Cosmology with Velocity Dispersions

Science North – "Cool Science - Defining Gravity" -- https://www.youtube.com/watch?v=a3007ek7t68

Caroline Caldwell Ian McCarthy, Ivan Baldry, Joop Schaye, Simeon Bird, Chris Collins

Velocity Dispersions are directly measured and avoid mass biases. Good independent test of results!

Lambda CDM

103

New simulations with neutrinos + velocity dispersion based n(z) can distinguish effects of neutrinos! Abundance of clusters, n(z), is a good probe of underlying cosmology.

However, there is **tension** between abundances from **models** based on CMB measurements and **observations** of cluster abundances (number counts). e.g. Planck paper 20, (2013)

Potential causes of discrepancy:

- Systematic mass biases
- Something is wrong with the standard model (neutrinos?)

Simulation & Survey

BAHAMAS: BAryons and HAloes of MAssive Systems

- Large box (400 Mpc/h, 1024^3 particles)
- Planck, WMAP9, and cosmologies +neutrinos
- Calibrated to match f_{gas}-M properties and galaxy stellar mass function
- Matches X-ray and SZ scaling relations and others.
- Details: McCarthy et al, 2016

BAHAMAS results

Model the VDF

Mass Function -> Mean sigma-M powerlaw -> scatter = "Model" velocity dispersions

1. Mean Mass – velocity dispersion power law.

 $<\sigma_v>(z=0)=280.5\pm 1.0 \text{ km/s} \left(\frac{M_{200m}}{10^{14} \text{M}_{\odot}}\right)^{0.385\pm 0.003}$

)RFS

Black scatter points = Planck data from simulation

Red = mean sigma in bins of Mass

Yellow = fit to red points

Blue = mean and 1sigma distribution of scatter points

Scatter

- Divide velocity dispersions by the power-law.
- 2. Bin residuals by mass
- 3. Fit log normal curve
- 4. Width of curve = width of scatter around powerlaw

Scatter

Scatter Decomposition:

Parametric Model vs. BAHAMAS

Mass Function -> Mean sigma-M powerlaw -> scatter = "Model" velocity dispersions

Caroline Caldwell

Creating the $\Omega_m\,\sigma_8\,grid$

Constraining Power of Future Surveys

Using simulated data only:

1-sigma chi^2 intervals for three survey volumes.

σ₈= normalizaton of power spectrum

 Ω_m =density of matter

ORES

Constraining Power of Future Surveys

Using simulated data only:

Summary

- Velocity dispersions can be used for group number counts
 - Directly observable alternative to mass
- Demonstrated that neutrinos can reduce abundances of massive groups
- Successfully modeled the VDF
- Estimated confidence intervals for Ω_m and σ_8 and neutrino mass arXiv:1602.00611

Future:

• Use data from GAMA survey to obtain real confidence intervals

