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Abstract—Transport in low dimensional Hamiltonian chaos
can be anomalous due to stickiness and rise of Lévy flights.
We suggest a signal processing method to detect these flights
in signals, in order to characterize the nature of transport
(diffusive or anomalous). We use time-frequency techniques such
as Fractional Fourier transform and matching pursuit in order
to be robust to noise. The method is tested on data obtained from
chaotic advection.

I. INTRODUCTION

Characterizing anomalous transport in low dimensional
Hamiltonian systems and quantifying its impact is of crucial
importance in different fields of physics. One can for instance
think of mixing related problems in oceans or atmospheres,
or in micro-fluidic devices, but also in magnetically confined
fusion plasmas etc... In order to analyze chaotic transport,
several tools are being used such as a fractal analysis of the
trajectories, giving Lyapunov exponents, multi-fractal analysis.
In this article, we suggest a method for analyzing anomalous
transport, when it is dominated by intermittent behavior and
long lasting Lévy flights. In this situation, the individual
particle motion displays typically periods of ballistic transport
(Lévy flights) in between chaotic motion which looks like stan-
dard random walks (Brownian motion). From a statistical point
of view, this can generate anomalous transport phenomenon
and this anomaly can be quantified for instance by measuring
the characteristic exponent of the variance growth. We may
also try to quantify it with more details and try to characterize
in a more accurate way by detecting and counting the amount
and duration of these Lévy flights. For this purpose it is
important to remember that in most experimental data noise
is present in the signal to analyze. This noise may impact
the classical statistical methods used to quantify transport. At
variance, our signal processing analysis is able to detect and
extract levy flights even if embedded in noise (of reasonable
amplitude). This is definitively a plus when considering using
the method in practical situations.

To be more precise, the signal processing method relies
on the so-called uncertainty principle. This principle simply
states that time and frequency (or momentum and position in
quantum mechanics) can not be known simultaneously with
arbitrary precision: If ∆t is the accuracy of the measure in

time and ∆f is the accuracy in frequency, the Heisenberg
principle implies that:

∆t ·∆f ≥ c,

where c is a strictly positive constant. This phenomenon is usu-
ally seen as a problem and many works have been focusing on
trying to minimize the uncertainty c. Conversely, we shall take
advantage of it. Indeed, anticipating on the precise description
of our method, we transfer the tracer trajectory seen as a signal
into the time-frequency plane. As a direct consequence of
the uncertainty principle the Brownian motion becomes blurry
while the ballistic flights remain distinct. Thus, the detection
of Lévy flights becomes the detection of straight lines in the
time-frequency plane. This can be efficiently done using the
Fractional Fourier transform and in the end, the uncertainty
principle gives us the ability to accurately detect flights even in
the presence of noise. Considering the numerical aspects, it is
also important to note that this procedure is fast and relying on
the fast Fourier transform: the complexity is of O(N2 logN),
where N is the size of the sampled data.

This paper is organized as follows, first, in part ?? we
present a special physical problem, namely the phenomenon
of chatic advection, which motivated the establishment of our
signal processing technique and will provide us the data to test
it with. The notion of transport and Lévy flight is as well stated
with precision along with the type of data to analyze. Then,
in part ?? the method for analyzing this particular anomalous
transport is presented. The method is then tested using data
from part ??. In fine, the results of the detection of Lévy flights
are presented.

II. CHAOTIC ADVECTION PHENOMENA

In this section we discuss the stickiness that occurs in
low-dimensional Hamiltonian systems. To bemore specific, we
consider more specifically the phenomenon in the setting of
chaotic advection of passive tracers in a flow generated by
three vortices.

A. Definitions

We first briefly describe the advection phenomenon. For this
purpose, we consider the flow v(r, t) of an incompressible



fluid (∇ · v = 0). In this setting the trajectories of passive
particles1 are solutions of the following differential equation:

ṙ = v(r, t) , (1)

where r = (x, y, z) corresponds to the passive particle posi-
tion. When the flow is two-dimensional, the motion becomes
Hamiltonian, indeed since ∇ · v = 0, we defined a stream
function Ψ such that v = ∇ ∧ Ψ, and for two-dimensional
flow, Ψ = Ψ z corresponds actually to a scalar field Ψ. We
can then rewrite Eq. (??):

ẋ =
∂Ψ

∂y
, ẏ = −∂Ψ

∂x
. (2)

A peculiar feature of this Hamiltonian is that the physical
space is identified to the phase space as x and y are canonical
conjugate variables of the Hamiltonian Ψ. Note that we obtain
a one dimensional integrable Hamiltonian system if Ψ is
independent of time, which just means that that particles
follow stream lines. If Ψ depends on time, we generically
obtain Hamiltonian chaos and a system with 1 − 1

2 degree
of freedom. This chaotic nature of the trajectories is in this
context referred to the phenomenon of Chaotic advection: even
if the flow has a laminar (non turbulent) structure, passive
particles or tracers display Hamiltonian chaos[?], [?], [?].
Becasue of this phenomenon, mixing is considerably enhanced
in chaotic regions, as usually the erratic motion due to chaos
motions mixes much faster than the microscopic molecular
diffusion [?], [?], [?]. This phenomenon becomee the method
of choice when mixing fragile molecules in micro-fluidic
devices. There are also a multitude of physical systems and
applications as for instance in geophysical flows or magnetized
fusion plasmas [?], [?], [?], [?], [?], [?], [?], [?], [?].

To generate the flows from which we will analyze the
data given by trajectories, we consider a flow generated by a
system with three point vortices. Before moving on, we breifly
describe what a system of point vortices is.

B. A system of point vortices

We shall start with the Euler equation, which for the
vorticity in a two-dimensional incompressible flow writes:

∂Ω

∂t
+ [Ω,Ψ] = 0 , Ω = −∇2Ψ , (3)

where [·, ·] and denotes the Poisson brackets. If we now
consider a vorticity field given by a superposition of Dirac
functions:

Ω(r, t) =

N∑
i=1

kiδ (r− ri(t)) , (4)

where, ki designate the vorticity of the point vortex localized at
point ri(t); we find that this so-called point vortex distribution
is a solution of the Euler equation if the vortices have a specific
dynamics [?]. To be more precise, vortex motion results from

1also referred as tracers

N -body Hamiltonian dynamics whose Hamiltonian writes (on
an infinite plane):

H =
1

2π

∑
i>j

kikj ln |ri − rj | , (5)

where and similarly to the passive tracers kiyi and xi are the
canonically conjugate variables of the Hamiltonian (??).
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Fig. 1. Left: Poincaré section of a system of three point vortices. Vorticities
are (−0.2, 1, 1). Right: Deviation from average arc-length (s(t)−V t) versus
time for an ensemble of 30 particles advected in the flow. We notice the
presence of Lvy flights. The run is performed over 20000 (quasi-)periods of
the vortex motion.

We obtain as well the stream function, namely the Hamil-
tonian of passive tracers:

Ψ(r, t) = − 1

2π

N∑
i=1

ki ln |r− ri(t)| . (6)

We shall now make a few remarks regarding the Hamiltonian
(??); it is invariant by translation and by rotation in the
plane, giving rise to two extra independant constant of the
motion besides the energy. It can then be shown the system
is integrable if the number of point vortices N is such that
N ≤ 3, on the other hand vortex motion is not integrable and
consequently chaotic if N > 3 [?], [?]. To mimic a laminar
flow, we consider a regular one time dependent one, and this
we consider a the flow generated by three vortices. Also, and
since we are interested in asymptotic transport properties we
have considered initial conditions giving rise to a periodic
motion of the vortices. We now briefly discuss the transport
properties of advected particles.

C. Stickiness and anomalous transport

Before considering the system of point vortices per se let us
precise the nomenclature, that we shall consider to characterize
transport. In fact the classification of the type of transport is
usually based on the value of the characteristic exponent of
the evolution of the second moment.

Transport is said to be anomalous if it is not diffusive in
the sense 〈X2〉 ∼ tµ, µ 6= 1

1) If µ < 1 transport is anomalous and one refers to it as
sub-diffusion

2) If µ = 1 transport is Gaussian and one refers to it as
diffusion



3) If µ > 1 transport is anomalous and one refers to it as
super-diffusion.

In fact to be more precise we should consider all moments of
the distributions and not only the variance, and this can lead
to more sublte refinenemnt in the different type of transport
properties (self-similar, multifractal etc...) .

When considering system of three point vortices, as the one
depicted in Fig. ??, one notices that the chaotic sea is finite.
Moreover, transport properties are quite obvious when we are
within an island of stability where motion is regular, thus we
are interested in transport properties resulting from trajectories
living in the chaotic sea which results from chaotic advection.
Since the sea is bounded, it is not convenient to consider
transport for long times based on particle positions (the sea
being filled quite fast). We are thus considering transport
properties based on the length of trajectories and measure
the curvilinear arc-length, and the transport and dispersion
associated to this quantity

si(t) =

∫ t

0

|vi(τ)|dτ , (7)

where vi(τ) is the speed of particle i at time τ . Then to
characterize and study transport we compute the moments

Mq(t) ≡ 〈|s(t)− 〈s(t)〉|q〉 , (8)

where 〈. . . 〉 corresponds to ensemble averaging over different
trajectories. In fact since the the ergodic measure may not be
uniform, in order to sample it properly it is best to consider
different portions of length t of trajectories computed for a
long time, rather than a large number of initial conditions
computed for “short” times, i. e. when dealing with numerics
it is best to have a strong processor, rather than a parrallel
computer. From teh evolution of the different moments, we
we get a characteristic exponent

Mq(t) ∼ tµ(q) . (9)

It was shown that for the point vortex flow, the transport is
superdiffusive and multi-fractal [?]. These anamalous features
were traced back to the phenomenon of stickiness: when a
trajectory arrives in the neighbourhood of an island of stability
it can get stuck around the island for arbitrary large times
which act as pseudo-traps. This generates strong memory
effects (slow decay of correlations) and as a consequence
displays anomalous transport properties. In Fig. ??, the sticky
region are identified (see [?] for details). Once a trajectory gets
stuck around an island after a transient its length grows almost
linearly with time, with a speed generically different then the
ensemble average one, which translates in the presence of Lvy
flights. We have drawn in Fig. ?? the relative evolution of
the length with respect to the mean of an ensemble of 30
different particles. Indeed One can see that the time evolution
is reminiscent of some random walks by parts coming from
the chaotic sea and there are some parts where the evolution
looks regular and ballistic usually referred to as Levy flights,
each different slope corresponding to a different sticky region
(Fig. ??).

III. TIME-FREQUENCY METHOD

We shall now introduce the particularities of the data set
from a signal processing point of view and describe the
analysing technique. For clarity, the result of each step will
be illustrated with applications to the simulated data of the
previous part (trajectories of tracers evolving in the flow
generated by three vortices).

A. The data set

From a typical arc-length trajectory it is possible to get a
one-dimensional signal m(t) of N = 1000 sampling points,
t ∈ [1, N ]. A set of signals is shown on Fig. ?? (right), and one
of them on Fig. ?? (left). Several parts can be distinguished: a
random fluctuation (Brownian motion) and some almost linear
segments of different length corresponding to Lévy flights. Our
method is dedicated to the detection these linear parts and the
estimation of their length and velocity (∆a/∆t).

B. The detection method

As illustrated in Fig. ?? (right) and Fig. ?? (left), Lévy
flights correspond to an almost linear evolution of the ar-
clength. It is then important to notice that due to the uncer-
tainty principle:

• random fluctuations in frequency cannot be rendered
precisely in the time-frequency plane. It requires to be
precise both in time and frequency, which is forbidden.

• linear parts or more generally slowly varying frequency
components are emphazised by the time-frequency rep-
resentation. Moreover, linear parts, called chirp signals,
can be detected efficiently using the fractional Fourier
transform.

It is then interesting and natural for us to take advantage of this
fact for the analysis of the data set. To perform our analysis
we shall therefore consdered m(t) as the phase derivative of
a new signal M(t). This corresponds to the first step of the
process: let us introduce the phase

ϕ(t) =

∫ t

1

m(τ)dτ, (10)

M(t) = eiϕ(t) = e
i
∫ t
1
m(τ)dτ

. (11)
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Fig. 2. left: time representation of m(t), arc-length of a single particle.
right: Short-time Fourier transform representation of the signal M(t).



The above signal M(t) is a non-stationary signal of mag-
nitude one and the phase derivative (instantaneous frequency)
f(t) is equal to m(t) :

f(t) =
dϕ(t)

dt
= m(t) (12)

The time-frequency representation of M on Fig. ?? (right),
also called the spectrogram[?], shows the fluctuations of the
phase derivative f(t) as a function of time.

This frequency component which mimicks the behavior
of the signal m can be seen on the Fig. ?? (right). But
the important difference is that, thanks to the uncertainty
principle, brownian fluctuations become diffuse stains (see
Fig. ?? (right)). As a consequence pure random behavior is
blurred, but linear parts remain sharp. Our first objective is
attained: the linear behavior has been emphazised over the
brownian motion, thanks to the uncertainty principle.

We now move on to the second part of the process. We
are looking for lines in the time-frequency ‘picture’. For this
purpose we project the signal M(t) on orthogonal basis of
chirps signals:

• Given a parameter θ0 ∈ (−π, π), we introduce the basis
of chirps {ψθ0,µ}µ with a frequency slope of 1

tan θ0
,

ψθ0,µ(t) = ei(
1

2 tan θ0
t2+ µ

sin θ0
t). (13)

Since t ∈ [1, N ], µ = 2πn/N with n ∈ [1, N ]. Notice
that µ/ sin θ0 is the frequency value at t = 0 (frequency
offset) of the chirp ψθ0,µ. The projection of the signal is
described by the following procedure:

C(θ0, µ) =

N∑
t=1

M(t)ψθ0,µ(t), (14)

where the bar denotes the complex conjugate.
This projection is equivalent to the Fractional Fourier
transform (up to a normalizing factor) [?].
Due to the orthogonality of the basis {ψθ0,µ}µ, it is
possible, from the projection, to re-synthetize the signal
M(t):

M(t) =
∑
µ

C(θ0, µ)ψθ0,µ(t), (15)

• Since Lévy flights may have different slopes, it is neces-
sary to project the signal onto a set of P basis of chirps
{ψθi,µ}µ, with P values of θi ∈ (−π, π). We get a P×N
matrix C(θi, µj) of projections.

• When the characteristics of a chirp (frequency slope
and offset) match the one of a ”frequential picture”,
|C(θi, µj)| is a maximum. We have to detect the maxima
in the {C(θ, µ)}matrix of projections.

Taking the signal m(t) shown in Fig. ?? as an ex-
ample, there is a specific direction θn (related to the
slope of the largest Levy flight) where several max-
ima could be detected. Using a threshold, four main
maxima are localized (µ1 ∼ 400, µ2 ∼ 750, µ3 ∼
780, µ4 ∼ 850), as illustrated in Fig. ??. The four sharp
peaks |C(θn, µ1)|, |C(θn, µ2)|, |C(θn, µ3)|, |C(θn, µ4)| give

evidence that there are four Lévy flights with a particular slope
1

tan θn
. This process detects linear parts in the time-frequency

plan.
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Fig. 3. For θn, signal projections |C(θn, µ)|.

It is then possible to partially re-syntetize M1(t):

M1(t) = eiϕ1(t) =
∑

µ1,µ2,µ3,µ4

C(θn, µ)ψθn,µ(t). (16)

This step is illustrated in Fig. ?? (left), which represents the
short-time Fourier transform of the newly recreated signal M1.
The four main Lévy flights, of the phase derivative f(t) are
detected. It is then possible to compute m1(t) :

m1(t) =
dϕ1(t)

dt
(17)

It then possible to characterize the four Lévy flights. As it
is shown on Fig. ?? (right), a comparison between m(t) and
m1(t), allows us to determine the duration and the velocity of
each flight.
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Fig. 4. Left: Short-time Fourier transform of the signal M1; four Lévy
flights have been detected. Right : Comparison of signals m(t) and m1(t);
characterization of Lévy flignts.

Once the first direction θn is identified, we can repeat the
process for an other slope. The projections of the signal for the
angle θn are removed from the matrix C, and we will detect
other maxima, for other angle θ. This iterative process is the
principe of the matching pursuit [?].This process allows us to
detect all the Lévy flights in the signal m(t).



The steps of the process can be summarized as follow, for
a single trajectory :

• Trajectory m(t) as a phase derivative of a signal M(t) :
time-frequency transformation

• Search for lines in the time-frequency ‘picture’ : projec-
tion on a basis of chirps

• Lévy flight detection : peak picking on the matrix C and
partial synthesis of M1(t)

• Characterization of the Lévy flights
• Matching pursuit.

Remark 1: The computational complexity for obtaining the
matrix C is of order N2 logN . For each θ the projection onto
the chirp basis is performed via a fast Fourier transform[?],
[?] of complexity N logN . This is done for a number of θ
proportional to N .
Remark 2: For Lévy flights with steep slopes, numerical
problems may arise due to the discretization. The solution
used here is to make a 90 degrees rotation of the signal in
the time-frequency plane before the projection on chirps and
adapt the values of θ in consequence: this rotation is simply
obtained by applying a Fourier transform to the signal M .

IV. RESULTS

As a test of the method we now consider the data obtained
from the advection of 253 tracers in the point vortex flow
described in section 1. Our goal is to detect the multi-fractal
nature of the transport resulting from the sticky islands, which
would serve as a proof of concept and pave the way to apply
the method to numerical and experimental data.
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V. CONCLUSIONS

The first step of the method help emphasing the straight
lines over random fluctuations.
The second step consists in the detection of straight lines in
the time-frequency image. The Fractional Fourier transform
applied to a one-variable signal is similar to a Radon transform
or Hough transform of a standard image.

This method and its first results open the way to more
systematic detections of Levy flights in anomalous transport

phenomena. The detection algorithm is efficient and fast,
allowing the analysis of a large number of tracers trajectories
in a short time. The output, yielding the number Levy flight
and their duration, can be analysed in a second step by
statistical tools (e.g. mean number of flight in a trajectory,
mean length, variance,...). This will lead to a more accurate
characterization of this particular case of anomalous transport.

Open Questions
• How to analyse other coherent shapes in the signal (more

complex than linear)?
• Can we analyse the remaining random signal Sn and

recover brownian motion?
• This method can detect noisy flights, what is the maximal

level of noise admitted?
• What is the minimal length of a Levy flight?
• Is it possible to quantify anomalous transport with this

technique?
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