ denotes the stream function of the eulerian field
v(x, t), the trajectory of the tracer is denoted by x(t) and
∇⊥ ≡ (−∂y, ∂x). What is remarkable here is the Hamil-
tonian structure of the equations of motion (I.3), where
the stream function ψ plays the role of the Hamiltonian
function and x and y play the role of the canonically
conjugate variables. With the exception of trivial veloc-
ity fields v (like a uniform, parallel flow) these equations
of motion are in general nonlinear in the coordinates;
in fact, if we even think of a simple vortex, we realize
that vx and vy must contain at least one trigonometric
function. Now, also without a standard (quadratic) ki-
netic energy term, this kind of Hamiltonian dynamical
system displays all the rich and complex phenomenology
of the transition between regular and chaotic motions
and between weak and strong chaos [13]. Thus, even
in presence of rather regular Eulerian velocity patterns,
the solutions of Eqs. (I.2) and (I.3) can be very compli-
cated, with apparently no relation left with v(x, t). In
other words, chaotic Lagrangian diffusion can take place
also in presence of rather simple Eulerian velocity pat-
terns. For realistic simulation of Eq. (I.1) a finite mesh
size must be introduced and accordingly the diffusion co-
efficient D must reach a finite value to smear out the
small scales that cannot be captured by the grid. If the
velocity field is characterized by a large regular structure
superimposed to small scale structures, the output of the
simulation can lead to the absence of any diffusion but
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the molecular one [14]. The difficulty in the simulation
of Eq. (I.1) will then lead to an apparent conflict with
a broad experimental evidence [15]. The most efficient
means to address the transport of passive scalars in a
given velocity field v(x, t) appears to follow a Lagrangian
approach that allows one to describe the motion at all
scales in space and time. The cost of this method will
appear in the statistics that must be performed to ob-
tain a general property of the system whenever a single
trajectory does not allow one to capture the properties
of all possible trajectories.

When addressing plasma transport, Eulerian and La-
grangian approaches are combined to provide an analy-
sis of the transport properties. An equation similar to
Eq. (I.1) is coupled to a vorticity equation defining the
field v(x, t) [16]. The Eulerian description is used to gen-
erate the velocity field and a Lagrangian approach is used
to follow trace impurities and trace Tritium that allows
one to compare the simulations to experimental data [17].

A close analogy exists between the equations of motion
of passive tracers (I.3) and those of the guiding centers
of charged particles moving in strongly magnetized plas-
mas and in presence either of an electric field transverse
to the magnetic field, or of an inhomogeneous component
of the magnetic field itself. The electrostatic case [18] is
modeled by

ẋ =
d

dt

(

x

y

)

=
c

B2
E(x, t) × B =

c

B

(

−∂yV (x, y, t)

∂xV (x, y, t)

)

,

where V is the electric potential, E = −∇V , and B =
Bez. The magnetic case is modeled by

ẋ =
d

dt

(

x

y

)

=
v‖

RB
×∇Φpol(x, t)

=
v‖

RB

(

−∂yΦpol(x, y, t)

∂xΦpol(x, y, t)

)

, (I.4)

where v‖ is the velocity along the field line, R the major
radius of the torus and Φpol the poloidal magnetic flux
divided by 2π. In both cases, the physically remarkable
phenomenon – in complete analogy with the Lagrangian
diffusion of passive scalars – is that even in presence of
rather regular space-time patterns of the electric fields
or of the magnetic inhomogeneities, the charged parti-
cles can diffuse across the magnetic field which ceases to
be confining. The dynamical instability with respect to
small variations of the initial conditions, known as deter-
ministic chaos, is the very source of the enhanced cross-
field diffusion; it is “intrinsically” non-collisional and it
turns out to be orders of magnitude larger than the colli-
sional one [11], sometimes even many orders of magnitude
larger [19].

In this article, the problem we address is how to control
chaotic diffusion in such Hamiltonian models. In some
range of parameters, the problems can be considered as
nearly integrable. We consider the class of Hamiltonian
systems which can be written in the form H = H0 + ǫV
that is an integrable Hamiltonian H0 (with action-angle

variables) plus a small perturbation ǫV .
The problem of control in Hamiltonian systems is the

following one: For the perturbed Hamiltonian H0 + ǫV ,
the aim is to devise a control term f such that the dynam-
ics of the controlled Hamiltonian H0 + ǫV + f has more
regular trajectories (e.g. on invariant tori) or less diffu-
sion than the uncontrolled one. Obviously f = −ǫV is
a solution since the resulting Hamiltonian is integrable.
However, it is a useless solution since the control is of
the same magnitude of the perturbation. For practical
purposes, the desired control term should be small (with
respect to the perturbation ǫV ), localized in phase space
(meaning that the subset of phase space where f is non-
zero is finite or small enough), or f should be of a spe-
cific shape (e.g. a sum of given Fourier modes, or with
a certain regularity). Moreover, the control should be
as simple as possible in view of future implementions in
experiments.

In Sec. II, we explain the control theory of nearly inte-
grable Hamiltonian systems following Ref. [20]. We show
that it is possible to construct and compute analytically a
control term f of order ε2 such that the controlled Hamil-
tonian Hc = H0 + ǫV + f is integrable. In Sec. III, after
defining the model of interest to our study in Sec. III A,
we compute analytically the first terms of the expan-
sion of the control term in Sec. III B. Some properties
of the control term are given in Sec. III C. A numerical
study of the effect of the control term on the dynamics
is done extensively in Sec. IV. It is shown that the cho-
sen control term is able to drastically reduce the chaotic
transport. In Sec. V, we study the effect of some trun-
cations that aim at either simplifying the control term
or reducing the energy input to control the system: In
particular, we show that reducing the control term to its
main Fourier components or reducing the magnitude of
the control term is sufficient to govern a significant de-
crease of the chaotic transport. Thought, of course the
optimal control is obtained with the full control term.
These results indicates that this control of Hamiltonian
systems is robust.

II. CONTROL THEORY OF HAMILTONIAN

SYSTEMS.

In this section, following the framework of Ref. [20] we
explain the control theory of Hamiltonian systems. Let
A be the vector space of C∞ real functions defined on the
phase space. For H ∈ A, let {H} be the linear operator
acting on A such that

{H}H ′ = {H,H ′},

for any H ′ ∈ A, where {· , ·} is the Poisson bracket.
Hence A is a Lie algebra. The time-evolution of a func-
tion V ∈ A following the flow of H is given by

dV

dt
= {H}V,
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which is formally solved as

V (t) = et{H}V (0),

if H is time independent, and where

et{H} =

∞
∑

n=0

tn

n!
{H}n.

Any element V ∈ A such that {H}V = 0, is constant
under the flow of H , i.e.

∀t ∈ R, et{H}V = V.

Let us now consider a given Hamiltonian H0 ∈ A. The
operator {H0} is not invertible since a derivation has
always a non-trivial kernel. For instance {H0}H0

α = 0
for any α such that H0

α ∈ A. The vector space Ker {H0}
is the set of constants of motion. Hence we consider a
pseudo-inverse of {H0}. We define a linear operator Γ on
A such that

{H0}
2 Γ = {H0}, (II.5)

i.e.

∀V ∈ A, {H0, {H0,ΓV }} = {H0, V }.

The operator Γ is not unique. Any other choice Γ′ satis-
fies that the range Rg(Γ′ −Γ) is included into the kernel
Ker({H0}2).

We define the non-resonant operator N and the reso-
nant operator R as

N = {H0}Γ,

R = 1 −N ,

where the operator 1 is the identity in the algebra of
linear operators acting on A. We notice that Eq.(II.5)
becomes

{H0}R = 0,

which means that the range RgR of the operator R is
included in Ker {H0}. A consequence is that RV is con-
stant under the flow of H0, i.e. et{H0}RV = RV . We
notice that when {H0} and Γ commute, R and N are
projectors, i.e. R2 = R and N 2 = N . Moreover, in this
case we have RgR = Ker {H0}, i.e. the constant of mo-
tion are the elements RV where V ∈ A.

Let us now assume that H0 is integrable with action-
angle variables (A,ϕ) ∈ B×T

l where B is an open set of
R

l and T
l is the l dimensional torus. Thus H0 = H0(A)

and the Poisson bracket {H,H ′} between two elements
H and H ′ of A is

{H,H ′} =
∂H

∂A
·
∂H ′

∂ϕ
−
∂H

∂ϕ
·
∂H ′

∂A
.

The operator {H0} acts on V expanded as follows

V =
∑

k∈Zl

Vk(A)eik·ϕ,

as

{H0}V (A,ϕ) =
∑

k

iω(A) · k Vk(A)eik·ϕ,

where

ω(A) =
∂H0

∂A
.

A possible choice of Γ is

ΓV (A,ϕ) =
∑

k∈Zl

ω(A)·k6=0

Vk(A)

iω(A) · k
eik·ϕ. (II.6)

We notice that this choice of Γ commutes with {H0}.
For a given V ∈ A, RV is the resonant part of V and

NV is the non-resonant part:

RV =
∑

k

Vk(A)χ(ω(A) · k = 0)eik·ϕ, (II.7)

NV =
∑

k

Vk(A)χ(ω(A) · k 6= 0)eik·ϕ, (II.8)

where χ(α = 0) vanishes when α 6= 0 and it is equal to 1
when α = 0.

From these operators defined for the integrable part
H0, we construct a control term for the perturbed Hamil-
tonian H0 + V where V ∈ A, i.e. f is constructed such
that H0 + V + f is canonically conjugate to H0 + RV .

Proposition 1 – For V ∈ A and Γ constructed from
H0, we have the following equation

e{ΓV }(H0 + V + f) = H0 + RV, (II.9)

where

f(V ) = e−{ΓV }RV +
1 − e−{ΓV }

{ΓV }
NV − V. (II.10)

We notice that the operator (1 − e−{ΓV })/{ΓV } is well
defined by the expansion

1 − e−{ΓV }

{ΓV }
=

∞
∑

n=0

(−1)n

(n+ 1)!
{ΓV }n.

Proof: Since e{ΓV } is invertible, Eq. (II.9) gives

f(V ) = (e−{ΓV } − 1)H0 + e−{ΓV }RV − V.

We notice that the operator e−{ΓV } − 1 can be divided
by {ΓV }

f(V ) =
e−{ΓV } − 1

{ΓV }
{ΓV }H0 + e−{ΓV }RV − V.

By using the relations

{ΓV }H0 = {ΓV,H0} = −{H0}ΓV,
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and

{H0}Γ = N ,

we have

f(V ) = e−{ΓV }RV +
1 − e−{ΓV }

{ΓV }
NV − V. �

The control term can be expanded in power series as

f(V ) =

∞
∑

n=1

(−1)n

(n+ 1)!
{ΓV }n(nR + 1)V. (II.11)

We notice that if V is of order ǫ, f(V ) is of order ǫ2.
Proposition 1 tells that the addition of a well chosen

control term f makes the Hamiltonian canonically con-
jugate to H0 + RV . It is also possible to show from
Proposition 1 that the flow of H0 +V + f is conjugate to
the flow of H0 + RV (see Ref. [20]).

Proposition 2 –

∀t ∈ R, et{H0+V +f} = e−{ΓV } et{H0} et{RV } e{ΓV }.

The remarkable fact is that the flow of RV commutes
with the one of H0, since {H0}R = 0. This allows the
splitting of the flow of H0 + RV into a product.

The notion of non-resonant Hamiltonian is defined by
the following statement:
Definition – H0 is non-resonant if and only if ∀A ∈
B,ω(A) · k = 0 implies k = 0.

If H0 is non-resonant then with the addition of a con-
trol term f , the Hamiltonian H0 + V + f is canonically
conjugate to the integrable Hamiltonian H0 + RV since
RV is only a function of the actions [see Eq. (II.7)].

If H0 is resonant and RV = 0, the controlled Hamil-
tonian H = H0 + V + f is conjugate to H0.
In the case RV = 0, the series (II.11) which gives the
expansion of the control term f , can be written as

f(V ) =

∞
∑

s=2

fs, (II.12)

where fs is of order ǫs and given by the recursion formula

fs = −
1

s
{ΓV, fs−1}, (II.13)

where f1 = V .
Remark : A different approach of control has been de-
veloped by G. Gallavotti in Ref. [6]. The idea is to find
a control term (named counter term) depending only on
the actions, i.e. to find N such that

H(A,ϕ) = H0(A) + V (A,ϕ) −N(A),

is integrable. For isochronous systems, that is

H0(A) = ω · A,

or any function h(ω ·A), it is shown that if the frequency
vector satisfies a Diophantine condition and if the per-
turbation is sufficiently small and smooth, such a control
term exists. An algorithm to compute it by recursion is
provided by the proof. We notice that the resulting con-
trol term N is of the same order as the perturbation, and
has the following expansion

N(A) = RV +
1

2
R{ΓV }V +O(ε3),

where we have seen from Eq. (II.7) that RV is only a
function of the actions in the non-resonant case. The as-
sumption that ω is non-resonant is a crucial hypothesis
in Gallavotti’s renormalization approach. Otherwise, a
counter-term which only depends on the actions A can-
not be found.
Our approach makes possible the construction of a con-
trol term in the resonant case. The controlled Hamilto-
nian is conjugate to H0 +RV where RV depends on the
angle and action variables in the resonant case. Therefore
the controlled Hamiltonian is not integrable in general.
The new term RV which is always a conserved quan-
tity is functionally independent of H0 since it depends
on the angles. There exists a linear canonical transfor-
mation (A′,ϕ′) = (tTA, T−1

ϕ) where T is a l× l matrix
with integer coefficients and determinant 1 such that ω is
mapped onto a new frequency vector which has its r last
components equal to zero, where r denotes the dimension
of {k ∈ Z

l s.t. ω · k = 0}. In these new coordinates RV
depends only on r angles. This form of H0+RV is called
the resonant normal form. The non resonant case occurs
when r = 0. When r = 1 the normal form of H0 + RV
depends only on one angle, so it is integrable.
In what follows, we will apply the control theory to a
resonant Hamiltonian which models the E × B drift in
magnetized plasmas.

III. CONTROL OF CHAOS IN A MODEL FOR

E × B DRIFT IN MAGNETIZED PLASMAS

A. The model

In the guiding centre approximation, the equations
of motion of a charged particle in presence of a strong
toroidal magnetic field and of a time dependent electric
field are [18]

ẋ =
d

dt

(

x

y

)

=
c

B2
E(x, t) × B =

c

B

(

−∂yV (x, y, t)

∂xV (x, y, t)

)

,

(III.14)
where V is the electric potential, E = −∇V , and B =
Bez. The spatial coordinates x and y where (x, y) ∈ R

2

play the role of the canonically conjugate variables and
the electric potential V (x, y, t) is the Hamiltonian of the
problem. To define a model we choose

V (x, t) =
∑

k∈Z2

Vk sin

[

2π

L
k · x + ϕk − ω(k)t

]

, (III.15)
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FIG. 1: Contour plot of V (x, y, t) given by Eq.(III.16) for
t = 0, a = 1 and N = 25.

where ϕk are random phases (uniformly distributed) and
Vk decrease as a given function of |k|, in agreement with
experimental data [21]. In principle one should use for
ω(k) the dispersion relation for electrostatic drift waves
(which are thought to be responsible for the observed tur-
bulence) with a frequency broadening for each k in order
to model the experimentally observed spectrum S(k, ω).
In order to use a simplified model we use in this article
ω(k) = ω0 constant as a dispersion relation. The phases
ϕk are chosen at random in order to mimic a turbulent
field with the reasonable hope that the properties of the
realization thus obtained are not significantly different
from their average. In addition we take for |Vk| a power
law in |k| to reproduce the spatial spectral characteristics
of the experimental S(k), see Ref. [21]. Thus we consider
the following explicit form of the electric potential

V (x, y, t) =
a

2π

N
∑

m,n=1

n2+m2≤N2

1

(n2 +m2)3/2
×

sin

[

2π

L
(nx+my) + ϕnm − ω0t

]

.

(III.16)

By rescaling space and time, we can always assume that
L = 1 and ω0 = 2π. In what follows, we choose N = 25.
Figure 1 shows a visualization of the potential for t = 0
and a = 1. Since the model is fluctuating in time, the
eddies of Fig. 1 are rapidly modified in time and where
a vortex was initially present, an open line appears, and
so on.
Two particular properties of the model, anisotropy and
propagation have been observed : each image of the po-
tential field shows an elongated structure of the eddies
and superposing images obtained at different times a
slight propagation in the y = x direction is found. How-
ever, this propagation can easily be proved not to disturb
the diffusive motion of the guiding centers. The prop-
erty of propagation can be easily understood analytically.
In fact, restricting ourselves to the most simplified case
of an electric potential given only by a dominant mode

(n = m = 1) it is immediately evident that at any given
time the maxima and minima of the sine are located on
the lines y = −x + constant. As the amplitudes are de-
creasing functions of n andm, this structure is essentially
preserved also in the case of many waves. The property
of anisotropy is an effect of the random phases in pro-
ducing eddies that are irregular in space.

We notice that there are two typical time scales in the
equations of motion: the drift characteristic time τd, in-
versely proportional to the parameter a, and the period
of oscillation τω of all the waves that enter the potential.
The competition between these two time scales deter-
mines what kind of diffusive behaviour is observed [11].
In what follows we consider the case of weak or intermedi-
ate chaotic dynamics (coexistence of ordered and chaotic
trajectories) which corresponds to the quasi-linear diffu-
sion regime (see Sec. IV A). Whereas in the case of fully
developed chaos that corresponds to the so-called Bohm
diffusion regime one has to introduce a slightly more com-
plicated approach (see remark at the end of Sec. III C).

B. Computation of the control term

We extend the phase space (x, y) into (x, y, E, τ) where
the new dynamical variable τ evolves as τ(t) = t + τ(0)
and E is its canonical conjugate. The autonomous
Hamiltonian of the model is

H(x, y, E, τ) = E + V (x, y, τ). (III.17)

The equations of motion are

ẋ = −
∂H

∂y
= −

∂V

∂y
, ẏ =

∂H

∂x
=
∂V

∂x
, τ̇ = 1,

(III.18)
and E is given by taking H constant along the trajec-
tories. We absorb the constant c/B of Eq. (III.14) in
the amplitude a of Eq. (III.16), so that we can assume
that a is small when B is large. Thus, for small values
of a, Hamiltonian (III.17) is in the form H = H0 + ǫV ,
that is an integrable Hamiltonian H0 (with action-angle
variables) plus a small perturbation ǫV . In our case
H0 = E, i.e. independent of x, y, τ , so that A = (E, x)
and ϕ = (τ, y) are action-angle coordinates for H0 (y can
be considered as an angle but it is frozen by the flow of
H0). We could have exchanged the role of x and y. We
have

ω(A) =

(

∂H0

∂E
,
∂H0

∂x

)

= (1, 0),

that is H0 is resonant [i.e. ω(A) · k = 0 does not imply
k = 0 ]. In order to construct the operators Γ, R and N
we consider

∂

∂ϕ
=

(

∂

∂τ
,
∂

∂y

)

,

so

{H0} = ω(A) ·
∂

∂ϕ
=

∂

∂τ
.
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FIG. 2: Contour plot of f2 given by Eq. (III.21) for a = 1 and
N = 25.

If we consider an element W (x, y, τ) of the algebra A,
periodic in time with period 1, we can write

W (x, y, τ) =
∑

k∈Z

Wk(x, y)e2iπkτ ,

and the action of Γ, R and N operators on W is given
by

ΓW =
∑

k 6=0

Wk(x, y)

2ikπ
e2iπkτ , (III.19)

RW = W0(x, y),

NW =
∑

k 6=0

Wk(x, y)e2iπkτ .

If we apply the operator Γ to V given by Eq. (III.16),
we obtain

ΓV =
a

(2π)2

∑

n,m=1

n2+m2≤N2

1

(n2 +m2)3/2
×

cos [2π(nx+my) + ϕnm − 2πτ ] . (III.20)

Since V is periodic in time with zero mean value, we have
RV = 0. In this case, as we have seen in the previous
section, Eqs. (II.12)-(II.13) give the expansion of the con-
trol term. If we add the exact expression of the control
term to H0 +V , the effect on the flow is the confinement
of the motion, i.e. the fluctuations of the trajectories of
the particles, around their initial positions, are uniformly
bounded for any time [20].
In the present article we show that truncations of the
exact control term f are able to regularize the dynamics
and to slow down the diffusion. We compute the first
terms of the series of the exact control term f2 and f3.
From Eq. (II.13) we have

f2(V ) = −
1

2
{ΓV, V },

and using the expressions of V and ΓV , we have

f2(x, τ) = −
a2

2(2π)3

∑

n1,m1
n2,m2

1

(n2
1 +m2

1)
3/2(n2

2 +m2
2)

3/2
×

{cos(2π(n1x+m1y) + ϕn1m1 − 2πτ),

sin(2π(n2x+m2y) + ϕn2m2 − 2πτ)},

where {·, ·} is the Poisson bracket for x, y coordinates, i.e.
for two generic functions f and g depending on x, y, τ ,
we have

{f, g} =
∂f

∂x

∂g

∂y
−
∂f

∂y

∂g

∂x
.

From Eqs. (III.16) and (III.20) we obtain

f2(x, y, τ) =
a2

8π

∑

n1,m1
n2,m2

n1m2 − n2m1

(n2
1 +m2

1)
3/2(n2

2 +m2
2)

3/2

× sin
[

2π
[

(n1 − n2)x+ (m1 −m2)y
]

+ ϕn1m1 − ϕn2m2

]

.

(III.21)

We notice that for the particular model (III.16) and for
the particular choice of operator Γ given by Eq. (III.19),
the partial control term f2 is independent of time. Fig-
ure 2 depicts a contour plot of it.

The computation of f3 is given by

f3(V ) = −
1

3
{ΓV, f2},

and substituting the expressions (III.20) and (III.21) for
ΓV and f2, one obtains

f3(x, y, τ) = −
a3

24π
×

∑

n1,m1,n2,m2
n3,m3

(n1m2 −m1n2) [(n1 − n2)m3 − (m1 −m2)n3]

(n2
1 +m2

1)
3/2(n2

2 +m2
2)

3/2(n2
3 +m2

3)
3/2

× sin[2π(n1 − n2 + n3)x+ 2π(m1 −m2 +m3)y +

ϕn1m1 − ϕn2m2 + ϕn3m3 − 2πτ)]. (III.22)

The computation of the other terms of the series (II.12)
can be done recursively by using Eq.(II.13) (see also [20]
and the Appendix).

C. Properties of the control term

In this section, we first state that for a sufficiently
small, the exact control term exists and is regular. The
proofs of these propositions are given in the Appendix.
Then we give estimates of the partial control terms in
order to compare the relative sizes of the different terms
with respect to the perturbation.
Concerning the existence of the control term, we have
the following proposition
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FIG. 3: Contour plot of f3 given by Eq. (III.22) for t = 0,
a = 1 and N = 25.

Proposition 3 – If the amplitude a of the potential is
sufficiently small, there exists a control term f given by
the series (II.12) such that E+V + f is canonically con-
jugate to E, where V is given by Eq. (III.16).

The proof is given in the Appendix. For N = 25, it is
shown that the control term exists for a . 7 × 10−3. As
usual, such estimates are very conservative with respect
to realistic values of a. In the numerical study, we con-
sider values of a of order 1.

Concerning the regularity of the control term, we no-
tice that each term fs in the series (II.12) is a trigono-
metric polynomial with an increasing degree with s. The
resulting control term is not smooth but its Fourier co-
efficients exhibits the same power law mode dependence
as V :

Proposition 4 – All the Fourier coefficients f
(s)
nmk of the

functions fs of the series (II.12) satisfy:

|f
(s)
nmk| ≤

asCs

(n2 +m2)3/2
,

for (n,m) 6= (0, 0). Consequently, for a sufficiently small,
the Fourier coefficients of the control term f given by
Eq. (II.12) satisfy:

|fnmk| ≤
C∞

(n2 +m2)3/2
,

for (n,m) 6= (0, 0) and for some constant C∞ > 0.

In order to measure the relative magnitude between
Hamiltonian (III.16) and f2 or f3, we have numerically
computed their mean squared values:

√

〈f2
2 〉

〈V 2〉
≈ 0.13a,

√

〈f2
3 〉

〈V 2〉
≈ 0.07a2,

where 〈f〉 =
∫ 1

0 dt
∫ 1

0 dx
∫ 1

0 dyf(x, y, t).

Another measure of the relative sizes of the control
terms is by the electric energy density associated with
each electric field V , f2 and f3. From the potential we
get the electric field and hence the motion of the particles.
We define an average energy density E as

E =
1

8π
〈 | E |2 〉

where E(x, y, t) = −∇V . In terms of the particles, it
corresponds to the mean value of the kinetic energy 〈ẋ2+
ẏ2〉 (up to a multiplicative constant). For V (x, y, t) given
by Eq. (III.16),

E =
a2

8π

N
∑

n,m=1

n2+m2≤N2

1

(n2 +m2)2
. (III.23)

We define the contribution of f2 and f3 to the energy
density by

e2 =
1

8π
〈|∇f2|

2〉, (III.24)

e3 =
1

8π
〈|∇f3|

2〉. (III.25)

For N = 25, these contributions satisfy:

e2
E

≈ 0.1 × a2,
e3
E

≈ 0.3 × a4.

It means that the control terms f2 and f3 can be
considered as small perturbative terms with respect to
V when a < 1. We notice that even if f3 has a smaller
amplitude than f2, its associated average energy den-
sity is larger for a of order 1 (more precisely for a ≥ 0.58).

Remark on the number of modes in V : In Sec.IV, all
the computations have been performed for a fixed num-
ber of modes N (N = 25) in the potential V given by
Eq. (III.16). The question we address in this remark is
how the results are modified as we increase N . First we
notice that the potential and its electric energy density
are bounded with N since

|V (x, y, t)| ≤ a

∞
∑

n,m=1

1

(n2 +m2)3/2
<∞,

E ≤
a2

8π

∞
∑

n,m=1

1

(n2 +m2)2
<∞.

Concerning the partial control term f2, we see that
it is in general unbounded with N . From its explicit
form, one can see that it grows like N logN (see the
Appendix). Less is known on the control term since
it is given by a series whose terms are defined by
recursion. However, from the proof of Proposition 3
in the Appendix, we see that the value a of existence
of the control term decreases like 1/(2N logN). This
divergence of the control term comes from the fact that
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the Fourier coefficients of the potential V are weakly
decreasing with the amplitude of the wavenumber.
Therefore, the exact control term might not exist if we
increase N keeping a constant. However we will see in
Sec. VB that for practical purposes the Fourier series of
the control term can be truncated to its first terms (the
Fourier modes with highest amplitudes). Furthermore
in the example we considere as well as for any realistic
situation the value of N is bounded by the resolution
of the potential. In the case of electrostatic turbulence
in plasmas kρi ∼ 1 determines an upper bound for k,
where k is the transverse wave vector related to the
indices n,m and ρi the ion Larmor radius,. The physics
corresponds to the averaging effect introduced by the
Larmor rotation.

Remark on the control in the Bohm regime (parame-
ter a larger than 1): Let us define V0 ≡ V (t = 0) and
δV = V − V0. Since the Bohm regime is defined as a
regime of relatively slow evolution of the potential (with
characteristic time τω) compared to the motion of the
particles (with characteristic time τd), τd < τω, one can
introduce as small parameter ǫ ∼ τd/τω and the inte-

grable Hamiltonian H̄0 = H0 + V0, so that H = H̄0 + ǫṼ
with Ṽ = (V − V0)/ǫ. This approach is only valid for a
finite time of order τω after which one must redefine V0,
H̄0 and Ṽ .

IV. NUMERICAL INVESTIGATION OF THE

CONTROL TERM

With the aid of numerical simulations (see Ref. [11] for
more details on the numerics), we check the effectiveness
of the control theory developed in Sec. III by compar-
ing the dynamics of particles obtained from Hamiltonian
(III.16) and from the same Hamiltonian with the control
term f2 given by Eq. (III.21), and with a more refined
control term f2 + f3 where f3 is given by Eq. (III.22).
We use three types of indicators of the dynamics: dif-
fusion coefficient, Lyapunov indicators, and probabilty
distribution function (PDF) of step sizes.

A. Diffusion of test particles

The effect of the control terms can first be seen from
a few randomly chosen trajectories. We have plotted
Poincaré sections (which are stroboscopic plots with pe-
riod 1 of the trajectories of V ). On Figures 4 and 5 is
plotted the Poincaré surfaces of section of two trajectories
issued from generic initial conditions computed without
and with the control term f2 respectively. Similar pic-
tures are obtained for many other randomly chosen ini-
tial conditions. The stabilizing effect of the control term
(III.21) is illustrated by such trajectories. The motion
remains diffusive but the extension of the phase space
explored by the trajectory is reduced.

FIG. 4: Poincaré surface of section of a trajectory obtained
for Hamiltonian (III.16) using a generic initial condition as-
suming a = 0.8.

FIG. 5: Poincaré surface of section of a trajectory obtained
using a generic initial condition as in Fig.1 and adding the
control term (III.21) to Hamiltonian (III.16) with a = 0.8.

In order to study the diffusion properties of the sys-
tem, we have considered a set of M particles (of order
1000) uniformly distributed at random in the domain
0 ≤ x, y ≤ 1 at t = 0. We have computed the mean
square displacement 〈r2(t)〉 as a function of time

〈r2(t)〉 =
1

M

M
∑

i=1

|xi(t) − xi(0)|2, (IV.26)

where xi(t) = (xi(t), yi(t)) is the position of the i-th
particle at time t obtained by integrating Eq. (III.18)
with initial condition xi(0). On Figure 6 is presented
〈r2(t)〉 for three different values of a: a = 0.7, a = 0.8
and a = 0.9. For the range of parameters we consider the
behavior of 〈r2(t)〉 is always found to be linear in time for
t large enough. The corresponding diffusion coefficient is
defined as

D = lim
t→∞

〈r2(t)〉

t
.

The values of D as a function of a with and without
control term are presented on Figure 7. A significant
decrease of the diffusion coefficient when the control term
f2 is added can be readily be observed. As expected, the
action of the control term gets weaker as a is increased
towards the strongly chaotic region.

0 1000 2000 3000 4000 5000
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〈  
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2 ( t
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 a = 0.9 

 a = 0.8 

 a = 0.7 

FIG. 6: Mean square displacement 〈r2(t)〉 versus time t ob-
tained for Hamiltonian (III.16) with three different values of
a = 0.7, 0.8, 0.9.
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B. Lyapunov indicator method

In order to get insight into the action of the control
term to the dynamics, we apply the Lyapunov Indicator
method. This method provides local information in
phase space. It has been introduced to detect ordered
and chaotic trajectories in the set of initial conditions. It
associates a finite-time Lyapunov exponent ν with an ini-
tial condition x0. By looking at the map x0 7→ ν(x0), one
distinguishes the set of initial conditions leading to regu-
lar motion associated with a small finite-time Lyapunov
exponent. The pictures of this map show the phase
space structures where the motion is trapped and does
not diffuse throughout phase space, e.g., they highlight
islands of stability located around elliptic periodic orbits.

Consider an autonomous flow ẋ = f(x). The Lya-
punov indicator method is based on the analysis of the
tangent flow

dy

dt
= Df(x)y, (IV.27)

where Df is the matrix of variations of the flow. The
Lyapunov indicator is defined as the value

ν(x0, T ) = log ‖y(T )‖,

at some finite-time T starting with some initial condition
x0 and a generic vector y0. This definition is very close
to the one of a finite-time Lyapunov exponent. The plot
of ν versus x0 gives a map of the dynamics by highlight-
ing regions of stability and regions of chaotic dynamics.
For a chaotic trajectory, the value of the Lyapunov indi-
cator increases linearly with time, whereas for a regular
trajectory (periodic or quasi-periodic), it increases like
log t (see rigorous results for nearly perturbed Hamilto-
nian systems in Ref. [22]). So in regular regions, this
Lyapunov indicator is expected to be much lower than in
chaotic regions.
Here the Hamiltonian flow is not autonomous. However,

by considering that t is a new coordinate of the motion
(and E is its conjugate momentum), we obtain an au-
tonomous flow with two degrees of freedom. We notice
that the equations of motion for Hamiltonian (III.16) can
be written as

ẋ = Re
[

F(x)e−2iπt
]

, (IV.28)

where

F(x) = ∇⊥V (x, 0) + i∇⊥V (x, 1/4),

where ∇⊥ = (−∂/∂y , ∂/∂x) and V (x, t) is given by
Eq.(III.16). The non autonomous flow (IV.28) can be
mapped into an autonomous flow by considering a third
equation τ̇ = 1. The computation of the tangent flow (of
dimension 3) follows from the matrix of variations of the
autonomous flow. We have chosen the third component
of the vector y following the evolution of the tangent flow
(IV.27) equals to one, which can be done without loss of
generality since Eq. (IV.27) is linear in y. Therefore, it
reduces to the evolution of a two dimensional vector y

which is given by

ẏ = Re
[

G(x)e−2iπt
]

y + 2πIm
[

F(x)e−2iπt
]

,

where G is the two-dimensional matrix G(x) = DF

(matrix of the variations of the vector field F). Fig-
ure 8 shows the value of ν(x0, T ) as a function of T for
T ∈ [0, 140] for three initial conditions x0 : one strongly
chaotic x0 = (0.865, 0.39), one weakly chaotic x0 =
(0.8766, 0.39), and one quasi-periodic x0 = (0.895, 0.39).
The plot of the Poincaré sections of these three trajecto-
ries up to T = 1000 are shown on Fig. 9. These figures
show two chaotic trajectories for which there is an over-
all linear increase of the Lyapunov indicator, and one
quasi-periodic motion (trapped around an elliptic peri-
odic orbit). We notice that not only the method is able
to discriminate early between regular and chaotic mo-
tions but it is also able to detect weakly versus strongly
chaotic trajectories for rather small values of T .

With the control term f2 given by Eq. (III.21), the
equations of motion can be rewritten as

ẋ = Re
[

Fe−2iπt
]

+ f2(x),

where f2(x) = ∇⊥f2. The equation of evolution of y be-
comes

ẏ = Re
[

G(x)e−2iπt
]

y + 2πIm
[

F(x)e−2iπt
]

+Df2(x)y.

With the control term f2(x) + f3(x, t) where f3 is given
by Eq. (III.22), the equations of motion can be written
as

ẋ = Re
[

(F + f3) e
−2iπt

]

+ f2(x),

where f3(x) = ∇⊥f3(x, 0)+ i∇⊥f3(x, 1/4). The equation
of evolution of y becomes

ẏ = Re
[

(G+ g3) e
−2iπt

]

y

+ 2πIm
[

(F + f3) e
−2iπt

]

+Df2y,
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FIG. 8: Values of the Lyapunov indicator ν(x0, T ) as a func-
tion of time T for three trajectories obtained for Hamilto-
nian (III.16) with a = 0.4 for the following initial condi-
tions: one strongly chaotic (a) x0 = (0.865, 0.39), one weakly
chaotic (b) x0 = (0.8766, 0.39), and one quasi-periodic (c)
x0 = (0.895, 0.39).
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FIG. 9: Poincaré sections of the three trajectories of Fig. 8.

where g3(x) = Df3.

On a grid of 10000 initial conditions x0 ∈ [0, 1]2, we
compute ν(x0, T ) for T = 200. Figure 10 represents
the Lyapunov indicator map for a = 0.4 without control
term. Figure 11 shows for the same values of parameters,
the Lyapunov indicator map with the control term f2.
The general effect of the control term f2 is a decrease
of the magnitude of the Lyapunov indicators. However,
the stabilization effect of the control term f2 is not uni-
form. There are regions where the (partial) control term
f2 fails to stabilize the trajectories, e.g., in the region
near x0 = (0.1, 0.4). Figure 12 plots the Poincaré sec-
tion of the trajectories starting at x0 = (0.085, 0.385) for
Hamiltonian (III.16) with and without the control term
f2 given by Eq. (III.21). We notice that this trajectory
is more chaotic and more diffusive with the control term
than without.

FIG. 10: Lyapunov indicator map ν(x0, T = 200) for Hamil-
tonian (III.16) for a = 0.4.

FIG. 11: Lyapunov indicator map ν(x0, T = 200) for Hamil-
tonian (III.16) for a = 0.4 with the control term f2 given by
Eq. (III.21).
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FIG. 12: Poincaré sections of the trajectories of (a) Hamil-
tonian (III.16) and (b) Hamiltonian (III.16) with control
term f2 given by Eq. (III.21), with initial conditions x0 =
(0.085, 0.385).

In order to see the global stabilization effect of the par-
tial control term f2, we notice from the values plotted in
Fig. 10 that for a = 0.4 about 25% of the trajectories
have a Lyapunov indicator less than 5 at T = 200 with-
out the control term f2, compared with 70% with the
control term (from Fig. 11). Figure 13 represents the
histograms of the Lyapunov indicator at T = 200 for
a = 0.4 with and without control term. The first peak
in the upper and lower panels corresponds to the regular
component of the phase space. We clearly see that the
second peak corresponding to the chaotic component is
drastically reduced with the addition of the partial con-
trol term. The effect of a more refined control term is
observed in Fig. 14 for a = 0.6 when the control term f2
starts to fail to reduce significantly the chaotic part of
phase space. We see that the proportion of the regular
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FIG. 13: Histograms of the Lyapunov indicators at T = 200
for a = 0.4 with and without control term computed in
Figs. 10 and 11.
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FIG. 14: Histograms of the Lyapunov indicators at T = 200
for a = 0.6 without control term (upper panel), with control
term f2 (middle panel) and with control term f2 + f3 (lower
panel).

trajectories has increased with the addition of f3. More
quantitatively, 8% of the trajectories of the Hamiltonian
without control have a Lyapunov indicator smaller than
7 at T = 200. With the addition of f2, this proportion
is increased to 25% whereas it is around 30% with the
addition of f3.

C. Horizontal step sizes

In order to investigate the effect of the control term on
the transport properties and its relationship with single
trajectories, we have computed the Probability Distribu-
tion Function (PDF) of the step sizes. Let us define the
horizontal step size (resp. vertical step size) as the dis-
tance covered by the test particle between two successive
sign reversals of the horizontal (resp. vertical) component
of the drift velocity. The effect of the control is analyzed
in terms of the PDF of step sizes. Following test particle
trajectories for a large number of initial conditions, with
and without control, leads to the PDFs plotted in Fig. 15
for Hamiltonian (III.16) without and with control term
(III.21) for a = 0.7. A marked reduction of the PDF is
observed at large step sizes with control relatively to the
uncontrolled case. Conversely, an increase is found for
the smaller step sizes. The control quenches the large
steps (typically larger than 0.5 for a = 0.7). Such a re-
duction of the probability to achieve a large radial step
will modify the transport efficiency and in particular re-
duce the diffusion coefficient.
In order to give support that the first peak of the his-
togram of the Lyapunov indicator (see Fig. 13) is asso-
ciated with the small step sizes, we have plotted on the
Fig. 16 the distribution of horizontal step sizes of the tra-
jectories with a small Lyapunov indicator (smaller than
7), and also the same PDF for trajectories associated
with large Lyapunov indicator (larger than 7). This re-
sult gives support to the fact that the control term re-
duces the diffusion of trajectories by reducing chaos in
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FIG. 15: PDF of the magnitude of the horizontal step size
for Hamiltonian (III.16) with a = 0.7 without the control
term (open squares), with the control term f2 (full circles),
and with a truncated control term with twelve modes (open
circles).
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FIG. 16: PDF of the horizontal step sizes of the trajec-
tories with small Lyapunov indicator (smaller than 7, full
squares) and with large Lyapunov indicator (larger than 7,
open squares) for Hamiltonian (III.16) with a = 0.4.

the system (by the creation of invariant tori [23], see also
the global picture in the conclusion).

V. ROBUSTNESS OF THE CONTROL

In the previous section, we have seen that a truncation
of the series defining the control term by considering the
first or the two first terms in the perturbation series in
ǫ, gives a very efficient control on the chaotic dynamics
of the system.
In this section we show that it is possible to use an
approximate control or to make a small error while
computing the control term and still get an efficient
control of the dynamics.

Below, we give numerical evidence for the following
statements : the reduction of the amplitude shows that
one can inject less energy to achieve a significant control.
The truncation of the Fourier series indicate that one can
simplify the control term and still get a significant con-
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FIG. 17: Diffusion coefficient D versus the magnitude of the
control term (III.21) for a = 0.7. The horizontal dashed line
corresponds to the value of D without control term. The
dash-dotted line is a piecewise linear interpolation.

trol. The change of phases shows that one can introduce
some error in the phases and still get a significant control.

A. Reduction of the amplitude of the control term

We check the robustness of the control by increasing
or reducing the amplitude of the control [24]. We replace
f2 by δ · f2 and we vary the parameter δ away from its
reference value δ = 1. Figure 17 shows that both the in-
crease and the reduction of the magnitude of the control
term (which is proportional to δ · a2) result in a loss of
efficiency in reducing the diffusion coefficient. The fact
that a larger perturbation term – with respect to the
computed one – does not work better, also means that
the control is “smart” and that it is not a “brute force”
effect.
The interesting result is that one can significantly reduce
the amplitude of the control (δ < 1) and still get a reduc-
tion of the chaotic diffusion. We notice that the average
energy density e2(δ) associated with a control term δ · f2
is equal to e2(δ) = δ2e2, where e2 is given by Eq. (III.24).
Therefore, for δ = 0.5 where the energy necessary for the
control is one fourth of the optimal control, the diffusion
coefficient is significantly smaller than in the uncontrolled
case (nearly factor 3).

B. Truncation of the Fourier series of the control

term

We show that a reduction of the number of Fourier
modes of f2 can still significantly reduce chaotic diffusion.
The Fourier expansion of the control term f2 given by
Eq.(III.21) is

f2 =
∑

n,m

f (2)
nme

2iπ(nx+my) , (V.29)
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FIG. 18: Contour plot of the truncation of f2(x, y) for a = 0.7
containing the twelve Fourier modes of highest amplitude.

where f
(2)
nm is

f (2)
nm =

a2

8πi

∑

n1,m1

(nm1 − n1m)ei(ϕn1m1−ϕn1−n,m1−m)

(n2
1 +m2

1)
3/2 [(n1 − n)2 + (m1 −m)2)]

3/2
.

(V.30)
The truncation of the Fourier series is made by consider-
ing the Fourier modes with an amplitude greater than or
equal to ǫ, that is the sum in Eq. (V.30) is restricted to

the set of modes (n,m) such that |f
(2)
nm| ≥ ǫ. For exam-

ple, if we consider ǫ ≃ 9 · 10−4, there are twelve modes
in the sum, which are the modes with wave vector (0, 1),
(0, 2), (1,−1), (1,−2), (1, 0), (2, 0) and the opposite wave
vectors (f2 is real), compared with the total number of
modes of the full f2 which is about 2000. Figure 18
shows the contour plot of f2 obtained with only these
twelve modes. Figure 19 shows the diffusion coefficient
for the dynamics of the truncated control term versus
the number of Fourier modes kept in the truncation of
f2. The reduction of the diffusion (with respect to the
uncontrolled case) also holds for a very simplified con-
trol term containing only the few highest Fourier modes
of the full control term. If we replace f2 by the trunca-
tion with twelve modes we see that the effect is still a
strong reduction of the diffusion coefficient, a reduction

of about 25%. The energy density e
(12)
2 (see Sec. III C)

of this truncated control term with respect to the energy
density E is

e
(12)
2

E
≃ 0.009 × a2, (V.31)

where E is given by Eq. (III.23), that is less than 1% of
the energy associated to the electric potential. It is inter-
esting to notice that the energy density of this truncation
with respect to the one of the full control term f2 is

e
(12)
2

e2
≃ 0.09, (V.32)

where e2 is given by Eq. (III.24), that is less than 10%
of the energy associated with the full control term f2.
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FIG. 19: Diffusion coefficient D versus the number of Fourier
modes n in the truncation of the control term f2 for a = 0.7.
The dashed line corresponds to the case without control term,
the solid line corresponds to the value of the diffusion with
the full control term f2 and the dash-dotted line corresponds
to a power law interpolation (∝ n−1/2).

Moreover, we see from Fig. 15 where the PDF of hori-
zontal step sizes is plotted, that the effect of this coarse
grained control term f2 reduced to twelve modes is also
to quench large step sizes.
More generally, these results show that a partial knowl-
edge of the potential, e.g. on a grid (coarse grained) is
sufficient to obtain a significant control of the dynamics.

C. Change of phases in f2

We check the robustness of the control with respect
to an error introduced in the phases of the control term
given by Eq. (III.21), i.e. we change the phases ϕnm by
ϕ̃nm in Eq. (III.21) by :

ϕ̃nm = ϕnm + γ · ϕerr

nm , (V.33)

where ϕerr

nm are uniformly random distributed phases in
[0, 2π] , γ is the amplitude of the error and ϕnm are the
correct phases. Figure 20 shows the diffusion coefficient
versus the phase error γ for a fixed value of a (a = 0.7).
We notice that the chaotic diffusion is still significantly
reduced by the control with a small error on the phases.
The diffusion coefficient is still strongly reduced by a fac-
tor greater than 2 for a phase error of 5%. For small
values of γ the diffusion coefficient versus γ is well fitted
by a quadratic interpolation, that is D(γ) = D0 +D1γ

2.

VI. CONCLUSIONS

We have provided an effective new strategy to con-
trol the chaotic diffusion in Hamiltonian dynamics using
small perturbations. Since the formula of the control
term is explicit, we are able to compare the dynamics
without and with control. The idea of the control is pic-
torially represented in Fig. 21: A Hamiltonian H0+εV is
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FIG. 20: Diffusion coefficient D versus the phase error γ in
the expression (III.21) of f2 for a = 0.7. The dashed line
corresponds to the case without control term, the solid line
corresponds to the case with the full control term and the
dash-dotted line corresponds to a quadratic interpolation.

controlled by adding a control term f . The naive choice
for a control term would be f = −εV but this would be
useless since it is of the same magnitude of the source of
chaotic transport and thus would require a major modifi-
cation of the physical condition of the system of interest.
In this article, we have presented a way to design an in-
tegrable controlled Hamiltonian Hc with a small control
term f of order ε2. This controlled Hamiltonian is con-
jugate to H0 (we assume for simplicity that RV = 0).
This construction of the controlled Hamiltonian works
well up to some value ε1. Moreover, we have shown that
the control is robust, in the sense that one can use an
approximate controlled Hamiltonian H̃c which is not in-
tegrable but –being sufficiently close to Hc – generates a
more regular dynamics (presence of invariant tori) with
respect to H0 + εV . For instance, we have shown that
one can successfully use a truncated control term of or-
der ǫ2 and that one is allowed to tailor it to some specific
requirements on its shape, on the energy necessary to
achieve control and also according to a partial knowl-
edge of V (e.g. a truncation of the Fourier series and an
error on the phases).
The invariant tori that have been created by adding the
control term f of order ε2 are those which were broken
by increasing the amplitude of the perturbation, mean-
ing that these tori are those of a Hamiltonian H0 + ε′V
where ε′ < ε (up to some smooth canonical transform
close to the identity transform). In order to illustrate
this statement, we have plotted in gray two regions of
existence of a given invariant torus (specified e.g. by
its frequency). The uncontrolled Hamiltonian H0 + εV
does not have this invariant torus whereas the controlled
one Hc = H0 + εV + ε2f does. The controlled Hamil-
tonian Hc is conjugate to the controlled Hamiltonian
H ′

c = H0 +ε′V +ε′2f for ε′ < ε (since they are both con-
jugate to H0). Since H0 + ε′V is inside the ball around
the integrable Hamiltonian H ′

c, the invariant torus of
H0 +ε′V of the selected frequency is a small deformation
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FIG. 21: Global picture of the control: The bold curved
segment of curve represents a set of integrable Hamiltonians
around H0. The gray circles are the domains of existence of a
given invariant torus around an integrable Hamiltonian. The
gray arrows represent two ways of controlling the Hamilto-
nian H0 + εV : the first one of order ε and the second one of
order ε2. The arrows from Hc to H ′

c and from H ′
c to H0 +ε′V

represent close to identity canonical transformations.

of the torus of the controlled Hamiltonian H ′
c and hence

a small deformation of the torus of the controlled Hamil-
tonian Hc. Therefore the invariant tori of Hc obtained
by means the control are small deformations of the tori
of H0 + εV which were broken by increasing ε.

We have applied this general technique of control to a
specific model, describing anomalous electric transport in
magnetized plasmas. In particular, we have shown that
the control term is robust, meaning that one is able to
simplify it, to reduce its amplitude or to make a small er-
ror without changing its overall action of reducing chaotic
transport. Even though we use a rather simplified model
to describe chaotic transport of charged particles in fu-
sion plasmas, our result makes us believe that through
some small smart modification of the electric potential a
relevant reduction of the turbulent losses of energy and
particles in tokamaks could be attained, for the moment
at least in principle.

Acknowledgments

The work reported in this article is an ongoing collab-
oration between the University of Florence, the Arcetri
Astrophysical Observatory (INAF), the Centre for The-
oretical Physics (Marseille) and the Department of Re-
search on the Controlled Fusion (CEA Cadarache).

We acknowledge the financial support from Eu-
ratom/CEA (contract V 3382.001), from the italian
I.N.F.N. and I.N.F.M. G.C. thanks I.N.F.M. for finan-
cial support through a PhD fellowship.

APPENDIX A: PROOF OF PROPOSITION 3

AND 4

1. Proof of proposition 3

The terms of the series (II.12) can be written in the
following form:

fs =
∑

n,m,k

f
(s)
nmk sin

[

2π(nx+my) + ϕ
(s)
nmk − 2πkt

]

,

where the sum over k is from −s to s, and the two sums
over n and m are from −sN to sN . From the recursion
formula (II.13), we have

f
(s)
n′m′k′ =

a

2s

N
∑

n,m=1

mn′ − nm′

(n2 +m2)3/2

×
(

−f
(s−1)
n′−n,m′−m,k′−1 + f

(s−1)
n−n′,m−m′,k′+1

)

.

(A.1)

We use the following norm :

‖fs‖ = sup
n,m,k

|f
(s)
nmk|.

From Eq. (A.1), we get

‖fs‖ ≤
a‖fs−1‖

s
sup

n′,m′

N
∑

n,m=1

|mn′ − nm′|

(n2 +m2)3/2
.

Since, |mn′ − nm′| ≤ sN(m+ n), we have

‖fs‖ ≤ aλ‖fs−1‖,

where

λ = 2N

N
∑

n,m=1

m

(n2 +m2)3/2
. (A.2)

It follows that

‖fs‖ ≤ (aλ)s−1a2−3/2,

since ‖f1‖ = a2−3/2. Therefore, the series (II.12) con-
verges for a < 1/λ. We notice that for N = 25, λ ≈ 135,
i.e. the series converges for a . 7 × 10−3.
Since n 7→ m/(n2 + m2)3/2 is a positive and decreasing
function, we have

N
∑

n=1

m

(n2 +m2)3/2
≤

∫ N

0

mdn

(n2 +m2)3/2
≤

∫ ∞

0

mdn

(n2 +m2)3/2
.

By rescaling the integral (t = n/m) and using the fact
that

∫ ∞

0
dt

(t2+1)3/2 = 1, we have

λ ≤ 2N

N
∑

m=1

1

m
≤ 2N logN + 2γN + 1, (A.3)

where γ is the Euler-Mascheroni constant. In particu-
lar, we notice that the bound on λ increases like N logN .
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2. Proof of proposition 4

Concerning the regularity of the functions fs and f ,
we would like to show that

|f
(s)
nmk| ≤

asCs

(n2 +m2)3/2
. (A.4)

We notice that Eq. (A.4) is satisfied for f1 = V given by
Eq. (III.16) for C ≥ 1. The inequality (A.1) gives

|f
(s)
n′m′k′ | ≤ asC

s−1

s

×
N

∑

n,m=1

|mn′ − nm′|

(n2 +m2)3/2[(n′ − n)2 + (m′ −m)2]3/2
.

We can always assume that both n′ and m′ are positive
since we have |n′ − n| ≥ ||n′| − n| which gives

|f
(s)
n′m′k′ | ≤ NasCs−1

×
N

∑

n,m=1

m+ n

(n2 +m2)3/2[(|n′| − n)2 + (|m′| −m)2]3/2
,

where we have used the inequality |mn′−nm′| ≤ sN(m+
n).
We have to distinguish the following cases: (i) n′ > N
and m′ > N , (ii) n′ ≤ N and m′ > N , (iii) n′ ≤ N and
m′ ≤ N . We notice that by symmetry the case n′ > N
and m′ ≤ N is similar to (ii).
For n′,m′ > N , we have n′ ≤ (N + 1)(n′ − n) and m′ ≤
(N + 1)(m′ −m). Thus we have

1

(n′ − n)2 + (m′ −m)2
≤

(N + 1)2

n′2 +m′2
,

which leads to

|f
(s)
n′m′k′ | ≤

asCs−1(N + 1)3λ

(n′2 +m′2)3/2
,

where λ is given by Eq. (A.2).
For n′ ≤ N and m′ > N , we have m′ ≤ (N +1)(m′−m).
By using the estimate (n′−n)2 +(m′−m)2 ≥ (m′−m)2,
we have

1

(n′ − n)2 + (m′ −m)2
≤

(N + 1)2

m′2
,

and since n′ ≤ m′,

(N + 1)2

m′2
≤

2(N + 1)2

n′2 +m′2
.

Thus we have

|f
(s)
n′m′k′ | ≤

asCs−123/2(N + 1)3λ

(n′2 +m′2)3/2
.

For n′ ≤ N and m′ ≤ N , we use the crude estimates

1

(n′ − n)2 + (m′ −m)2
≤ 1,

and

1 ≤
2N2

n′2 +m′2
.

Thus we have

|f
(s)
n′m′k′ | ≤

asCs−123/2N3λ

(n′2 +m′2)3/2
.

By denoting C = 23/2(N +1)3λ, Eq. (A.4) is satisfied for
all n, m and for all s.
It follows that for a < 1/C, the same inequality holds for
f :

|fnmk| ≤
C∞

(n2 +m2)3/2
,

where C∞ = a2C2/(1 − aC).
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