**1**-
A. Alekseev, D. Gluschenkov and A. Lyakhovskaya,
Regular representation of the quantum group (
*q*is a root of unity), St. Petersburg Math. J., Vol 6, N5, p 88-114 (1994) **2**- D. Arnaudon,
Fusion Rules and
*R*-matrices for representations of at roots of unity, hep-th/9203011 **3**-
V.Chari, A.Pressley,
A guide to Quantum Groups,
Cambridge University Press (1994)
**4**- A. Connes
NonCommutative Geometry and Reality,
IHES/M/95/52
**5**- A. Connes,
Gravity coupled with matter and foundation of non-commutative geometry,
hep-th/9603053
**6**-
A. Connes and A. Chamseddine,
The spectral action principle, hep-th 9606001
**7**-
R. Coquereaux, G. Esposito-Farese and G. Vaillant,
Higgs fields as Yang-Mills fields and discrete symmetries,
Nucl. Phys. B353, 689 (1991).
**8**-
R. Coquereaux, G. Esposito-Farese and F. Scheck,
An
*SU*(2|1) theory of electroweak interactions described by algebraic superconnections, Int. Jour. of Mod. Phys. A, Vol. 7, No 26 (1992) 6555-6593 **9**-
R. Coquereaux, R. Haussling and F. Scheck,
Algebraic connections on parallel universes,
Int. Jour. of Mod. Phys. A, Vol. 10, No 1 (1995) 89-98
**10**- R. Coquereaux, O. Ogievetsky.
Comments on the properties of finite dimensional Hopf algebras related with
when
*q*is a primitive root of unity, CPT-Preprint. To appear. **11**- E. Corrigan, D. Fairlie, P. Fletcher and R. Sasaki,
Some aspects of quantum groups and supergroups,
J. Math. Phys. 31, 776 (1990)
**12**- C.W. Curtis,
Modular Lie Algebras. I,
Transac. of the Amer. Math. Soc., Vol 82 p 161-179 (1956)
**13**- C.W. Curtis,
Representation of Lie algebras of classical type with applications
to linear groups,
J. Math. Mech. 9, 307-326 (1960)
**14**- P. Di Francesco and J.-B. Zuber, in
Recent Developments in Conformal Field Theories,
Trieste Conference, 1989, S. Randjbar-Daemi, E. Sezgin and J.-B. Zuber eds.,
World Scientific 1990
**15**-
M. Dubois Violette,
Derivations et calcul differentiel non commutatif,
C.R.A.S. Paris, 307, Série I (1988), 403-408
**16**-
M. Dubois Violette
Non-commutative differential geometry, quantum mechanics and gauge theory,
in Differential Geometric Methods in Theoretical Physics, Rapallo 1990
(C. Bartocci, U. Bruzzo,, R. Cianci, eds),
Lecture Notes in Physics 375, Springer-Verlag 1991.
**17**- D.V. Gluschenkov, A.V. Lyakhovskaya,
Regular representation of the quantum Heisenberg double (
*q*is a root of unity), Zapiski LOMI 215 (1994). **18**- N. Jacobson,
Abstract Derivation and Lie algebra,
Transac. of the Amer. Math. Soc., Vol 42 p 206-224 (1937)
**19**- N. Jacobson,
Restricted Lie algebras of characteristic p,
Transac. of the Amer. Math. Soc., Vol 50 p 15-26 (1941)
**20**- G. Lusztig,
Finite dimensional Hopf algebras arising from quantized universal
enveloping algebras,
J. of the Amer. Math. Soc., Vol 3, N1, p 257-296 (1990)
**21**- G. Lusztig,
Quantum groups at roots of 1,
Geometrica Dedicata,Vol 35, p 89-114 (1990)
**22**- H.Ewen, O. Ogievetsky and J. Wess,
Quantum matrices in two dimensions,
Letters in Math. Phys. 22, 297-305, 1991
**23**- O. Ogievetsky and J. Wess
Relations between 's,
Z. Phys. C - Particles and Fields 50,123,131 (1991)
**24**-
M. Marcu,
The representations of
*spl*(2|1), J.Math. Phys. 21(6) 1277-1283 (1980) **25**-
C.P. Martin, J. Gracia Bondia and J. Varilly,
The Standard Model as a noncommutative geometry: the low mass regime,
hep-th/9605001
**26**- Y. Ne'eman, J. Thierry-Mieg,
Anomaly-free sequential superunification,
Phys. Lett. B108 (1982) 399-402
**27**- A. Ocneanu, private communication.
See also: Paths on Coxeter diagrams, from Platonic solids and
singularities to minimal models and subfactors (notes recorded
by S. Goto, Univ. of Tokyo (in Japanese))
**28**- O. Ogievetsky,
Matrix structure of when
*q*is a root of unity. CPT-96/P3390 **29**- V. Pasquier and H. Saleur,
Common structure between finite systems and conformal field theories
through quantum groups,
Nucl. Phys. B330 (1990) 523
**30**- R. Suter,
Modules over ,
Comm. in Math. Phys., Vol 163, p 359-393 (1994)
**31**- S. Vokos, J. Wess and B. Zumino, Analysis of the basic matrix representation of , Z. Phys. C48, 65 (1990)

Tue Nov 5 15:18:21 MET 1996