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Motivations

@ Universe evolves » galaxies flow away from voids »the supercluster-void
network emerges: large virialized clusters connected by filaments and large-
scale underdense regions widely known as cosmic voids.

@ The global flows of mass and galaxies associated with this clustering process
are expected to be significant up to the scales of the largest structures,
vanishing to a random component at larger scales.

@ Galaxy flows have been reported in the local Universe at scales of a few
hundred Mpc and are directly related to the large mass fluctuations
associated to the inhomogeneous galaxy distribution.

@ The large-scale underdensities (cosmic voids) have an active interplay with
large-scale flows affecting the formation and evolution of structures in the
Universe

=% They exhibit local expansion which in some cases, depending on the large-
scale environment, can be reverted to collapse at larger scales, generating
global convergent or divergent flows.

However, it has not been studied into detail the buylk velocity of the void region

urrounding shell of 8alaxies
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Two essential processes on void evolution determined by
the surrounding global density:
Expansion and collapse
Seth & van de Weygaert (2004)

*‘Dynamics: two opposite modes on velocity field around voids:
— Infall (voids embedded in overdense environments)

— Outflowing velocities (voids embedded in underdense
environments).

*Void size evolution:

—Many of the smallest voids at present may show surrounding
overdense shells

—Largest voids at present are unlikely to be surrounded by
overdense regions.

To deepen our understanding of the nature of voids and
the evolution of their properties, it is crucial take into

s account the large scale structure where they are
embedded.
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Integrated galaxy density around voids in observational data

Small voids are more
frequently surrounded by over-
dense shells.

Larger voids are more likely
embedded in underdense
regions.
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Contour lines of mean density contrast as a
function of void radius and distance to the void
centre in SDSS. Orange colours represent positive
densities and cyan correspond to negative

densities.
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Integrated galaxy density around voids in observational data

Small voids are more
frequently surrounded by over-
dense shells.

Larger voids are more likely
embedded in underdense
regions.
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Contour lines of mean density contrast as a
function of void radius and distance to the void
centre in SDSS. Orange colours represent positive
densities and cyan correspond to negative

densities. ;
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Integrated galaxy density around voids in observational data

Density profiles around voids
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It is possible to classify voids

according to their large-scale

density around them allowing
| for a subdivision of the sample
0 b b Y . e into two types of voids

1 |

Void Classification

d [h! Mpe] .
based on large scale environment

Integrated density contrast
inside voids < -0.9

Large-scale “Shell” Profile = S-type voids

Large-scale “Rising” Profile = R-type voids
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Dynamics around S and R type voids

Based on theoretical void evolution it is natural to expect a
dependence of the peculiar velocity field around voids with
the presence of a surrounding overdense shell.

Mean radial velocity as a function to
distance to the void centre in mock

Voids in overdense environment
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The velocity curves for the two
types of voids suggest that there
is a relation hetween our
separation criterion and the
evolution of voids.
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Dynamics around voids vs large scale environment

Redshift space distortions in
observational data &(o,m) void-gix

Overdense environment Underdense environment
Collapsing voids Expanding voids
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Voids in dense large-scale regions: inner regions are in expansion,
the large-scale void walls are collapsing
pids in under-dense large-scale regions are in expansion
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Dynamics around voids vs large scale environment

Redshift space distortions in Model results in
observational data Z(o,m) void-gix observational data
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Collapsing voids Expanding voids
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Voids in dense large-scale regions: inner regions are in expansion,
the large-scale void walls are collapsing
Voids in under-dense large-scale regions are in expansion
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Dynamics around voids vs large scale environment

Redshift space distortions in Model results in
observational data &(o,m) void-gix observational data
Overdense environment Underdense environment
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"'I‘hq first observational evidence of the two processes involved in void evolution
As expected from theoretical predictions!
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Void motions
Bulk velocities of void shells and cores
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Bulk velocities of void
shells and cores in
the simulation.

V hen: dark matter haloes mean

velocity within 0.8<r/R_void<1.2.

V.ore: Mean velocity of dark matter

particles within 0.8 R_void.

Upper: Distribution function of void

counts in Vg, .y Veore Pins. Solid line

shows the one-to-one relation.
Lower: Distribution function of void
counts in bins of V___ and the relative

angle a between shell and core
velocities. Solid and dashed lines
correspond to the median and its

+—Standard error.
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Void motions
Bulk velocities of void shells and cores

800F
)]

600+

IVl [kms']

400

The dark matter in
the void inner
region and the

haloes in the

200F

(—

0.2
0.1
0.0

surrounding shell

I B,
200

P R
400

P
600

L1
800

40F

exhibit remarkably
similar velocities
(in magnitude and
direction).

[ )

30

I \\
\
- \
20 \\ \

Relative angle oc [deg]

S = N W

o

Bulk velocities of void
shells and cores in
the simulation.

V hen: dark matter haloes mean

velocity within 0.8<r/R_void<1.2.

V.ore: Mean velocity of dark matter

particles within 0.8 R_void.

Upper: Distribution function of void

counts in Vg, .y Veore Pins. Solid line

shows the one-to-one relation.
Lower: Distribution function of void
counts in bins of V__ and the relative

angle a between shell and core
velocities. Solid and dashed lines
correspond to the median and its

i~ Standard error.
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Void motions

Bulk velocities of void shells and cores
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Upper: Distribution function of void

counts in Vg, .y Veore Pins. Solid line

shows the one-to-one relation.
Lower: Distribution function of void
counts in bins of V__ and the relative
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velocities. Solid and dashed lines
correspond to the median and its
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Void motions
Bulk velocities of void shells and cores

Velocities in rvational dat | U ¢ 5
We have adopted the peculiar velocity field v(r) = —HrA(r) A
derived from linear theory by Wang et al. )
2012. They use groups of galaxies as

tracers of dark matter halos and its cross 4s
correlation function with mass, in order to
estimate the matter density field over the
survey domain. The linear relation between
mass overdensity and peculiar velocity is
used to reconstruct the 3D velocity field.
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1/N dN/de/d(av/v)

Comparison between real and linearized " " u 06

IV =V Vi 1 Vi
velocities of voids in the simulation. Polar diagram of the probability density as a

function of the angle and the relative
difference between the full and linearized
velocities of voids.

Ui res, Paz, Maldo'gdo, Lyparello, Lan@lﬁ, to bemb@d in MNRAS.



Void motions
Bulk velocities of void shells and cores

Velocities in rvational dat - .
We have adopted the peculiar velocity field Bulk velocities of void
derived from linear theory by Wang et al. shells and cores in SDSS
2012. They use groups of galaxies as R —
tracers of dark matter halos and its cross I 1/N dN/do/d
correlation function with mass, in order to : e
estimate the matter density field over the 0.08 - simulation - .

linearized velocities

survey domain. The linear relation between

mass overdensity and peculiar velocity is E

used to reconstruct the 3D velocity field. e
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Void motions
Bulk velocities of void shells and cores

Velocities in rvational dat - .
We have adopted the peculiar velocity field Bulk velocities of void
derived from linear theory by Wang et al. shells and cores in SDSS
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shell bulk velocities trace well the void core motions
-—\void velocities: mean bulk velocity of haloesigixs located at void-centric
distances between 0.8 and 1.2 void radius (denser shell surrounding voids).
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Void Bulk Motions

Void velocity normalized distributions in SDSS and simulations.
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Dotted line = mean velocity of haloes
having M>1012 M /h (~515 km/s).

It is remarkable that mean void and halo velocities
are of the same order despite their very different
nature, haloes being the most compact, extremely
e ¢ denseo @ , and voids the largest empty
gions in the Universe
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Void Motion

Dependence of mean velocity with size and surrounding density
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I 1 { | Smaller voids (r .,<8 Mpc/h) exhibit mean velocity as
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Void Motion

Dependence of mean velocity with size and surrounding density
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Besides the dependence of void size with the density of the region
surrounding the void the magnitude of mean void velocity is related with
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Void Bulk Motions

Pull & push mechanism
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Density maps of stacked voids,
the y-axis direction correspond
to the void velocity vector.
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Void Bulk Motions

Pull & push mechanism
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whereas in the opposite it
is observed an
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Void Bulk Motions

Pull & push mechanism
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Void Bulk Motions

Pull & push mechanism

Stype | 10 <R < 14 S-type | 18 < R < 22
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Density maps of stacked voids,
the y-axis direction correspond
to the void velocity vector.

os Overdensity increases from
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Voids seem to be abandoning low dense regions and moving to
overdensities

— Large-scale tlows can be understood as the resuit ot the process of
gravitational instability with overdense (underdense) regions attracting

(repelling) material.
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The coherent motions of cosmic voids

scheme: pairwise velocity relative angle
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The coherent motions of cosmic voids
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The coherent motions of cosmic voids
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(a) scheme: pairwise velocity relative angle
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The coherent motions of cosmic voids

Bimodality of relative motions in observational data.

Histo g rams of cos (e) Figure 3 | Histograms of cosines of relative an%l;?;;t:;;? ;El:,ar:all:l;:-rll \I:;rc)tz:‘s] and pairwise relative velocities
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The bimodality in observational data is consistent with the prediction
of the ACDM model.
A\ Two populations with voids mutually receding and approaching

in observatio_nal data
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The coherent motions of cosmic voids

Bimodality of relative motions in observational data.
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(solid). Histograms are
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with respect to the
expectation from a
random distribution.
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The bimodality in observational data is consistent with the prediction
. of the ACDM model.

de populations with voids mutually receding and approaching
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Mean pairwise velocity values of the
observational and simulated voids as a
function of void relative separation.

The colour density maps correspond to the results
of R-R (red) and S-S (blue) void pairs in sub-boxes
taken at simulation constrained to account cosmic

variance in SDSS.

The thin blue and red lines correspond to the 0.16 and 0.84
quantiles of the distribution of V // , for S-S and R-R void
pairs, respectively.

The thick dashed lines correspond to the full
simulation box results for R-R and S-S pairs. Points

represent SDSS results.
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Mean pairwise velocity values of the
observational and simulated voids as a
function of void relative separation.

The colour density maps correspond to the results
of R-R (red) and S-S (blue) void pairs in sub-boxes
taken at simulation constrained to account cosmic

variance in SDSS.

The thin blue and red lines correspond to the 0.16 and 0.84
quantiles of the distribution of V // , for S-S and R-R void
pairs, respectively.

The thick dashed lines correspond to the full
simulation box results for R-R and S-S pairs. Points

represent SDSS results.

The observational results are entirely
consistent with the prediction of the
ACDM model.

Voids hehave either receding or approaching each other
according to their R/S-type classification with velocities of the
order of 100-150 km/s up to 200 Mpc/h separation.
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Stacked mass density for S-S and R-R void pairs. The y-axis is
oriented to the velocity difference direction.

As this direction is aligned with the relative separation
N ., direction, the coherent pattern emerges
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Summary: results on void dynamics

>We obtained observational evidence of a twofold
population of voids according to their dynamical
properties as predicted by theoretical considerations
(Ceccarelli et al. 2013, Paz et al. 2013, Ruiz et al. 2015).

>We reported significant motions of e
cosmic voids as a whole and studied the i ; T
coherence pattern associated to the void i I
velocity field up to large cosmological A wl““u “%H}
scales, both in simulations and 2
observations (Lambas et al. 2016, Ceccarelli et al. 2016,
MNRAS accepted). T
>We reported the bimodality on void pairwise R AR 40 48 &
velocities in simulations and observations, with g e g Mg W g
approaching-and receding voids according totheir |- 4 Ik =
onment (Lambas et al(2016). h




Summary: Final remarks

Voids have an active interplay with large--scale flows
affecting the formation and evolution of structures in
the Universe.

These large-scale underdensities exhibit local expansion
which, depending on the large-scale environment, can be
reverted to collapse at larger scales, generating global
convergent or divergent flows.

Void coherent bulk velocities, with a bimodal dynamical
population of mutually attracting or receding systems,
contribute to imprint large scale cosmic flows, shaping the
formation of future structures in the Universe.

The non-negligible void velocities suggest a scenario of
galaxies flowing away from voids with the additional
contrlbutlon of void bulk motion to the total galaxy velocity

q i} “‘\ e L O
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