Cosmic flows, Bayesian Inference & the Local Universe

Yehuda Hoffman (Racah Inst. of Physics, Hebrew University)

XIIth Rencontres du Vietnam Large Scale Structure and Galaxy Flows July, 3rd - 9th, 2016, Quy Nhon, Vietnam Introduction The Copernican problem Methodology Results The Local Group factory and Bayesian inference Conclusions Collaborators (partial list)

- Potsdam: Jenny Sorce, Stefan Gottloeber, Noam Libeskind, Matthias Steinmetz
- Madrid: Chris Brook, Alexander Knebe, Gustavo Yepes
- Lyon: Helene Courtois, Romain Graziani
- Saclay: Daniel Pomarede
- Hawaii: Brent Tully
- Copenhagen: Arianna di Cintio
- Moscow: Sergey Pilipenko
- Tartu Obser.: Elmo Tempel
- Jerusalem: Edoardo Carlesi

The Local Group factory and Bayesian inference	
Introduction The Copernican problem Methodology Results	

Cosmology with cosmic flows

- Cosmicflows
- Bayesian inference
- Near-field cosmology
- Constrained Local UniversE Simulations (CLUES)^a

^ahttp://www.clues-project.org

Introduction

The Copernican problem Methodology Results The Local Group factory and Bayesian inference Conclusions

CLUES (in a nutshell)

The Three Pillars of CLUES

- Reconstruction of the Large Scale Structure (LSS) from noisy, sparse and incomplete data
- Time machine: from the (present epoch) reconstructed LSS to initial conditions (ICs)
- Constrained simulations: from ICs to the present epoch nearby universe

Introduction

The Copernican problem Methodology Results The Local Group factory and Bayesian inference Conclusions

Near-field cosmology (Bland-Hawthorn, 1999)

Galaxy. As a c typically 20 kile lion solar mass

potentially ten of dark matter.

because it unite

have been shely

Jan Oort8 noti

The Blitz et

Clues to galaxy formation

J. Bland-Hawthorn

Cosmology

n 1977, Stephen Weinberg observed that "the theory of the formation of galaxies is one of the great outstanding problems of astrophysics, a problem that today seems far from solution"1. Although the past two decades have seen considerable progress, many questions remain. Broadly speaking, the quest for answers has followed two paths: near-field cosmology (looking for clues close to home) and far-field cosmology (looking back in time (redshift) for the progenitors of modern-day galaxies). In their latest joint venture, Leo Blitz, David Spergel and their colleagues2 propose that an important clue near field - for almost 40 years

We know through direct observation that the Universe was vastly hotter and denser in the distant past than it is today. As the Universe expanded it cooled to a point where atomic hydrogen distilled out of the primordial plasma. A vast literature of theoretical work, aided by supercomputer simulations, has concentrated on what happened next. Here we must acknowledge the primary role of dark matter in driving galaxy formation. as it accounts for more than 90% of the mass in the Universe. Although the nature of dark matter is a complete mystery, the consequences for galaxy formation are radically different depending on whether dark matter is 'hot' or 'cold' (or a mixture of both). We now know that dark matter must be mostly cold in order to produce the small-scale structure we see today in three-dimensional galaxy distributions3.

The modern paradigm is that when the Universe was cool enough to form atoms, much of the dark matter existed in small clumps. As time progressed, gravity caused these clumps to cluster together to form bigger systems, and onwards to galaxies. Supercomputer simulations have become an essential tool for understanding how cosmic evolution progresses in a hierarchical universe4.

When looking at such simulations (Fig. may have been in plain view - that is, in the 1) it is important to keep in mind our humble vantage point. We live on the outer reaches of a very ordinary spiral galaxy within the Local Group, a motley collection of 40 or more (mostly small) galaxies. Our Galaxy and the Andromeda Galaxy dominate this group, accounting for more than 80% of the starlight. The Local Group is but a small subset of a much larger complex of galaxies known as the Coma-Sculptor Cloud, which in turn forms a small part of the Local Supercluster'. Supercluster scales are the largest entities modelled in computer simulations. and extend over distances of several hundred million light years. In short, we find ourselves in a sparse environment, somewhere along one of the connecting bridges that join the dense clusters.

🗱 🕸 1999 Macmillan Magazines Ltd

belongs

et al.2 argue that are galactic build Group of galaxies NATUREIVO

Figure 1 How the

from a state-of-th

Virgo Consortiu

light years across

are shown in grey

consisting mosth

still forming new

Near Field Cosmology sec = 3,262 lis

- Our local neighbourhood is the part of the universe that we know the best - faint galaxies, satellites, tidal streams, ...
- ACDM is in an excellent agreement with the universe at large (scales), but tension exists on small scales: 'cusp vs. core', abundance of satellites
- The value of H_0 : discrepancy between the near- and the far-field estimated values
- Nature of dark matter
- Galaxy formation

The notion of 'NEAR-field' is stretched here to cover everything that is **LOCAL**. 5/3/

220

Phases vs. Power

In the standard model of cosmology the universe emerges out of a Gaussian random perturbation field.

$$\delta(\mathbf{r}) = \frac{1}{(2\pi)^{3/2}} \int \mathrm{d}^3 k \delta_{\mathbf{k}} \exp\left(\imath \, \mathbf{k} \cdot \mathbf{r}\right)$$

$$\delta_{\mathbf{k}} = \left| \delta_{\mathbf{k}} \right| \exp \left(\imath \ \phi_{\mathbf{k}} \right)$$

Gaussian random perturbation field \rightarrow RANDOM PHASE APPROXIMATION

Cosmologists are traditionally interested in the power (spectrum) of the perturbation field, P(k). Study of the near field involves the (reconstruction of the) phase structure.

Here we focus on the recovery of the power & phases (of the near-field).

The Copernican problem: near-field vs cosmology

How [a]typical is the Local Group? How representative is the near field?

The physicist says: I want it to be typical so I can practice [near-field] cosmology on it.

The astronomer/astrophysicist says: I want it to be atypical. It is more interesting this way.

The LG and the near field can be typical with respect to some properties and unique with respect to others. And it is a matter of degree - not black or white.

In the Bayesian approach one is interested in the posterior probability of a model given observational data:

 $\mathsf{P}(\mathsf{model} \mid \mathsf{data}) \propto \mathsf{P}(\mathsf{data} \mid \mathsf{model}) \mathsf{P}(\mathsf{model})$

- P(model) is the prior probability (knowledge) of the model
- P(data | model) is the likelihood of the data given the (prior) model
- P(model | data) is the posterior probability
- Model: Gaussian random field, with the ACDM power spectrum
- Data: peculiar velocities of galaxies (Cosmicflows database)
- Reconstruction of the large scale structure by means of the Wiener filter (WF) and constrained realizations (CRs)

Data: Cosmicflows-2 (CF2)

THE ARTRONOMICAL JOURNAL, 146:36 (25m), 2013 October doi:10.1088/0004-6259/149/4/8 COSMICFLOWS-2: THE DATA R. BRENT TULLY¹, HELENE M. COURTORS^{1,2}, ANDREW E. DOLPHIN³, J. RICHARD FISHER⁴, PHILIPPE HERAUDEAU⁵, BRADLEY A. JACORS¹, IGOR D. KARACHENTSEV⁴, DMITRY MAKAROV⁴, LIDIA MAKAROVA⁴, SOFIA MITRONOVA⁶, LUCA RIZZI⁷, EDWARD J. SHAYA⁸, JENNY G. SORCE², AND PO-FENG WU TULLY ET AL. 1200 CF1 1000 SFI++ 800 Z 600 400 200 0 5.0•10³ $1.0 \bullet 10^4$ 1.5•104 V_{CMB} (km s⁻¹)

Number of data points: ≈8000 (4814 grouped)

Median redshift: $5895 \,\mathrm{km} \,\mathrm{s}^{-1}$

9/34

Malmquist bias correction (MBc)

With the (deeper) CF2 data the Malmquist bias cannot be neglected - it leads to a strong 'inhaling' (breathing) mode.

Currently we have different MBc schemes: Sorce (2015), Graziani & Courtois (in preparation), YH. There are open

issues with the methods and some conflicts. We are working on it!

レト 〈 一 〉 〈 三 〉 〈 三 〉 〈 三 〉 〈 三 〉 〈 〇 へ 〇 10 / 34

Likelihood analysis of CF2 data w.r.t. ACDM

Data:

$$U_{\mu} = u_{\mu} + \epsilon_{\mu} = \mathbf{v}(\mathbf{r}_{\mu}) \cdot \hat{r}_{\mu} + \epsilon_{\mu}$$

Wiener filter:

$$u_{\alpha}^{\mathrm{WF}}(\mathbf{r}_{i}) = \xi_{\mu}^{\alpha}(\mathbf{r}_{i})\xi_{\mu\nu}^{-1}U_{\nu}$$

Cross-correlation function:

$$\xi^{lpha}_{\mu}(\mathbf{r}_i) = \left\langle v_{lpha}(\mathbf{r}_i) U_{\mu} \right\rangle = \left\langle v_{lpha}(\mathbf{r}_i) \mathbf{v}(\mathbf{r}_{\mu}) \cdot \hat{r}_{\mu} \right\rangle,$$

Auto-correlation function (covariance matrix):

$$\xi_{\mu\nu} = \left\langle U_{\mu}U_{\nu}\right\rangle = \left\langle u_{\mu}u_{\nu}\right\rangle + \left(\sigma_{i}^{2} + \sigma_{*}^{2}\right)\delta_{\mu\nu}^{K}$$

Here σ_* is a free parameter that represents small scales non-linear velocities, $\sigma_* \approx (150 - 200) \, \mathrm{km \ s^{-1}}$.

Data likelihood:

Easy to calculate:

$$\mathcal{L}(\left\{U_{\mu}
ight\}| ext{model}) = rac{1}{\sqrt{ ext{det}ig((\xi_{\mu
u})ig)}} \expig[-rac{U_{\mu}\xi_{\mu
u}^{-1}U_{
u}}{2}ig]$$

And

$$\chi^2/\text{d.o.f.} = U_{\mu}\xi_{\mu\nu}^{-1}U_{\nu}/N_{\text{d.o.f}}$$

With $N_{\rm d.o.f} = 4814$ the $\chi^2/{\rm d.o.f.}$ should be very close to 1.0, but it depends quite strongly on σ_* .

One needs to filter out the small scales so as to get a meaningful likelihood.

Vbulk of CF2 (Hoffman, Courtois & Tully, 2015)

Amplitude of the bulk velocity: The mean (thick lines) and the mean \pm one standard deviation (thin lines) of an ensemble of 20 constrained (solid lines) and unconstrained (dashed lines) realizations. (In agreement with the CF2 analysis of Nusser & Davis, and the COMPOSITE database of Feldman, Hudson & Watkins.)

13/34

Likelihood analysis: bulk velocity (Hoffman, Nusser, Courtois & Tully 2016)

Bulk velocity of a sphere of radius R:

$$B^{WF}_{lpha} = rac{1}{V_R} \int_{r < R} \mathrm{d}^3 \mathrm{r} \, \, v^{WF}_{lpha}(\mathbf{r})$$

Bulk velocity likelihood function:

$$\begin{split} \mathcal{L}(B_{a,\alpha}^{WF}|\text{model}) = & \frac{1}{\sqrt{\det(\left\langle B_{a,\alpha}^{WF}B_{b,\beta}^{WF}\right\rangle)}} \\ & \exp\left[-\frac{B_{a,\alpha}^{WF}\left\langle B_{a,\alpha}^{WF}B_{b,\beta}^{WF}\right\rangle^{-1}B_{b,\beta}^{WF}}{2}\right] \end{split}$$

Bulk velocity auto-covariance matrix:

$$\left\langle B_{a,\alpha}^{WF} B_{b,\beta}^{WF} \right\rangle = \frac{1}{V_{R_a} V_{R_b}} \sum_{i \in R_a} \sum_{j \in R_b} \xi_{\mu}^{\alpha}(\mathbf{r}_i) \xi_{\mu\mu\prime}^{-1} \xi_{\mu\prime}^{\beta}(\mathbf{r}_j)$$

14/34

CF2 data and WMAP Λ CDM model: χ^2 /d.o.f.

$$\chi^2/\mathrm{d.o.f.} = B_{a,\alpha}^{WF} \left\langle B_{a,\alpha}^{WF} B_{b,\beta}^{WF}
ight
angle^{-1} B_{b,\beta}^{WF} \ / \ N_{\mathrm{d.o.f.}}$$

The χ^2 /d.o.f. of the (bulk velocity) of the CF2 data lies within the 2σ for $R = 20, 30, ...150h^{-1}$ Mpc.

The CF2 data is consistent with the (WMAP) Λ CDM model (within the framework discussed here).

Method can be extended to include monopole and quadruple moments and to do parameters estimation. It can

gauge Malmquist bias corrections.

Cosmic web: V-web (Hoffman +, 2012)

Rescaling the shear tensor:

$$\Sigma_{lphaeta} = -rac{1}{2H_0} igg(rac{\partial v_lpha}{\partial r_eta} + rac{\partial v_eta}{\partial r_lpha} igg)$$

Eigenvalues and eigenvectors: $\{\lambda_i\} \& \{\hat{\mathbf{e}}_i\}$ (i=1,2,3)

Constructing the V-web:

- Issue 1: The velocity field needs to be spanned on a (regular) grid. [Clouds in Cell (CIC) is used in simulations.]
- Issue 2: Spatial derivatives entail finite resolution. [Gaussian smoothing is used in simulations.]
- Issue 3: Assume a smoothing length (r_s) and a threshold value λ_{th} .
- Web classification: number of eigenvalues above the threshold: knot (3), filament (2), sheet (1), void (0)
- Preferred directions: knots & voids no, filaments ê₃, sheets ê₁

Peculiar velocities

Representing a velocity field by flow lines:

• Let *s* be the line parameter. The line element $d\vec{l}$ is defined by:

 $d\vec{l} = (\hat{x}v_x + \hat{y}v_y + \hat{z}v_z)ds$

- The seed point of where the integration of a line starts needs to be determined (on a grid, at random, other options).
- Colour of the line represents the norm of the velocity vector.

The Local Group factory and Bayesian inference Conclusions Cosmography V-web of the near field The Great Repeller

CF2: density, velocity & V-web:

A 3D map of the Cosmic Web represented in terms of knots (red surfaces) and filaments (grey surface). Orientation and dimensions are provided by the three-arrows signpost located at the origin of the supergalactic coordinate system with its 2000 km/s long arrows pointing to the three cardinal directions (red, green, blue for SGX_SGY_SGZ_respectively)

.9 / 34

Cosmography V-web of the near field The Great Repeller

Conclusions

V-web and the 2MRS galaxies

The Supergalactic Plane: the V-web derived from the CF2/WF reconstruction (threshold λ_{th} = 0.03).

2MRS galaxies & V-web

34

Cosmography V-web of the near field The Great Repeller

The Local Group factory and Bayesian inference Conclusions

V-web classification of 2MRS galaxies

2MRS galaxies: void (upper-left, black), sheets (upper-lright, blue), filaments (lower-left, magenda), knots (lower-right, orange) (threshold $\lambda_{th} = 0.04$)

21/34

The Local Group factory and Bayesian inference Conclusions Cosmography V-web of the near field The Great Repeller

Volume and 2MRS galaxies web fraction

Volume (left) and number of (2MRS) galaxies (right) fractions in web elements voids (black), sheets (blue), filaments (red) and knots (green) as a function of threshold values (mean and scatter calculated over 20 CRs at $10h^{-1}$ Mpc Gaussian smoothing).

22/34

The Local Group factory and Bayesian inference Conclusions Cosmography V-web of the near field The Great Repeller

Cosmography: Great Repeller and Shapley Attractor

A face-on view of a slice $\pm 30 h^{-1} {
m Mpc}$ thick, normal to the direction of the pointing vector

 $\hat{r} = (0.604, 0.720, -0.342)$. Three different elements of the flow are presented: stream lines, red and grey surfaces present the knots and filaments of the V-web, and equipotential surfaces are shown in green and yellow. The yellow arrow indicates the direction of the CMB dipole.

The Local Group factory and Bayesian inference Conclusions Cosmography V-web of the near field The Great Repeller

A 3D view of the stream lines of the flow field (left panel) and of the anti-flow (right panel). Stream lines are seeded on a regular grid and are coloured according to the magnitude of the velocity, The knots and filaments of the V-web are shown for reference.

Cosmography V-web of the near field The Great Repeller

The Local Group factory and Bayesian inference Conclusions

What is the source of our motion w.r.t. the CMB?

Aitoff projection the Great Repeller, the Shapley Attractor, the CMB dipole, the bulk velocity and the three eigenvectors of the velocity shear tensor(evaluated across spheres of radius R.

25/34

The Local Group factory and Bayesian inference Conclusions Cosmography V-web of the near field The Great Repeller

The Great Repeller (GR) and the Shapley Attractor

The Great Repeller is responsible for the CMB dipole - it 'pushes' the LG. The Shapley Supercluster acts as an attractor that drives the tidal component of the local flow field.

Cosine of angles between a. Shapley Attractor and the 'expanding' eigenvector of the shear tensor; b. Great

Repeller and the bulk velocity - of spheres of radius R (mean and scatter).

The GR is located at:

 $[SGX, SGY, SGZ] \approx [110, -60, 100] h^{-1} Mpc$

CF2 constrained simulations of the local Universe

● BOX 500*h*⁻¹Mpc

● N=512³

- 15 constrained simulation and 10 random ones (for control)
- The local universe (out to a few tens of Mpc) is robustly constrained.
- Virgo: $M_{200} \sim$ (2.7 - 4.3) × 10¹⁴ h^{-1} M_{\odot}, within (3 - 4) h^{-1} Mpc from actual position.

Introduction The Copernican problem Methodology Results tory and Bayesian information

The Local Group factory and Bayesian inference

Conclusions

The Local Group factory (Carlesi et al 2016)

Constrained Local UniversE Simulations: A Local Group Factory

Edoardo Carlesi,¹ * Jenny G. Sorce,² Yehuda Hoffman,¹ Stefan Gottlöber,² Gustavo Yepes,^{3,4} Noam I. Libeskind,² Sergey V. Pilipenko,^{5,6} Alexander Knebe,^{3,4} Hélène Courtois,⁷ R. Brent Tully,⁸ Matthias Steinmetz²

SIMULATIONS

Name	N_{simu}	L_{bax}	R_{zoom}	m_p	z_{start}
SimuLN256	100	100	NO	5.26×10^{9}	60
SimuLN512	12	100	NO	6.57×10^{8}	80
SimuLGzoom	300	100	12	6.57×10^8	80

	RECOV	ERY OF	THE LO	CAL NEIGHBORHO	DOD
	mean	σ	_	simu	obs
$\mathbf{e}_1 \cdot \mathbf{e}_1^{WF}$	0.95	0.11	λ_1	0.174 ± 0.062	0.148 ± 0.038
$v_2 \cdot v_1^{WF}$	0.93	0.15	λ_2	0.052 ± 0.075	0.051 ± 0.039
$\mathbf{e}_3 \cdot \mathbf{e}_3^{WF}$	0.97	0.08	λ_1	-0.270 ± 0.074	-0.160 ± 0.033
	(a)			(b)	

Figure 4. Particle dominances in a 50⁻¹ Mpc adde doce of thickness 4.25⁻¹ Mpc showing the candidates M31 and MW in a single industries, along the N = Y, N = 2 and Y = 2 planes. Aim: To run a very large number of constrained simulations that 'mimic' the nearby universe. Motivation: Statistics of look-alike simulations

Bayesian inference: posterior distribution

 $P(X \mid ACDM, Cosmicflows data, LG model)$

X = mass, tangential velocity, merging history, ...

The sampling of the posterior distribution function is done by looking for pairs of halos that obey the LG model at the LG position in constrained simulations.

Local Group model

What is a LG?

- Simplest model: two halos, distance $d = (0.35 0.70)h^{-1}$ Mpc, physical radial velocity $v_r = (-135 -80)$ km s⁻¹, isolation
- More advanced: add tangential velocity (v_{tan})
- Even more advanced and less observationally motivated: add mass
- More physical: $(M, d, v_r, v_{tan}) \rightarrow (\text{energy, angular momentum})$ i.e. an orbit.
- Observationally constrained physical model: fix the phase on the orbit (to get the correct *d*, *v_r*, *v_{tan}*)
- Add galaxy formation considerations: e.g. quite recent merging history, disks

Bayesian inference: Virgo mass assembly history

"How did the Virgo cluster form?" Sorce, Gottloeber, Hoffman & Yepes 2016)

Virgo model

- How do we define a Virgo-like object?
- Mass $pprox (1-5)h^{-1}{
 m M}_{\odot}?$
- possible prediction: mass assembly history (MMAH)

Bayesian inference: Local Neighbourhood mass function

(Carlesi, Hoffman, Sorce & Gottloeber, in preparation)

The Local Volume (Bland-Hawthorn & Freeman, 2013)

"A word of caution... to properly survey the effects of environment ..., we need to study resolved stellar populations out to at least 20 Mpc (Bland-Hawthorn & Freeman 2006). ... A physical scale of 20 Mpc ... cover[s] the full range of galaxy environments, from voids to massive groups and clusters. This is ... the Local Universe or Local Volume, now recognized by the International Astronomical Union (Division H). ... [T] his volume falls within the domain of the ... CLUES All galaxies with masses equivalent to the LMC or larger can be imaged in most wavelength bands (e.g. x-rays, infrared, radio). ... In time, we fully expect near-field cosmological studies to extend to the Local Volume."

CLUES and the Local Volume

- The initial conditions of the Local Volume are very well constrained by the CLUES/CF2 machinery.
- In time, we fully expect near-field CONSTRAINED cosmological high resolution SIMULATIONS to extend to the Local Volume.
- The constrained simulations will test the Copernican hypothesis on the nature of the near-field.