STRUCTURE, MOTIONS AND COSMOLOGY FROM THE TAIPAN SURVEY

Matthew Colless

Large Scale Structure and Galaxy Flows

Quy Nhon, 4 July 2016

Why measure H_0 ? (with emphasis on the '0')

- \Box H₀, the local (i.e. zero-redshift) expansion rate, is a fundamental cosmic parameter (\Rightarrow age of universe)
- □ Assuming a flat Λ CDM universe, Planck determines H₀ to ~1.5% but this is a model-dependent result

CMB H₀ is model-dependent

Planck results Red : CMB only Blue : CMB+BAO

The H_0 from the CMB is an extrapolation to low z of measurements at high z that depends on other parameters of the cosmological model

Why measure H_0 ?

- \Box H₀, the local (i.e. zero-redshift) expansion rate, is a fundamental cosmic parameter (\Rightarrow age of universe)
- □ Assuming a flat Λ CDM universe, Planck determines H_0 to ~1.5% but this is a model-dependent result
- An independent determination of H₀ is a key prior that improves the constraints on other parameters (e.g. dark energy, neutrino numbers/mass)

H_0 is key prior for dark energy

Weinberg et al. (2012)

- Assuming (w₀, w_a) model, 1% H₀ measurement adds about 40% to Stage III dark energy experiments [e.g. BOSS, DES, etc.]
- Adds very little to Stage IV experiments [e.g. LSST, SKA, etc.]

Why measure H₀?

- $\Box H_0, \text{ the local (i.e. zero-redshift) expansion rate, is a fundamental cosmic parameter (<math>\Rightarrow$ age of universe)
- □ Assuming a flat Λ CDM universe, Planck determines H_0 to ~1.5% but this is a model-dependent result
- □ An independent determination of H_0 is a key prior that improves the constraints on other parameters (e.g. dark energy, neutrino numbers/mass)
- □ Currently, there are systematic discrepancies between H_0 determined from the CMB and local measurements (via Cepheids, masers, SNe) tension at ~3 σ level

Local and CMB H_0 are discrepant

Local and CMB H_0 are discrepant

Discrepancies could be...

- ... systematic errors in the local or CMB measurements
- ... signature of non-LCDM physics in cosmological model
- ... signature of gravitational physics due to inhomogeneity and back-reaction

Tests of large-scale gravity

- Is the growth rate of structure consistent with the cosmic expansion history?
- Is the gravitational physics of the homogeneous and inhomogeneous Universe consistent?
- Need to measure galaxy velocities ...

Goals of the Taipan survey

I. What is the expansion rate of the universe?

Aim to measure the local Hubble constant, H_0 , with 1% precision from the large-scale distribution of galaxies

2. What are the density and velocity fields in the local universe?

Map the both density *and* velocity fields over a greater volume and with more galaxies than previous surveys

3. What is the correct theory of gravity?

Test gravity models using both the *peculiar velocities* of galaxies and the *redshift-space distortions* of their large-scale distribution

UKST-TAIPAN instrument system

- The Taipan survey will employ the new TAIPAN multi-fibre spectrograph on a rejuvenated UKST...
 - The I.2-metre UK Schmidt Telescope at Siding Spring Observatory is being completely refurbished so that it can operate in an automated mode, substantially increasing efficiency and reducing operating costs
 - A new I50-fibre Starbugs positioner is being built by AAO to provide rapid automated reconfigurations (a prototype for the MANIFEST system on the Giant Magellan Telescope); a proposal to upgrade this to 300 fibres is under review
 - A new TAIPAN spectrograph is being built by AAO to provide high-throughput, fixed-format spectroscopy over the full visible range from 370nm to 870nm at R~2100

The UK Schmidt Telescope (before)

Starbugs fibre positioner

Starbugs are piezoelectric micro-robots providing an elegant way to position fibres in telescope focal planes

- A prototype Starbugs system for the UKST has already seen first light; the full system will be completed by late 2016
- Starbugs will also be used in the MANIFEST fibre system that will feed spectrographs on the Giant Magellan Telescope

TAIPAN spectrograph

The TAIPAN spectrograph is a two-channel, fixed format design
 Covers 370-870nm at R~2100 with 3.3" diameter input fibres

The UK Schmidt Telescope (with TAIPAN)

TAIPAN technical specifications

Field of view	6 degree diameter
Number of fibres	150 (upgrade to 300)
Fibre diameter	3.3 arcsec
Wavelength range	370 – 870 nm
Resolving power	1960 (blue) to 2740 (red)

The Taipan survey

- □ Taipan will measure redshifts for ~1,00,000 galaxies to r≈17.5 (K≈14.5) with $\langle z \rangle \approx 0.1$ over $V_{eff} \approx 1$ Gpc³
 - ◇ cf. 6dFGS: 125,000 redshifts to K ≈ 12.65 and <z> ≈ 0.05 over
 V_{eff} ≈ 0.24 Gpc³ (so Taipan is ~8x number, ~4x volume)
- Taipan will measure peculiar velocities for ~100,000 galaxies using the Fundamental Plane distance estimator
 cf. 6dFGS: 9000 velocities (so Taipan is ~10x bigger)
- □ Bright time: FunnelWeb survey of 3×10^6 stars with 5.7<V<12.5 and δ < +30° targeted in future exoplanet searches (e.g. TESS)
 - ♦ expands on legacy of RAVE (Steinmetz+ 2006, Siebert+ 2011) which observed ~0.5×10⁶ stars with lower R and $\lambda\lambda$ coverage
 - requires the rapid fibre positioning of the Starbugs technology to acquire an average of 5 fields/hour (a spectrum every 2s !)

Taipan & WALLABY

- WALLABY is an all-sky HI survey that will measure redshifts for ~500,000 HI galaxies using the Australian SKA Pathfinder: b≈ 0.7, <z>≈0.04, V_{eff}≈0.35 Gpc³
- WALLABY will also obtain HI Tully-Fisher distances and peculiar velocities for a large sample of spirals 10000
- WALLABY TF peculiar velocities for spirals will complement the Taipan FP peculiar velocities for early-types, sampling more densely the nearer half of the Taipan survey volume

A combined all-sky survey

- □ Strong arguments for an all-sky survey of local universe:
 - to completely characterize the local velocity field, especially the monopole (local Hubble constant) and dipole terms
 - to map the foreground large-scale structure for cross-correlation with deeper observations (particularly all-sky CMB surveys)
 - to make a definitive database of optical spectra for local galaxies
- □ This can be achieved by combining the SDSS, Taipan and LAMOST surveys into an all-sky (|b|>10) survey to r≈17.5
 - Taipan will cover southern hemisphere (+ perhaps some of the north)
 - ♦ SDSS/BOSS cover $\approx \pi$ steradians of north (+ some overlap in south)
 - ♦ LAMOST could cover the remaining $\approx \pi$ steradians of north
 - ♦ All surveys can provide good S/N spectra to $r \approx 17.5$ at R~2000
 - Need consistent selection criteria (pre-/post-selection of sample) based on SDSS + SkyMapper + Pan-STARRs imaging

Measuring H_0 with BAO

- Baryon acoustic oscillations (BAO) imprint co-moving scale of I46 Mpc on matter distribution (calibrated to 0.3% by Planck)
- BAO scale is well within the linear regime of gravitationally growing fluctuations, so is a standard ruler seen at all redshifts that allows mapping of cosmic distances and geometry
- First detected in z-surveys
 by 2dFGRS (Cole+2005)
 & SDSS (Eisenstein+2005)
- Key application of BAO in low-redshift surveys is measuring H₀

Existing low-z BAO H₀ measurement

6dF Galaxy Survey

Beutler et al. (2011)

Hubble constant from 6dFGS

At low z, distance measurements only constrain H_0 – but are model-independent!

Beutler + 2011 (6dFGS, BAO) $H_0 = 67 \pm 3.2 \text{ km/s/Mpc}$ Riess + 2016 (Cepheids, SNe) $H_0 = 73.0 \pm 1.8 \text{ km/s/Mpc}$

Planck 2015 (CMB, BAO) $\stackrel{N}{\stackrel{}{=}}$ $H_0 = 67.3 \pm 0.7$ km/s/Mpc (model-dependent)

Hubble constant from Taipan

- □ With redshifts for ~1,000,000 galaxies at $<z> \approx 0.1$ over a volume $V_{eff} \approx 1$ Gpc³, simulations indicate Taipan will measure H_0 with ~1% precision
- This is a 4x better than 6dFGS:
 - Gain a factor of ~2 from larger sample size and volume of TAIPAN cf. 6dFGS
 - ♦ Gain another factor
 of ~2 from better
 BAO reconstruction

Cosmology from velocities – 6dFGS

- Analysis of peculiar velocity power spectrum P_{vv}(k) provides additional new constraints on parameters that are degenerate in P_{gg}(k)
- 6dFGS has measured $P_{vv}(k)$ and the growth rate of structure $f\sigma_8$:
 - The growth rate is scale-independent for scales <300 Mpc/h
 - Overall growth rate at z~0 from P_{vv}(k) is consistent with higher-z estimates from RSD, and with Planck/WMAP LCDM models

Cosmology from velocities – Taipan

- The Taipan velocity survey improves on 6dFGS by having...
 - $\sim 2x$ the volume
 - ◇ ~I0x sample size
 - smaller peculiar
 velocity errors
- Taipan will constrain the growth rate of structure at z~0 to 5% from RSD & P_{vv}(k)
- Can distinguish models of gravity with $f\sigma_8 \sim \Omega(z)^{\gamma}$ and $\gamma - \gamma_{GR} > 0.05$
- 0.8 $\gamma = 0.45$ $\gamma = 0.55$ WDS $\gamma = 0.65$ σ₈(z) 0.6 GAMA 2dFGRS VIPERS rate SDSS-LRG 6dFGS BOSS Growth 4.0 WiggleZ **TAIPAN** SDSS-LRG 0.2 0.2 0.4 0.6 0.8 0 Redshift z
- Potential to combine the optical Taipan survey with the HIWALLABY survey to provide cross-checks and multi-tracer analysis of velocity field

Joint fits to density & velocity fields

- The density fluctuations sources the large-scale velocity field, so sample variance cancels
- \Box Combining z & v tightens constraints on $\beta = f/b = \Omega^{\gamma}/b$
- □ If β varies on large scales, implies non-standard physics such as non-Gaussianity or modified gravity
- □ Combining z & v reduces degeneracy due to galaxy bias
- Burkey+Taylor(2004), Koda+(2014) & Howlett+(2016) provide full density & velocity Fisher matrix forecasts for Taipan, both alone & combined with other surveys (incl. effects of primordial non-Gaussianity, scaledependent density/velocity biases, & zero-point offsets)

Growth rate of structure constraints

- Taipan and WALLABY jointly provide significantly improved constraints on the growth rate of structure parameter
- 0.70 \Box The combination $\gamma = 0.42$ of the two surveys 0.65 $\gamma = 0.55$ SDSS-II MGS can measure $f\sigma_8$ 0.60 $\gamma = 0.68$ Taipan to <3% precision 0.55 WALLABY SDSS-II LRG VIPERS 0.50 □ The low redshifts $f\sigma_8$ of the WALLABY 0.45 and Taipan samples 0.40 SDSS-III WiggleZ allow for a much 0.35 6dFGRS more stringent 0.30 Howlett+2016 test of deviations 0.25 0.2 0.3 04 0.1 0.5 0.6 0.7 0.8 from GR, as it is z at low z where differing γ produce the largest changes in $f\sigma_8$

Taipan survey - summary

Starting in early 2017, the Taipan survey will use a refurbished UKST with a new fibre positioner and a new spectrograph to measure 1,000,000 redshifts and 100,000 peculiar velocities for southern hemisphere galaxies over ~1Gpc³ of the nearby universe

□ The Taipan survey will...

- provide a definitive map of the local southern large-scale structure and a legacy database to combine with other all-sky surveys
- increase the number of measured peculiar velocities by ~10x and the mapped volume of the velocity field by ~2x
- provide precise measures of the galaxy & velocity power spectra and the correlation between the distributions of galaxies & DM
- yield a model-independent measure of the local Hubble constant to 1% precision and of the growth rate of structure to 5%
- combining Taipan with WALLABY will tighten these constraints

Redshift sampling of surveys

Predictions from Fisher matrix analysis by Howlett+(2016) for results from combining various redshift and velocity surveys...

Combined Density and Velocity Fields		$100 imes \sigma(\theta_i) / \theta_i$			γ constraints	$100 imes \sigma(\gamma) / \gamma$				
Survey	Parameters	$f\sigma_8$	eta	r_g	σ_u	σ_g	Survey	Velocity Only	Velocity + Density	
					$k_{max} = 0.2 h \mathrm{Mpc}^{-1}$		2MTF	40.4	24.0	
2MTF	$f\sigma_8,eta$	14.8	16.5	-	-	-	6dFGSv	37.4	20.3	
	$f\sigma_8,eta,r_g,\sigma_u,\sigma_g$	20.8	21.2	3.5	27.4	92.6	6dFGSv + 6dFGRS	37.4	13.6	
6dFGSv	$f\sigma_8,eta$	12.8	14.0	-	-	-	2MTF + 6dFGSv	28.4	15.5	
	$f\sigma_8,eta,r_g,\sigma_u,\sigma_g$	17.6	17.9	4.7	32.8	45.7	2MTF + 6dFGSv + 6dFGRS	28.4	11.3	
6dFGSv +	$f\sigma_8,eta$	8.0	8.9	-	-	-	TAIPAN	15.2	5.2	
6dFGRS	$f\sigma_8,eta,r_g,\sigma_u,\sigma_g$	11.7	12.1	1.8	29.2	21.5	WALLABY + WNSHS	16.4	5.3	
2MTF +	$f\sigma_8,eta$	9.7	11.4, 10.6	-	-	-	TAIPAN + WALLABY + WNSHS	11.5	4.0	
6dFGSv	$f\sigma_8,eta,r_g,\sigma_u,\sigma_g$	13.3	14.3, 13.5	3.2, 3.0	23.5, 30.3	71.6, 42.3				
2MTF + 6dFGSv + 6dFGRS	$egin{array}{l} f\sigma_8,eta\ f\sigma_8,eta,r_g,\sigma_u,\sigma_g \end{array}$	6.8 9.7	8.6, 7.5 11.2, 10.0	- 2.6, 1.0	- 22.0, 28.3	- 59.5, 20.0				
TAIPAN	$egin{array}{l} f\sigma_8,eta\ f\sigma_8,eta,r_g,\sigma_u,\sigma_g \end{array}$	2.3 4.1	2.6 4.2	- 2.3	- 12.1	- 6.8	Cullan Howlett will describe			
WALLABY +	$f\sigma_8,eta$	2.7	3.3	-	-	-	these results in detail in his			
WNSHS	$f\sigma_8,eta,r_g,\sigma_u,\sigma_g$	4.2	4.4	0.3	6.8	12.9	talk later in this meeting			
TAIPAN +	$f\sigma_8,eta$	1.8	2.2, 2.0	-	-	-			-	
WALLABY + WNSHS	$f\sigma_8, \beta, r_q, \sigma_u, \sigma_q$	2.8	3.0, 3.1	1.1, 0.3	10.9, 6.4	5.7, 9.7				