



#### SWINBURNE UNIVERSITY OF TECHNOLOGY

# Testing modified gravity beyond cosmic variance

Caitlin Adams Supervised by Professor Chris Blake

Large Scale Structure and Galaxy Flows, Quy Nhon — 08/07/16



- How can we distinguish between ACDM and alternatives?
- How can we best utilise low-redshift surveys?
- Can we overcome cosmic variance in a self-consistent way?



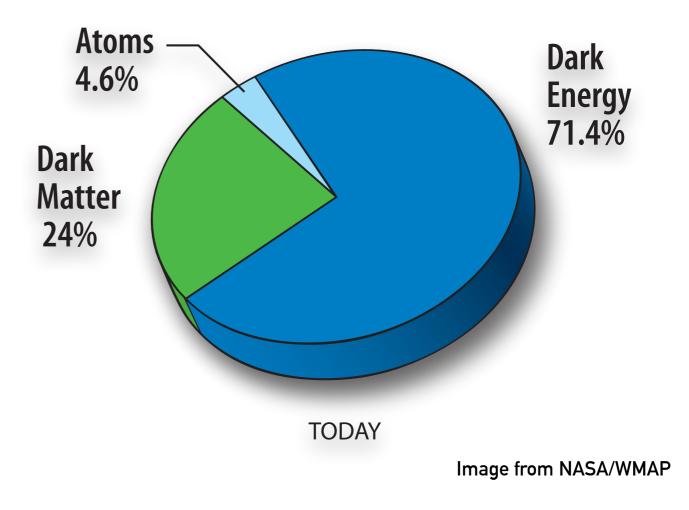




#### The standard model

#### ACDM attributes accelerated expansion to dark energy

but could there be an alternative explanation?







Many physicists are exploring extensions to GR

There are some well established models:

- f(R) models extending functional form of GR
- Galileon models addition of a scalar field
- Massive gravity models graviton has mass

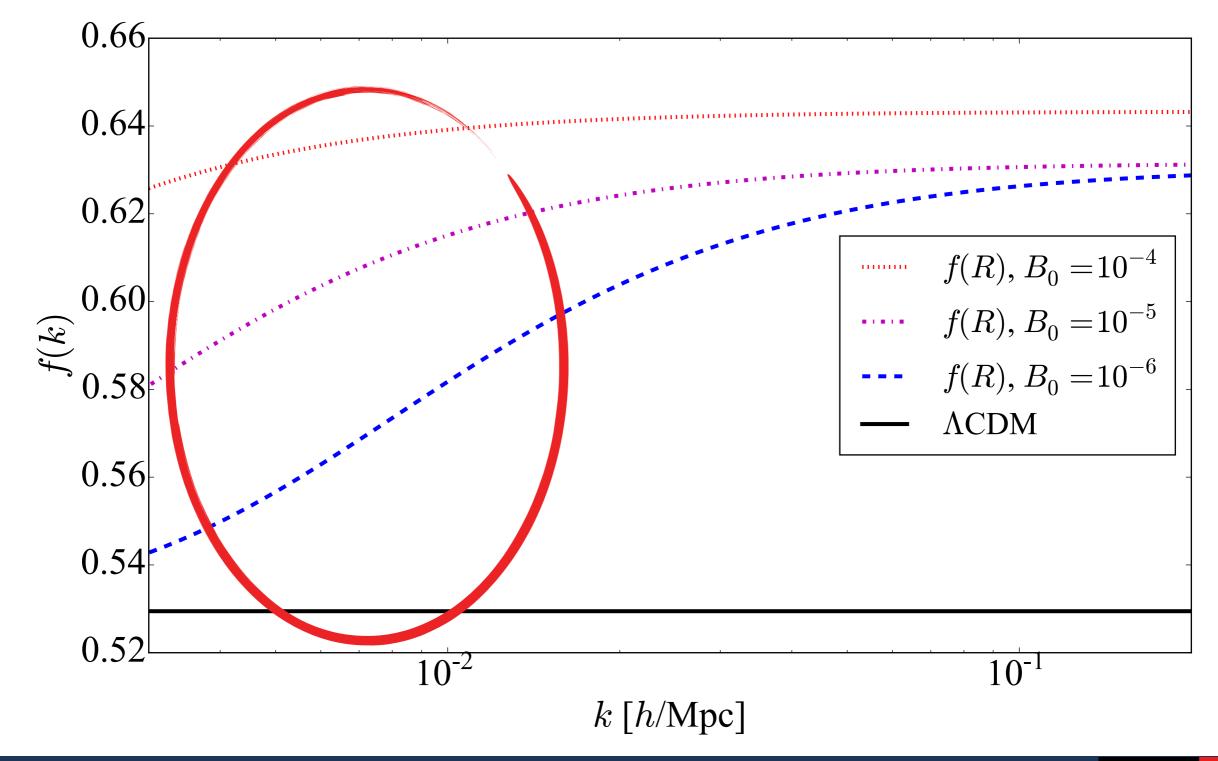
There's also work on observational predictions from generalised forms of modified gravity (Baker et al. 2014)







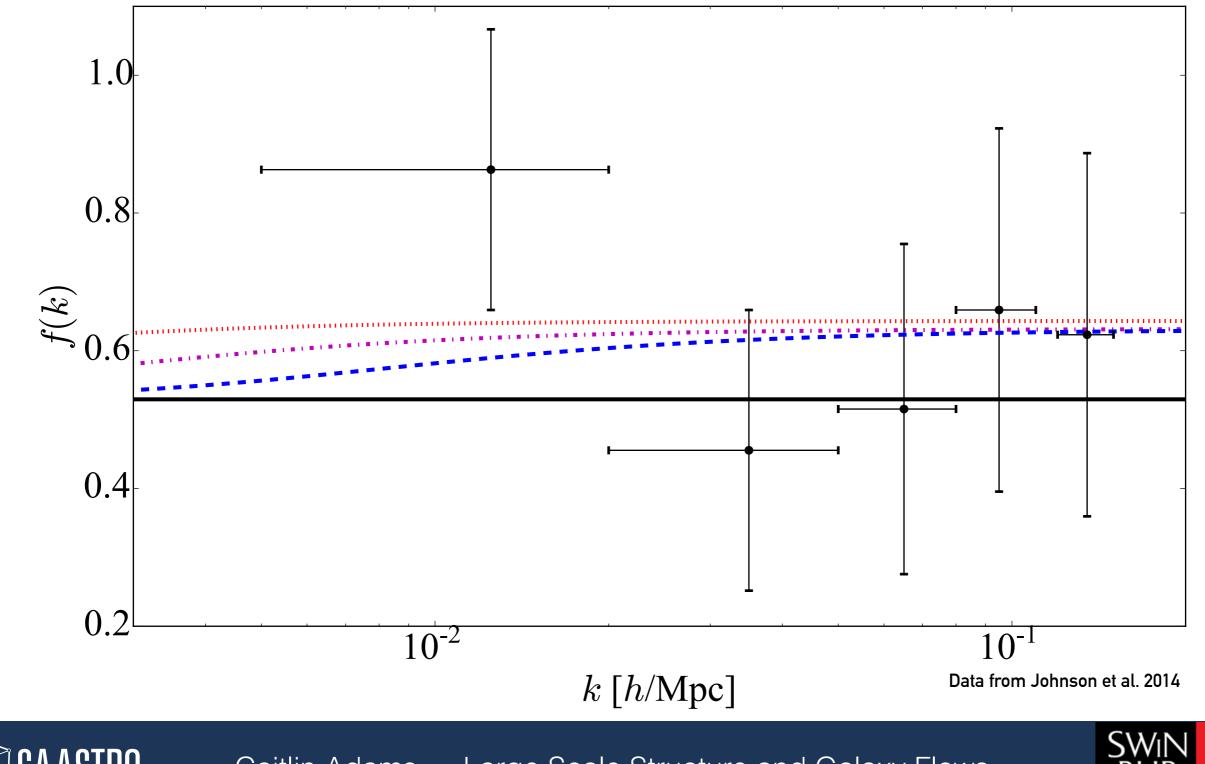
#### Scale-dependence







#### Scale-dependence: 6dFGS



CAASTRO LLI-SKY ASTROPHYSICS



Measurements on large scales at low redshift are limited by sample variance from the overdensity field

$$v_p \propto f \delta_m$$

A single tracer is limited by this variance

$$\frac{v_p}{\delta_g} \propto \frac{f\delta_m}{b\delta_m} = \frac{f}{b} = \beta$$

But the ratio of tracers is not!





#### Covariance model

#### For data vector

$$\vec{x} = \begin{pmatrix} \vec{\delta_g} \\ \vec{v_p} \end{pmatrix}$$

we can construct

$$\mathcal{L} = \frac{1}{\sqrt{2\pi|C|}} \exp\left(-\frac{1}{2}\vec{x}^T C^{-1}\vec{x}\right)$$

where

$$C = \begin{pmatrix} \Sigma_{gg} & \Sigma_{gv} \\ \Sigma_{vg} & \Sigma_{vv} \end{pmatrix}$$





#### Covariance model

$$C = \begin{pmatrix} \Sigma_{gg} & \Sigma_{gv} \\ \Sigma_{vg} & \Sigma_{vv} \end{pmatrix} \text{ free parameters: } f\sigma_8, \ b\sigma_8, \ \sigma_v^2$$
  

$$\Sigma_{gg}(\vec{x}_i, \vec{x}_j) = (b\sigma_8)^2 \int_0^{k_{\max}} \frac{k^2}{2\pi^2} P_{mm}(k) W_{gg}(k, \vec{x}_i, \vec{x}_j) \ dk \ + \delta_{ij} \frac{1}{N_{\exp_i}}$$
  

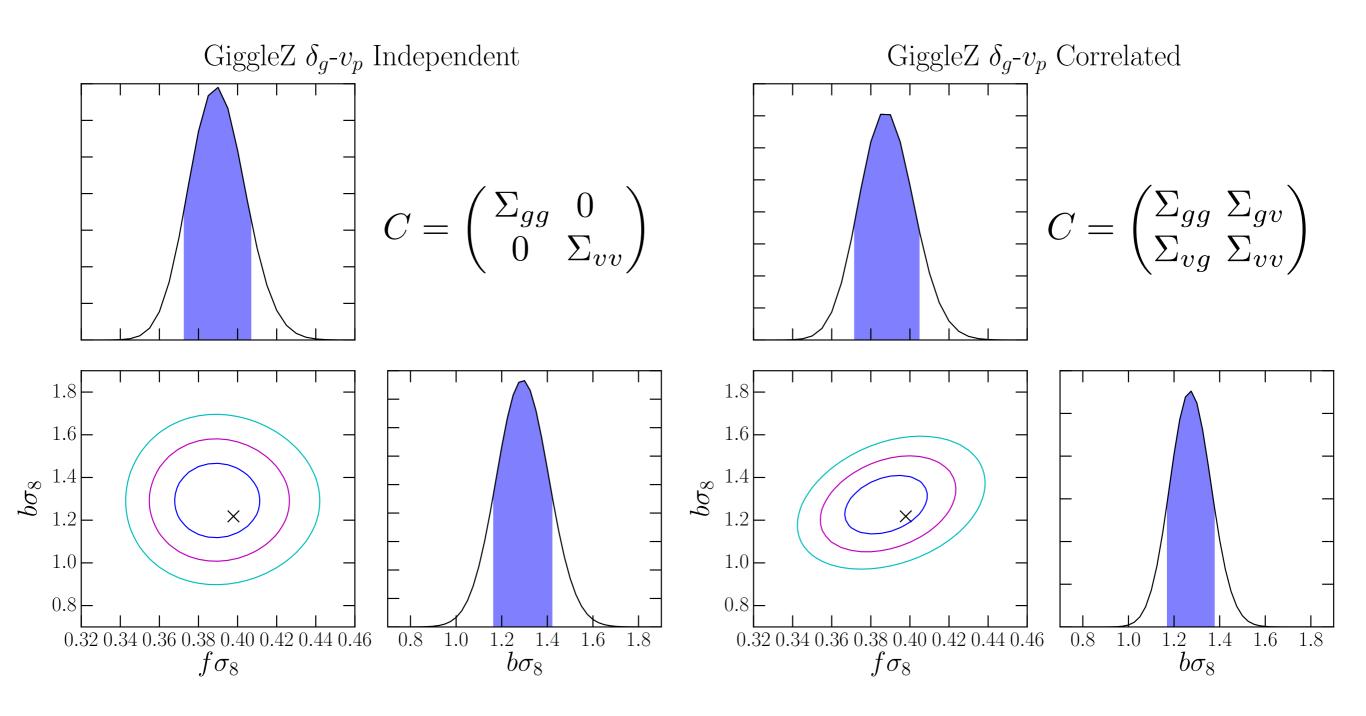
$$\Sigma_{gv}(\vec{x}_i, \vec{x}_j) = (fb\sigma_8^2) \int_0^{k_{\max}} \frac{k}{2\pi^2} P_{mm}(k) W_{gv}(k, \vec{x}_i, \vec{x}_j) \ dk$$
  

$$\Sigma_{vv}(\vec{x}_i, \vec{x}_j) = (f\sigma_8)^2 \int_0^{k_{\max}} \frac{1}{2\pi^2} P_{mm}(k) W_{vv}(k, \vec{x}_i, \vec{x}_j) \ dk \ + \delta_{ij} (\sigma_{obs_i}^2 + \sigma_v^2)$$





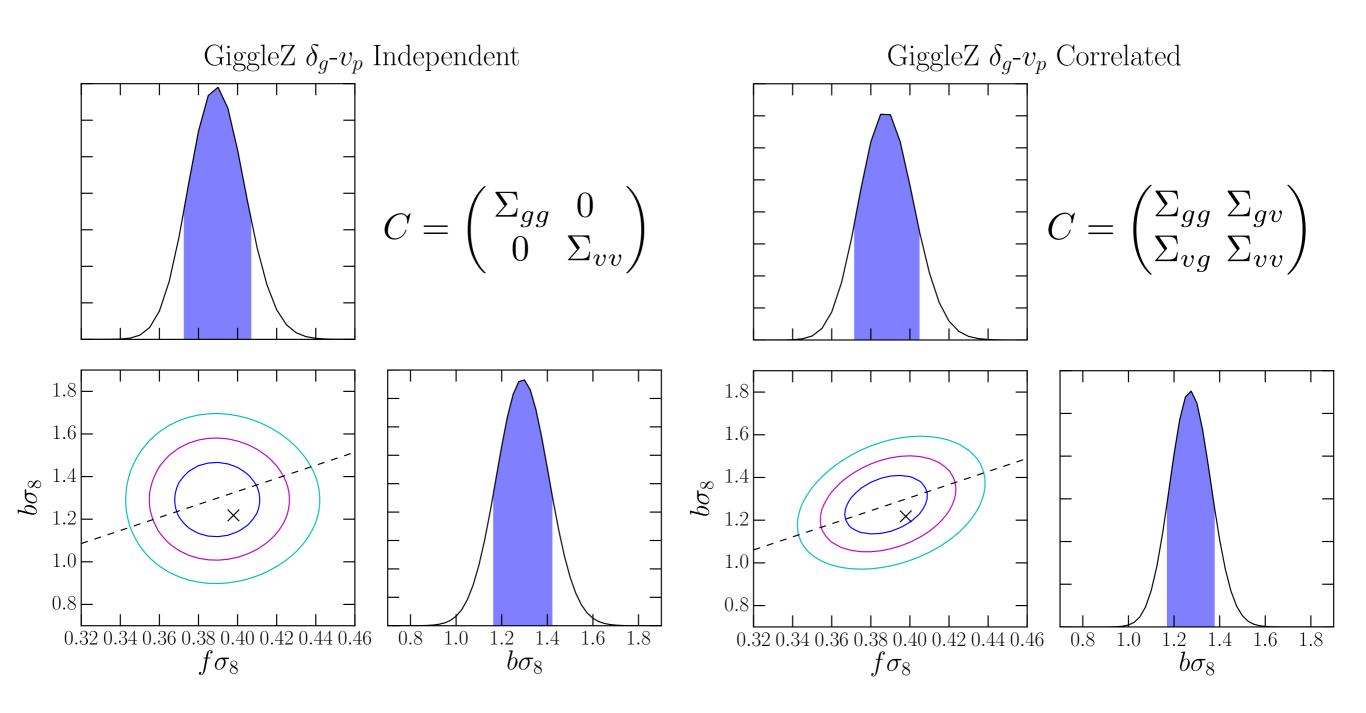
## Results: GiggleZ simulation



CAASTRO ALL-SKY ASTROPHYSICS



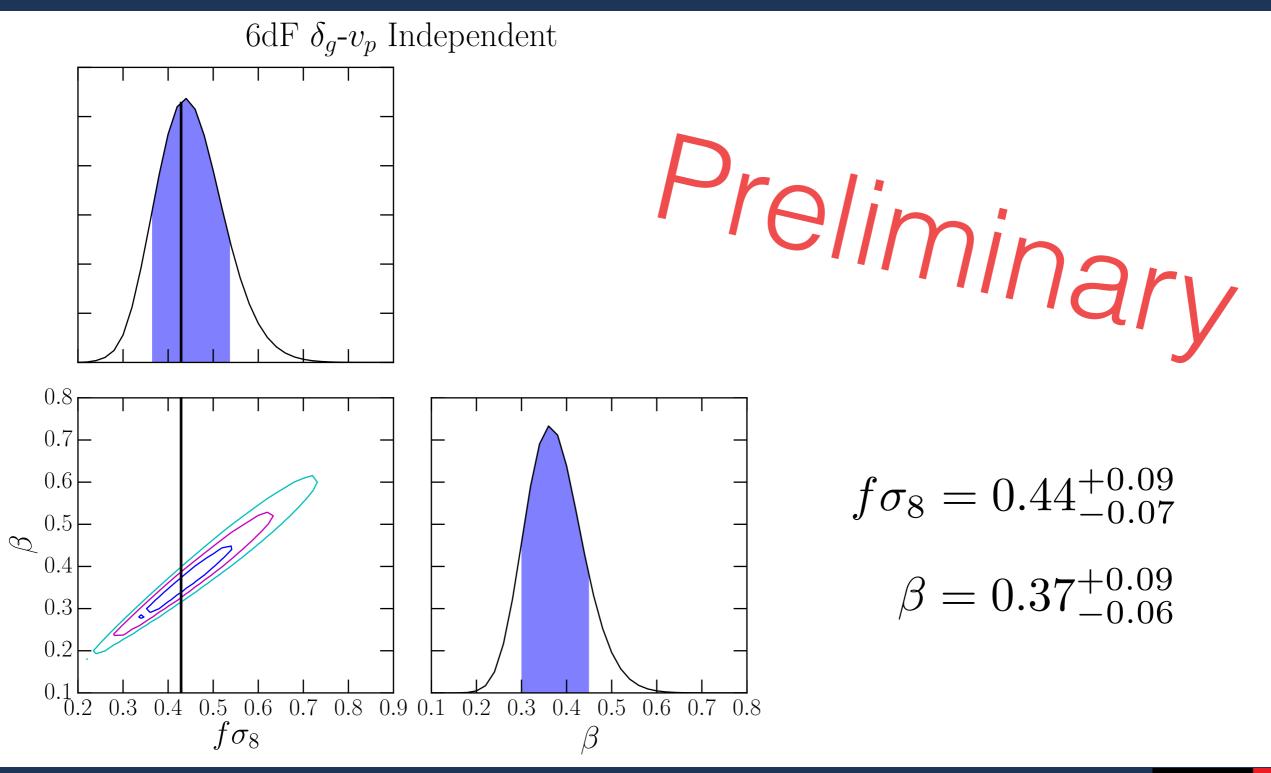
## Results: GiggleZ simulation



CAASTRO ALL-SKY ASTROPHYSICS



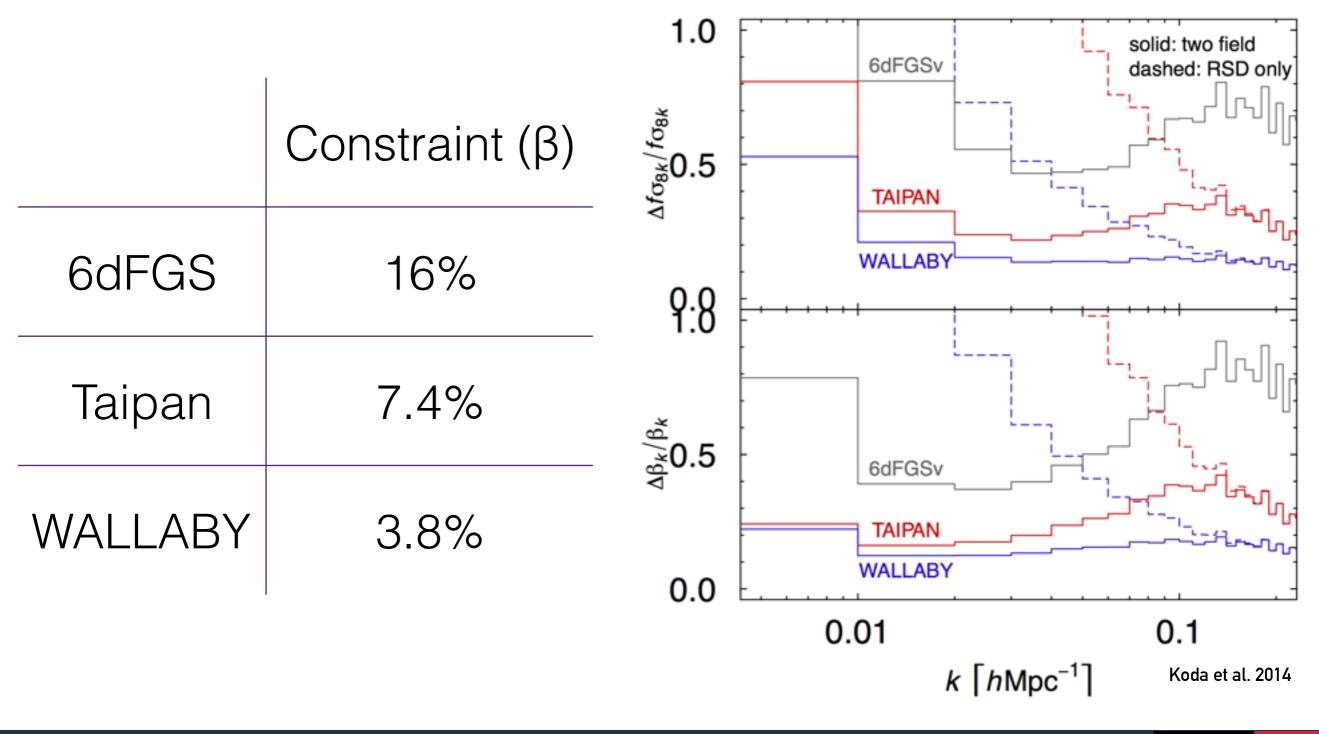
#### Results: 6dFGS







## Upcoming: Taipan







#### Take home points

- Scale-dependent measurements can distinguish between the standard model and modified gravity models
- Modelling the covariance of velocities and overdensities will provide a measure of  $\beta(k)$
- Beating down cosmic variance through multiple probes will provide tighter constraints on f(k)



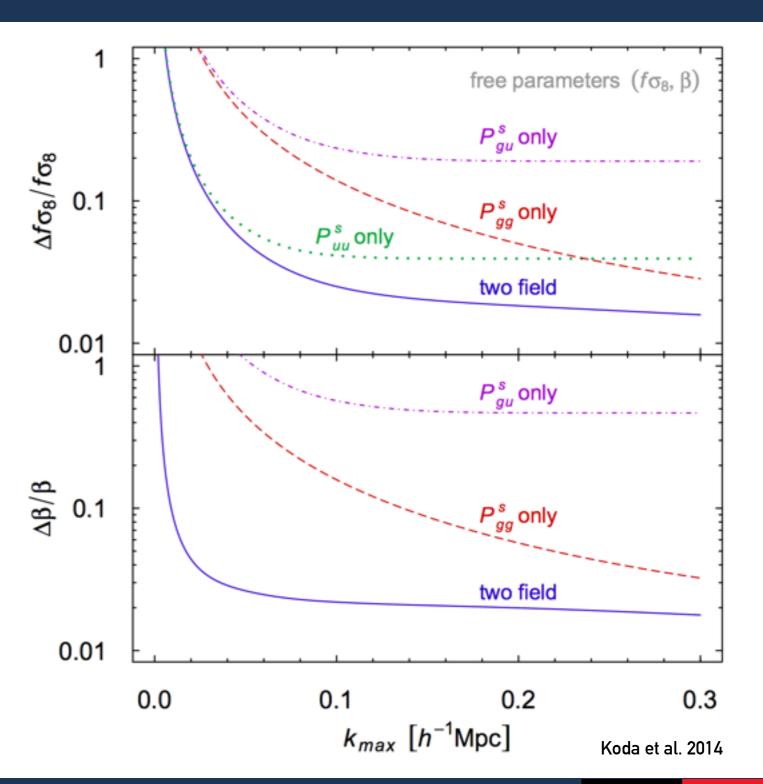


#### Bonus Slide: Peculiar velocities

In Fourier Space:

$$\vec{v_p}(\vec{k}) = -\frac{iaHf\hat{k}}{\sqrt{k}}\delta(\vec{k})$$

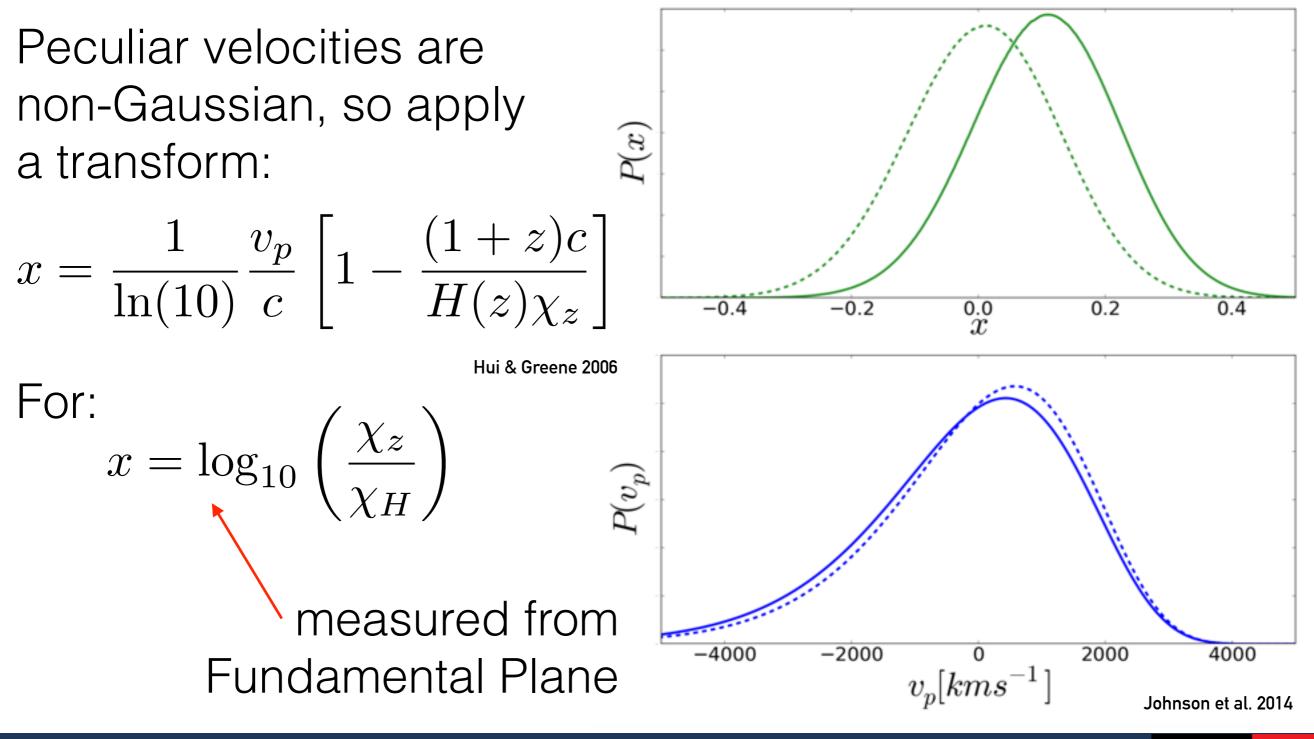
1/k dependence means velocities are sensitive to large modes (small k)



CAASTRO ALL-SKY ASTROPHYSICS



#### Bonus Slide: Peculiar velocities







#### Bonus Slide: Exact equations

$$\Sigma_{\mu\nu} = A_{\mu}A_{\nu} \int_{0}^{k_{\max}} \frac{k^n}{2\pi^2} P_{\text{matter}}(k)W_{\mu\nu}(k)dk + \text{error}$$

|                     | $A_{\mu}A_{ u}$    | n | W(k)                                                                                                                     | error                             |
|---------------------|--------------------|---|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| $\delta_g \delta_g$ | $b^2 {\sigma_8}^2$ | 2 | $j_0(kr)$                                                                                                                | $\frac{1}{N_{\exp_i}}$            |
| $\delta_g v_p$      | $fb{\sigma_8}^2$   | 1 | $aH(\hat{r}\cdot\hat{x_v})$                                                                                              | 0                                 |
| $v_p v_p$           | $f^2 {\sigma_8}^2$ | 0 | $(aH)^2 \left[\frac{1}{3}\cos\alpha\left(j_0(kr) - 2j_2(kr)\right) + \frac{x_\delta x_v}{r^2}j_2(kr)\sin^2\alpha\right]$ | $\sigma_{\rm obs}^2 + \sigma_v^2$ |



