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Abstract
Many signals in nature, technology and experiment have a multi-component structure. By
spectral decomposition and projection on the eigenvectors of a family of unitary operators, a
robust method is developed to decompose signals into their components. Different signal traits
may be emphasized by different choices of the unitary family. The method is illustrated in
simulated data and on data obtained from plasma reflectometry experiments in the Tore Supra.
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1. Introduction

Most natural and man-made signals are nonstationary and may
be thought of as having a multicomponent structure. Bat
echolocation, whale sounds, radar, sonar and many others are
examples of this kind of signal. The notion of nonstationarity is
easy to define. However, the concept of the signal component
is not so clearly defined. Because time and frequency
descriptions are standard methods for signal analysis, many
authors have attempted to base the characterization of signal
components on the analysis of the time–frequency plane.
There is a large class of time–frequency signal representations
(TFR). An important set of such TFRs is Cohen’s class [1],
obtained by convolutions with the Wigner distribution

C�(t, f ) =
∫∫

W(u, v) � (t − u, f − v) du dv (1)

with W(u, v) being the Wigner distribution

W(t, f ) =
∫

s
(
t +

τ

2

)
s∗

(
t − τ

2

)
e−i2πτf dτ. (2)
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Once one particular TFR of the signal is constructed, the
search for components may be done by looking for amplitude
concentrations in the time–frequency plane. This is the
methodology that has been followed by most authors [2–11].
The notions of instantaneous frequency and instantaneous
bandwidth play an important role in these studies.

An important drawback of the use of TFRs is the fact that
they may have negative terms, cross terms or lack the correct
marginal properties in time and frequency. Even if, by the
choice of a clever kernel or a smoothing or filtering operation,
the TFRs are apparently free from these problems, there is no
guarantee that they are free from artifacts that might lead to
unwarranted inferences about the signal properties. This is a
consequence of the basic fact that for time (t) and frequency(
ω = i d

dt

)
, being associated with a pair of noncommuting

operators, there can never be a joint probability distribution
in the time–frequency plane.

Our approach to component separation starts from the
insight that the notion of the component depends as much on
the observer as on the observed object. That is, when we
speak about a component of a signal we in fact refer to a
particular feature of the signal that we want to emphasize. For

0957-0233/09/105501+10$30.00 1 © 2009 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/0957-0233/20/10/105501
mailto:francoise.briolle@univmed.fr
mailto:manko@sci.lebedev.ru
mailto:vilela@cii.fc.ul.pt
http://stacks.iop.org/MST/20/105501


Meas. Sci. Technol. 20 (2009) 105501 F Briolle et al

example, if time and frequency are the features that interest
us, they might indeed be the salient features in the time–
frequency plane to be identified as components. However, if
it is frequency and fractality (scale) that interest us, the notion
of the component and the nature of the decomposition would
be completely different.

In general, the features that interest us correspond to
incompatible notions (that is, to noncommuting operators).
Therefore to look for robust characterizations in a joint feature
plane is a hopeless task because the noncommutativity of the
operators precludes the existence of joint probability densities.
Instead, in our approach, we consider spectral decompositions
using the eigenvectors of linear combinations of the operators.
The sum of the squares of the signal projections on these
eigenvectors has the same norm as the signal, thus providing
an exact probabilistic interpretation. Important operator linear
combinations are the time–frequency

B(S)(μ, ν) = μt + νω = μt + νi
d

dt
, (3)

the frequency-scale

B
(A)
1 (μ, ν) = μω + νD = μω + ν 1

2 (tω + ωt) (4)

and the time-scale

B
(A)
2 (μ, ν) = μt + νD. (5)

Then, a quadratic positive signal transform is defined by

MB
s (X,μ, ν) =

∫
s∗(t)δ(B(μ, ν) − X)s(t) dt (6)

called a B-tomogram which, for a normalized signal∫
|s(t)|2 dt = 1, (7)

is also normalized to∫
MB

s (X,μ, ν) dX = 1. (8)

For each (μ, ν) pair, the tomograms MB
s (X,μ, ν) provide

a probability distribution on the variable X, corresponding
to a linear combination of the chosen operators (time and
frequency, frequency and scale or time and scale). Therefore,
by exploring the family of operators for all pairs (μ, ν) one
obtains a robust (probability) description of the signal at all
intermediate operator combinations.

Using the (symmetric) operators B(μ, ν) and their
corresponding unitary exponentiations

U(μ, ν) = exp(iB(μ, ν)), (9)

a unified description of all currently known integral transforms
has been obtained [12]. Explicit expressions for the
tomograms in the three cases (3)–(5) may be found in [13].

Of particular interest for the component analysis in this
paper is the time–frequency operator B(S)(μ, ν) for which

Ms(x, μ, ν) = 1

2π |ν|
∣∣∣∣
∫

s(t) exp

(
iμ

2ν
t2 − ix

ν
t

)
dt

∣∣∣∣2

(10)

is called the symplectic tomogram. The tomogram is the
homogeneous function

Ms

(
x

p
,
μ

p
,

ν

p

)
= |p|Ms(x, μ, ν). (11)

For the particular case of μ = cos θ, ν = sin θ , the
symplectic tomogram coincides with the Radon transform
[14], which has already been used for signal analysis by several
authors [15–17] in a different context.

Once a tomogram for a linear combination of operators
O1 and O2 (B = μO1 + νO2) is constructed, what one
obtains in the (X, (μ, ν)) (hyper-) plane is an image of
the probability flow from the O1-description of the signal
to the O2-description, through all the intermediate steps of
the linear combination. In contrast with the time–frequency
representations we need not worry about cross terms or
artifacts, because of the exact probability interpretation of
the tomogram. Then, we may define as a component of the
signal any distinct feature (ridge, peak, etc) of the probability
distribution in the (X, (μ, ν)) (hyper-) plane. It is clear that
the notion of the component is contingent on the choice of the
pair (O1,O2).

In section 2 we analyze in detail the time–frequency
tomogram, the choice of a complete orthogonal basis of
eigenvectors of BS(μ, ν) for the projection of the signal
and how the component identification may be carried out by
spectral decomposition into subsets of this basis. In section 3
a few examples of component decomposition of noisy signals
are worked out, which show the effectiveness of the method.

Depending on the choice of operators that enter into B, the
method seems to be of general utility for feature identification
and component separation. We must also point out that,
if more than two features are relevant, we might use in B
linear combinations of more operators. Also, these operators
need not be obtained from differential operators in time only.
Using operators that involve both time and space, and a similar
construction, space–time features may be identified.

Here, in section 4, we make a concrete application to
experimental data obtained in the reflectometry analysis of
plasma density. From the way these data are collected, by
sending a variable frequency signal to the plasma for a short
interval and detecting its reflection, it is likely that the time–
frequency tomogram, associated with B(S)(μ, ν), will be the
most appropriate. The results of out analysis seem to confirm
this hypothesis. For other signals, for example those with a
multiscale nature, it is probably the tomogram associated with
B

(A)
2 (μ, ν) that might provide the better insight.

In the appendices we collect a few results, which are useful
for the practical calculation of the symplectic tomograms.

2. Tomograms and signal analysis

Here we describe in detail the method of component separation
for the case of B(S)(μ, ν). Following the ideas described in the
introduction, a probability family of distributions, Ms(x, θ),
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is defined from a (general) complex signal s(t), t ∈ [0, T ] by

Ms(x, θ) =
∣∣∣∣
∫

s(t)	θ,T
x (t) dt

∣∣∣∣2

= ∣∣〈s,	θ,T
x

〉∣∣2
(12)

with

	θ,T
x (t) = 1√

T
exp

(−i cos θ

2 sin θ
t2 +

ix

sin θ
t

)
. (13)

This is a particular case of equation (10) for μ = cos θ, ν =
sin θ . Here θ is a parameter that interpolates between the
time and the frequency operators, thus running from 0 to π/2
whereas x is allowed to be any real number. Note that the 	θ,T

x

are generalized eigenfunctions of B(S)(θ) = t cos θ + i sin θ d
dt

for any spectral value x. Therefore Ms(x, θ) is a (positive)
probability distribution as a function of x for each θ . From
an abstract point of view, since for different θ ’s the U(θ)

(see equation (9)) are unitarily equivalent operators, all the
tomograms share the same information. However, from a
practical point of view the situation is somehow different. In
fact when θ changes from 0 to π/2 the information on the time
localization of the signal will gradually concentrate on large x
values which are unattainable because of sampling limitations.
On the other hand and by opposite reasons, close to θ = 0
the frequency information is lost. Therefore we search for
intermediate values of θ where a good compromise may be
found. For such intermediate values, as we shall see in several
examples, it is possible to pull apart different components
of the signal that take into account both time and frequency
information. The reason why this is the case will be clear by
looking at the properties of (13).

First we select a subset xn in such a way that the
corresponding family

{
	θ,T

xn
(t)

}
is orthogonal and normalized,〈

	θ,T
xm

,	θ,T
xn

〉 = δm,n. (14)

This is possible by taking the sequence

xn = x0 +
2nπ

T
sin θ, (15)

where x0 is freely chosen (in general we take x0 = 0 but it
is possible to make other choices, depending on what is more
suitable for the signal under study).

A glance at the shape of the functions (13) shows that the
nodes (the zero crossings) tn of the real (resp. imaginary) part
of 	θ,T

xn
are the solutions of

cos θ

2 sin θ
t2
n − x

sin θ
tn = 2πn (resp. 2πn + π/2). (16)

It is clear that |tn+1 − tn| scales as
√

n and that, for fixed θ ,
the oscillation length at a given t decreases when |x| increases.
As a result, the projection of the signal on the

{
	θ,T

xn
(t)

}
will

locally explore different scales. On the other hand, changing
θ will modify the first term of (16) in such a way that the local
time scale is larger when θ becomes larger in agreement with
the uncertainty principle.

We then consider the projections of the signal s(t)

cθ
xn

(s) = 〈
s,	θ,T

xn

〉
(17)

which in the following are used for signal processing purposes.
In particular a natural choice for denoising consists in
eliminating the cθ

xn
(s) such that∣∣cθ

xn
(s)

∣∣2 � ε (18)

for some chosen threshold ε, the remainder being used to
reconstruct a denoised signal. In this case a proper choice of
θ is an important issue in the method.

In the present work we mainly explore the spectral
decomposition of the signal to perform a multi-component
analysis. This is done by selecting subsets Fk of the xn and
reconstructing partial signals (k-components) by restricting the
sum to

sk(t) =
∑
n∈Fk

cθ
xn

(s)	θ,T
xn

(t) (19)

for each k.
Equation (19) builds the signal components as spectral

projections of s. As we shall see, by an appropriate choice
of θ , it is possible to use this technique to disentangle the
different components of a signal.

Note that the inverse of
∣∣t θn+1 − t θn

∣∣ plays the role of a
quasi-instantaneous frequency defined in a θ -like scale. This
is a piecewise constant function but, as seen from (13), it grows
approximately linearly in time with slope tan−1(θ). We used
such time scales to control the quality of the sampling.

3. Examples: simulated data

In this section we discuss the general method presented in the
previous section in two particular simulated signals. The first
example shows how the method is able to disentangle a signal
with different time and frequency components. In the second
example a signal with time-varying frequency is analyzed.

3.1. First example

Let us consider a signal y(t), of duration T = 20 s, that is the
sum of three sinusoidal complex signals yk, k = 1, 2, 3, plus
a noise component b:

y(t) = y1(t) + y2(t) + y3(t) + b(t), (20)

where

y1 (t) = exp (i25t) , t ∈ [0, 20]

y2 (t) = exp (i75t) , t ∈ [0, 5]

y3 (t) = exp (i75t) , t ∈ [10, 20] .

The signal-to-noise ratio, SNRy,b, is about 10 dB, the SNR
being defined by

SNR(y, b) = 10 log10
Py

Pb

(21)

with Py = 1
T

∫ T

0 |y(t)|2 dt and Pb = 1
T

∫ T

0 |b(t)|2 dt . The real
part of the simulated data, R [y(t)], is shown in figure 1. In
order to test the robustness of the projection protocol we first
compare the original signal y(t) with a reconstructed signal
ỹ(t) given by

ỹ(t) =
175∑

xn=−175

cθ
xn

(y)	θ,T
xn

(t). (22)
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Figure 1. Temporal representation of the real part R [y(t)] of the
simulated data from equation (20).

The quadratic error E(y, ỹ), between the original and the
reconstructed signal is less than −27 dB. The quadratic error
is defined as

E(y, ỹ) = 10 log10
Py−ỹ

Py

. (23)

The quadratic error grows to −22 dB if the reconstruction is
limited to the range used for the component analysis below
(i.e., 45 � xn � 155).

The value θ = π
5 is chosen by direct inspection of the

tomogram of the signal y(t). In this case one sees three well-
separated spectral components (figure 2). Clearly this is not
the unique possible choice. We may try different choices
of θ knowing that the incertitude on the time support will
increase with θ whereas the quasi-local frequency incertitude
will decrease. From a practical point of view, the only sound
rule is that, if component separation is the goal, then one
should choose a θ for which separated concentrations of
probability are apparent. Given the existence of a unitary
transformation between the

{
	θ,T

xn
(t)

}
basis for different θ ,

the reconstruction of the components will be essentially the
same as long as we remain in the θ -interval for which well-
separated concentrations of the probability are manifest.

In this example, we performed the factorization of
y(t) into three components ỹ1(t), ỹ2(t) and ỹ3(t) defined
respectively by equations (24), (25) and (26). Using different
values of θ , the quadratic errors E(y, ỹ), E(y1, ỹ1), E(y2, ỹ2)

and E(y3, ỹ3) are computed (equation (23)). We summarize
the corresponding data in table 1.
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Figure 2. cθ
xn

(y) spectrum of the simulated data y(t) for θ = π

5 and
−30 � xn � 100.

In this example, by looking at the data presented in
table 1, the choice of θ = π

5 to carry out the factorization
provides a good performance. Then we simply apply an energy
threshold ε = 0.1, which is about 15% of the energy level of
the signal, to decompose the signal y into three components
(figure 2).

The first component, ỹ1(t), corresponds to the spectral
range 10 � xn � 35:

ỹ1(t) =
35∑

xn=10

cθ
xn

(y)	θ,T
xn

(t). (24)

The second component, ỹ2(t), corresponds to the spectral
range 40 � xn � 50:

ỹ2(t) =
50∑

xn=40

cθ0
xn

(y)	θ0,T
xn

(t). (25)

The real parts of y2(t) and ỹ2(t) are presented in
figure 3.

The last component, ỹ3(t), corresponds to the spectral
range 40 � xn � 65:

ỹ3(t) =
65∑

xn=40

cθ
xn

(y)	θ,T
xn

(t). (26)

Figure 4 gives a representation of both R [y3(t)] and
R [ỹ3(t)].

The quadratic errors E(y1, ỹ1), E(y2, ỹ2) and E(y3, ỹ3)

can be read from table 1. They are, respectively, −17.5 dB,
−12.5 dB and −14 dB.

For comparison, the projection of the simulated data y(t)

in the frequency domain
(
θ0 = π

2

)
, presented in figure 5, shows

Table 1. Quadratic errors computed from equation (23).

θ π/8 π/5 3π/10 4π/5 π/2

E(y1, ỹ1) −14.5 dB −17.5 dB −18.5 dB −17.5 dB −12.5 dB
E(y2, ỹ2) −10.5 dB −12.5 dB −9 dB −7 dB −0.5 dB
E(y3, ỹ3) −14.5 dB −14 dB −13.5 dB −7 dB −4 dB
E(y, ỹ) −26.5 dB −27 dB −30 dB −30 dB −28 dB
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Figure 3. R [y2(t)] and R [ỹ2(t)]. For visual purposes, the mean
value of R [ỹ2(t)] is shifted to 3.
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Figure 4. Representation of R [y3(t)] and R [ỹ3(t)]. For visual
purposes, the mean value of R [ỹ3(t)] is shifted to 3.

that the factorization in three components is not possible: only
two components can be extracted from this projection. At
the frequency xn = 25 rad s−1, the component will be equal
to ỹ1(t). At the frequency xn = 75 rad s−1, it is impossible
to separate y2(t) and y3(t) and the component will be equal to
ỹ2(t) + ỹ3(t).

3.2. Second example

Here we analyze the decomposition into elementary
components of another signal which aims to mimic, in a
simplified way, the case of an incident plus a reflected wave
delayed in time and with an acquired time-dependent change
in phase. In this case the simulated signal y(t) is the sum of an
‘incident’ chirp y0(t) and a ‘deformed reflected’ chirp yR(t).
White noise is added to the signal. The incident chirp is

y0(t) = ei�0(t), (27)

with �0(t) = a0t
2 + b0t .

The ‘instantaneous frequency’ of y0(t) sweeps linearly
from 75 rad s−1 to 50 rad s−1 over 20 s. Its phase derivative is
linearly dependent on time: d

dt
�0(t) = 2a0t + b0.

−300 −200 −100 0 100 200 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frequency (rad/s)

ab
s 

(c
n)

Figure 5. Projection cθ0
xn

of the signal for θ0 = π

2 .
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Figure 6. Temporal representation of the real part R [y(t)] of the
simulated data defined by equation (29).

The ‘reflected’ signal yR(t) is delayed by tR = 3 s from
the incident one and continuously sweeps from 75 rad s−1 to
50 rad s−1:

yR(t) = ei�R(t), (28)

with �R(t) = aR(t − tR)2 + bR(t − tR) + 10(t − tR)
3
2 . In

this case the phase derivative d
dt

�R(t) is not a linear function.
This signal is zero during the first 3 s seconds and ends at
t = 23 s.

The simulated signal is defined by

y(t) = y0(t) + yR(t) + b(t). (29)

The signal-to-noise ratio, SNR(y, b), is 15 dB. The real
R [y(t)] part of this signal is shown in figure 6.

Figure 7 shows d
dt

�0(t) and d
dt

�R(t) as a function of
time. Note that, except for the first three seconds, there is an
almost complete overlap of the ‘instantaneous frequency’ of
the signals y0(t) and yR(t).

The tomogram of the first 20 s of y(t),My(θ, x) =∣∣〈y,	θ,T
x

〉∣∣2
, has a maximum at sin(θ) ≈ 0.625 (figure 8)

corresponding to the ‘incident’ part of the signal that mainly
projects in the unique 	θ,T

x that matches �0(t). We take the
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Figure 7. Representation of Fo = d
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dt
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Figure 8. Tomogram of the simulated data defined by equation (29).

value of sin(θ) ≈ 0.625 to carry out the separation of y(t) into
its components.

The corresponding spectrum cθ
xn

(y) is shown in figure 9.
Based on this spectrum we decompose the signal into two
spectral components.

From the first component we reconstruct the ‘incident’
chirp y0(t) by

ỹ0(t) =
47.25∑
xn=45

cθ0
xn

(y)	θ0,T
xn

(t). (30)

The quadratic error, between ỹ0(t) and y0(t), E(y0, ỹ0), is
−9.5 dB.

From the second spectral component we reconstruct the
‘reflected’ chirp given by

ỹR(t) =
50.5∑

xn=47.5

cθ
xn

(y)	θ,T
xn

(t). (31)

In this case the quadratic error E(yR, ỹR) is −10 dB. This
may be compared with a quadratic error E(y, ỹ) of −29 dB
for the total signal reconstructed from the spectral projection
corresponding to 45 < xn < 50.5.
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0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

X

ab
s 

(c
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Figure 9. Spectrum of the signal for sin(θ) = 0.625.

We have tested the method with different delays that
encode for the distance of the two ‘frequencies’. The quality
of the disentanglement deteriorates when the delay decreases.
But it can still be done for a delay as short as 1 s. Therefore
we conclude that the method is quite robust.

4. An application to reflectometry data. Component
analysis

We now use signals coming from reflectometry measurement
in plasma physics, to show the ability of the tomogram method
to separate different components of the signal to which it is then
possible to assign a clear physical meaning. The reflectometry
diagnostic is widely used to determine the electronic density
profile in a tokamak. The principle, based upon a radar
technique [18], is to measure the phase of a probing wave
reflected by the plasma cut-off layer at a given density, where
the refractive index goes to zero. The determination of the
density profile can be achieved by continuously sweeping the
frequency of the probing wave.

Different techniques are used to measure the density
profile on fusion plasmas [19] (phase difference, ultrashort
pulses, continuous sweep, . . .). A broadband reflectometer
operating in the frequency range 50–75 GHz (V band) [20,
21] and 75–110 GHz (W band) [22] has been developed on
Tore Supra to measure the electron density profiles at the edge.

The sweep frequency reflectometry system of Tore
Supra launches a probing wave on the extraordinary mode
polarization (X mode) in the V band (50–75 GHz). The
emitting and receiving antennas are located at about 1.20 m
from the plasma edge outside the vacuum vessel. The
reflectometry system operates in the burst mode, i.e. the sweeps
are performed repeatedly every 25 μs. The duration of one
sweep, E0(t) = A0 eiφ(t), is 20 μs and 5000 chirps are sent
during one measurement. During the 20 μs measurement time,
the frequency of the probing wave continuously varies from
50 GHz to 75 GHz (V band).

The heterodyne reflectometers, with I/Q detection,
provide a good signal-to-noise ratio, up to 40 dB. For each
sweep, the reflected chirp ER(t) is mixed with the incident

6
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Figure 10. Time representation of the reflectometry signal.
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Figure 11. Contour plot of the tomogram of the reflectometry signal
(My(x, θ) � 0.01).

sweep E0(t) and only the interference term is recorded as
in-phase and 90◦ phase shifted signals sampled at Te = 10−8 s

x1(t) = A0AR(t) cos(ϕ(t))
x2(t) = A0AR(t) sin(ϕ(t)).

For each sweep, the phase ϕ(t) of the reflected signal is
represented by

y(t) = x1(t) + ix2(t) = A(t) eiϕ(t). (32)

The amplitude of this signal A(t) = A0AR(t) is of low
frequency. The real part of one such signal y(t) is shown
in figure 10.

The contour plot of the tomogram My(x, θ) of the signal is
shown in figure 11 where it is possible to see that it carries three
main components. The choice of sin(θ) = 0.58 to perform the
factorization of the signal was done by the inspection of this
tomogram. The spectrum cθ

xn
(y) of the reflectometry signal

for sin(θ) = 0.58 is shown in figure 12. When reconstructing
ỹ(t) by

ỹ(t) =
200∑

xn=−200

cθ
xn

(y)	θ,T
xn

(t) (33)
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Figure 12. Spectrum cθ
xn

of the reflectometry signal y(t) for
sin(θ) = 0.58.
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Figure 13. Part of the spectrum cθ
xn

(y) of the reflectometry signal
used in the factorization.

the quadratic error E(y, ỹ) between the original and the
reconstructed signals is −25 dB.

Factorization of the reflectometry signal. By taking a
threshold equal to ε = 0.04 we select the spectral components
corresponding to

∣∣cxn

∣∣ �= 0 for −40 � xn � 100 (see
figure 13). The error between the original and the selected
signal is about −18 dB. From there the spectrum of y(t) splits
into three components.

First component, the reflection on the porthole. The first
component, ỹ1(t) corresponds to −20 � xn � 0 and is
therefore defined as

ỹ1(t) =
0∑

xn=−20

cθ
xn

(y)	θ
xn

(t). (34)

It is a low-frequency signal corresponding to the heterodyne
product of the probe signal with the reflection on the porthole
[22]. It is shown in figure 14.
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Figure 14. First component of the reflectometry signal
corresponding to the reflection on the porthole.

0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
choc 42824    (prof 1003/2086)   tps : 9.9996 s

time

re
al

 (y
)

sµ

Figure 15. Second component of the reflectometry signal,
corresponding to the reflection on the plasma.

Second component, the plasma signal. The second component
has a Fourier spectra that fits the expected behavior
corresponding to the reflection of the wave inside the plasma
of the tokamak [22]. This component, ỹ2(t), corresponds to
0 � xn � 110 and is therefore defined as

ỹ2(t) =
110∑

xn=0

cθ
xn

(y)	θ
xn

(t). (35)

It is shown in figure 15.

Third component, the first reflection on the wall of the vacuum
vessel. The last component corresponds [22] to the first
reflection on the wall of the vacuum vessel. This component,
ỹ3(t), corresponds to 110 � xn � 140 and is therefore defined
as

ỹ3(t) =
140∑

xn=10

cθ
xn

(y)	θ
xn

(t). (36)

This component is shown in figure 16.
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Figure 16. Third component of the reflectometry signal,
corresponding to reflection on the wall of the vacuum vessel
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Figure 17. The three components of the reflectometry signal. For
visual purposes, the average of ỹ1(t) is shifted to 1 and the average
of ỹ3(t) to −1.

We note that by undertaking a new factorization of
this third component it seems possible to separate different
successive reflections of the wave but this would be out of the
scope of this work.

The three components of the reflectometry signal are
presented together on the same plot (figure 17). It is instructive
to compare this factorization with the original reflectometry
signal (see figure 10).

5. Conclusions

Based on a complete and probabilistically rigorous spectral
analysis and projection on the eigenvectors of a family
of unitary operators, our method seems quite robust to
disentangle the relevant components of the signals. This has
been demonstrated both on simulated and on experimental
reflectometry data. In particular in this last case, a clear
identification of the physical origin of the components and
their separation is readily achieved. Such separation could not
be achieved by the simple filtering techniques. In the analysis
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of reflectometry data, component separation and denoising is a
required first step to obtain reliable information on the plasma
density. In particular, accuracy in these measurements is quite
critical if in addition to the average local density one also wants
to have information on plasma fluctuations and turbulence.

After the component separation phase, the method also
provides by truncation of some subsets of the projection
coefficients a very flexible denoising technique.

Another important conclusion from this study is the
fact that by the choice of different families of (unitary)
operators and their spectral representations, different traits and
components of the signals may be emphasized.
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Appendix A. Gauss–Hermite decomposition of the
tomograms

From the definition (10) of the tomogram transform one sees
that the calculation from the data near ν = 0 has accuracy
problems because of the fast variation of the phase in (10).
Two techniques are used to deal with this problem. The first
one uses a projection of the time signal s(t) on an orthogonal
basis and the second uses the homogeneity properties (11)
and an expansion of the Fresnel tomogram near ν = 0. The
first technique is described in this appendix and the second in
appendix B.

Let s(t) be a normalized signal∫
|s(t)|2 dt = 1. (A.1)

Decompose the signal into Gauss–Hermite polynomials

s(t) =
∞∑

n=0

cn(t)ψn(t), (A.2)

with

ψn(t) = e−t2/2

π1/4

1√
2nn!

Hn(t) (A.3)

and

cn =
∫

s(t)ψn(t) dt. (A.4)

Then, the tomogram of the signal is

Ms(X,μ, ν) = M0(X,μ, ν)

×
∣∣∣∣∣

∞∑
n=0

cn

1√
n!

(
1

2
− 1

1 − iμ/ν

)n/2

Hn

(
b

2
√

k

)∣∣∣∣∣
2

,

(A.5)

with

M0(X,μ, ν) = 1√
π(μ2 + ν2)

e−X2/(μ2+ν2) (A.6)

and

b = i
√

2X

iμ − ν
, k =

(
1

2
− 1

1 − iμ/ν

)
. (A.7)

Appendix B. The Fresnel tomogram

The symplectic tomogram Ms(X,μ, ν) can be reconstructed
if one knows the (Fresnel) tomogram [23]

MF(X, ν) = Ms(X, 1, ν) (B.1)
due to the homogeneity property (11). In fact, one has

Ms(X,μ, ν) = 1

|μ|Ms

(
X

μ
, 1,

ν

μ

)
, (B.2)

which means that, if one knows MF(X̃, ν̃), the symplectic
tomogram is obtained by replacement and a factor,

Ms(X,μ, ν) = 1

|μ|MF

(
X̃ → X

μ
, ν̃ → ν

μ

)
. (B.3)

In terms of the signal s(t) it reads

MF(X, ν) = 1

2π |ν|
∣∣∣∣
∫

ei(X−y)2/2νs(y) dy

∣∣∣∣2

=
∣∣∣∣
∫

1√
2π |ν|ei(X−y)2/2νs(y) dy

∣∣∣∣2

=
∣∣∣∣exp

[
−iν

(
−1

2

∂2

∂X2

)]
s(X)

∣∣∣∣
2

. (B.4)

Thus for small ν one has

Ms(X,μ, ν) ≈ 1

|μ|
∣∣∣∣s

(
X

μ

)
− iν

2
s ′′

(
X

μ

)∣∣∣∣2

. (B.5)

In the Gauss–Hermite basis it is

MF(X, ν) = e−X2/(1+ν2)√
π(1 + ν2)

×
∣∣∣∣∣

∞∑
n=0

cn

1√
n!

(
1

2
− 1

1 − i/ν

)n/2

Hn

(
b̃

2
√

k̃

)∣∣∣∣∣
2

, (B.6)

with

b̃ = i
√

2X

i − ν
, k̃ =

(
1

2
− 1

1 − i/ν

)
. (B.7)

As a series, the Fresnel tomogram is

MF (X, ν) ≈
∣∣∣∣∣

∞∑
k=0

( iν

2

)k 1

k!

d2kf (X)

dX2k

∣∣∣∣∣
2

, (B.8)

leading to a symplectic tomogram

M(X,μ, ν) = 1

|μ|

∣∣∣∣∣
∞∑

k=0

(
iν

2μ

)k 1

k!

d2kf (X/μ)

dX2k

∣∣∣∣∣
2

. (B.9)

Since

− 1

2

∂2

∂t2
sn(t) +

t2

2
sn(t) =

(
n +

1

2

)
sn(t),

n = 0, 1, 2, . . . , (B.10)
one has, for small ν, the following Fresnel tomogram of sn(t):

Mn(X,μ = 1, ν) ≈ s2
n(X)

[
1 +

(
n +

1

2
− X2

2

)
ν2

]
. (B.11)
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