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(McDonald & Seljak 2009),
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The first term in the Fisher matrix for each k-mode vanishes as
h�(k)i = hu(k)i = 0. However the second term containing the
covariance matrix for the two tracers remains. The covariance ma-
trix encapsulates both the cosmological information within the two
fields via their auto- and cross-correlations, and the noise properties
inherent in both fields.

For the density field the noise term is given solely by the in-
verse of the galaxy shot noise, n

g

(r)

�1. For the velocity field there
is a contribution from both the inverse of the galaxy shot noise,
n
u

(r)

�1, and the error on the measurements of the peculiar ve-
locities themselves �2

u

(x). In all cases we allow the noise to be
spatially varying, and the number densities of density and velocity
tracers to be independent. Typically only a subset of a sample of
galaxies with measured redshifts will have measured peculiar ve-
locities due to the increased signal-to-noise required. For a single
galaxy type, combining the correlations and noise for the two fields
results in the covariance matrix
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The nature of the covariance matrix is such that it is both a func-
tion of spatial coordinates r and fourier modes k. However, under
the ‘classical approximation’, which can be used so long as the
wavelengths of the modes of interest in the power spectra are much
smaller than the scale over which the noise varies (typically the
size of the survey), the volume V can be replaced with the integralR
d3x (Hamilton 1997; Abramo 2012; Koda et al. 2014). In this

case
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In this study we assume that the number density of a given
sample and the noise in the velocity measurements does not vary
across the sky area of the survey (although, as will be shown sub-
sequently, variations in the sky coverage can be accounted for by
computing sub-Fisher matrices for the different sky areas). Instead

we assume that the number density is only a function of the distance
between the observer and the object, r. In particular we assume that
the noise in the velocity measurements consists of a constant frac-
tional error, ✏, multiplied by the distance to the object, which arises
from the scatter in the astrophysical relations used to measure the
peculiar velocity, plus some random velocity dispersion caused by
the non-linear motions of the objects.
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We adopt a constant �
u,rand

= 300 kms

�1, but the fractional er-
ror differs depending on the method used to obtain the peculiar
velocities and will be given in Section 4. The additional presence
of a zero-point offset, as already detailed in Section 2.4.4, can also
be incorporated into �

u

. However it is important to note that the
origin and form of these two shot-noise-like components is very
different, with the two original, linear, components of �

u

arising
from statistical errors, whilst the zero-point offset is a systematic
error, logarithmic in nature.

As we assume that the number density and velocity error only
vary radially, we can make use of spherical symmetry to simplify
the integrals over the r- and k-vectors,

F
ij

=

⌦

sky

4⇡2

Z
r

max

0

r2dr

Z
k

max

k

min

k2dk

Z
1

0

dµ

Tr


C�1

(r, k, µ)
@C(r, k, µ)

@✓
i

C�1

(r, k, µ)
@C(r, k, µ)

@✓
j

�
. (37)

The integral is typically taken over k 2 [k
min

, k
max

] where for
this study we take separate values of k

min

for each tracer. For the
density field k

min

= 2⇡/L
max

where L
max

is roughly the largest
separation between two galaxies in the sample, whilst for the ve-
locity field we assume k

min

= 0 as the velocity field still encodes
information far beyond the boundaries of the survey. In practice
these two different limits are imposed by removing elements from
the covariance matrix where there is expected to be no contribution
from the power spectrum, i.e., (using the form in Eq. 34) C

11

= 0

for k < 2⇡/L
max

.

3.1 Fisher matrix for multiple tracers and surveys

For two independent tracers of the same density and
velocity fields, the covariance matrix now contains
16 elements and up to 10 unique power spectra,
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The noise terms on the diagonal of the covariance matrix differ for
each sample and tracer. Cross-correlating two samples eradicates
the noise terms (hence improving the constraining power) as the
noise is assumed to be uncorrelated between the two samples.

For any two surveys there is no guarantee that they will over-
lap completely in both the angular and radial directions, for in-
stance one survey could focus on the full-sky whilst the second

is only in the southern hemisphere, or the redshift range of one sur-
vey could be deeper than that of the other. In order to evaluate the
Fisher matrix it is necessary to split Eq. 37 into multiple parts. For
two surveys the first split is over the angular coordinates, where the
full Fisher matrix becomes the sum of the sub-Fisher matrices for
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The first term in the Fisher matrix for each k-mode vanishes as
h�(k)i = hu(k)i = 0. However the second term containing the
covariance matrix for the two tracers remains. The covariance ma-
trix encapsulates both the cosmological information within the two
fields via their auto- and cross-correlations, and the noise properties
inherent in both fields.

For the density field the noise term is given solely by the in-
verse of the galaxy shot noise, n

g

(r)

�1. For the velocity field there
is a contribution from both the inverse of the galaxy shot noise,
n
u

(r)

�1, and the error on the measurements of the peculiar ve-
locities themselves �2

u

(x). In all cases we allow the noise to be
spatially varying, and the number densities of density and velocity
tracers to be independent. Typically only a subset of a sample of
galaxies with measured redshifts will have measured peculiar ve-
locities due to the increased signal-to-noise required. For a single
galaxy type, combining the correlations and noise for the two fields
results in the covariance matrix
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The nature of the covariance matrix is such that it is both a func-
tion of spatial coordinates r and fourier modes k. However, under
the ‘classical approximation’, which can be used so long as the
wavelengths of the modes of interest in the power spectra are much
smaller than the scale over which the noise varies (typically the
size of the survey), the volume V can be replaced with the integralR
d3x (Hamilton 1997; Abramo 2012; Koda et al. 2014). In this

case
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In this study we assume that the number density of a given
sample and the noise in the velocity measurements does not vary
across the sky area of the survey (although, as will be shown sub-
sequently, variations in the sky coverage can be accounted for by
computing sub-Fisher matrices for the different sky areas). Instead

we assume that the number density is only a function of the distance
between the observer and the object, r. In particular we assume that
the noise in the velocity measurements consists of a constant frac-
tional error, ✏, multiplied by the distance to the object, which arises
from the scatter in the astrophysical relations used to measure the
peculiar velocity, plus some random velocity dispersion caused by
the non-linear motions of the objects.
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We adopt a constant �
u,rand

= 300 kms

�1, but the fractional er-
ror differs depending on the method used to obtain the peculiar
velocities and will be given in Section 4. The additional presence
of a zero-point offset, as already detailed in Section 2.4.4, can also
be incorporated into �

u

. However it is important to note that the
origin and form of these two shot-noise-like components is very
different, with the two original, linear, components of �

u

arising
from statistical errors, whilst the zero-point offset is a systematic
error, logarithmic in nature.

As we assume that the number density and velocity error only
vary radially, we can make use of spherical symmetry to simplify
the integrals over the r- and k-vectors,
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The integral is typically taken over k 2 [k
min

, k
max

] where for
this study we take separate values of k

min

for each tracer. For the
density field k

min

= 2⇡/L
max

where L
max

is roughly the largest
separation between two galaxies in the sample, whilst for the ve-
locity field we assume k

min

= 0 as the velocity field still encodes
information far beyond the boundaries of the survey. In practice
these two different limits are imposed by removing elements from
the covariance matrix where there is expected to be no contribution
from the power spectrum, i.e., (using the form in Eq. 34) C

11

= 0

for k < 2⇡/L
max

.

3.1 Fisher matrix for multiple tracers and surveys

For two independent tracers of the same density and
velocity fields, the covariance matrix now contains
16 elements and up to 10 unique power spectra,
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The noise terms on the diagonal of the covariance matrix differ for
each sample and tracer. Cross-correlating two samples eradicates
the noise terms (hence improving the constraining power) as the
noise is assumed to be uncorrelated between the two samples.

For any two surveys there is no guarantee that they will over-
lap completely in both the angular and radial directions, for in-
stance one survey could focus on the full-sky whilst the second

is only in the southern hemisphere, or the redshift range of one sur-
vey could be deeper than that of the other. In order to evaluate the
Fisher matrix it is necessary to split Eq. 37 into multiple parts. For
two surveys the first split is over the angular coordinates, where the
full Fisher matrix becomes the sum of the sub-Fisher matrices for
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(McDonald & Seljak 2009),
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The first term in the Fisher matrix for each k-mode vanishes as
h�(k)i = hu(k)i = 0. However the second term containing the
covariance matrix for the two tracers remains. The covariance ma-
trix encapsulates both the cosmological information within the two
fields via their auto- and cross-correlations, and the noise properties
inherent in both fields.

For the density field the noise term is given solely by the in-
verse of the galaxy shot noise, n

g

(r)

�1. For the velocity field there
is a contribution from both the inverse of the galaxy shot noise,
n
u

(r)

�1, and the error on the measurements of the peculiar ve-
locities themselves �2

u

(x). In all cases we allow the noise to be
spatially varying, and the number densities of density and velocity
tracers to be independent. Typically only a subset of a sample of
galaxies with measured redshifts will have measured peculiar ve-
locities due to the increased signal-to-noise required. For a single
galaxy type, combining the correlations and noise for the two fields
results in the covariance matrix
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The nature of the covariance matrix is such that it is both a func-
tion of spatial coordinates r and fourier modes k. However, under
the ‘classical approximation’, which can be used so long as the
wavelengths of the modes of interest in the power spectra are much
smaller than the scale over which the noise varies (typically the
size of the survey), the volume V can be replaced with the integralR
d3x (Hamilton 1997; Abramo 2012; Koda et al. 2014). In this

case
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In this study we assume that the number density of a given
sample and the noise in the velocity measurements does not vary
across the sky area of the survey (although, as will be shown sub-
sequently, variations in the sky coverage can be accounted for by
computing sub-Fisher matrices for the different sky areas). Instead

we assume that the number density is only a function of the distance
between the observer and the object, r. In particular we assume that
the noise in the velocity measurements consists of a constant frac-
tional error, ✏, multiplied by the distance to the object, which arises
from the scatter in the astrophysical relations used to measure the
peculiar velocity, plus some random velocity dispersion caused by
the non-linear motions of the objects.
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. (36)

We adopt a constant �
u,rand

= 300 kms

�1, but the fractional er-
ror differs depending on the method used to obtain the peculiar
velocities and will be given in Section 4. The additional presence
of a zero-point offset, as already detailed in Section 2.4.4, can also
be incorporated into �

u

. However it is important to note that the
origin and form of these two shot-noise-like components is very
different, with the two original, linear, components of �

u

arising
from statistical errors, whilst the zero-point offset is a systematic
error, logarithmic in nature.

As we assume that the number density and velocity error only
vary radially, we can make use of spherical symmetry to simplify
the integrals over the r- and k-vectors,
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The integral is typically taken over k 2 [k
min

, k
max

] where for
this study we take separate values of k

min

for each tracer. For the
density field k

min

= 2⇡/L
max

where L
max

is roughly the largest
separation between two galaxies in the sample, whilst for the ve-
locity field we assume k

min

= 0 as the velocity field still encodes
information far beyond the boundaries of the survey. In practice
these two different limits are imposed by removing elements from
the covariance matrix where there is expected to be no contribution
from the power spectrum, i.e., (using the form in Eq. 34) C

11

= 0

for k < 2⇡/L
max

.

3.1 Fisher matrix for multiple tracers and surveys

For two independent tracers of the same density and
velocity fields, the covariance matrix now contains
16 elements and up to 10 unique power spectra,
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The noise terms on the diagonal of the covariance matrix differ for
each sample and tracer. Cross-correlating two samples eradicates
the noise terms (hence improving the constraining power) as the
noise is assumed to be uncorrelated between the two samples.

For any two surveys there is no guarantee that they will over-
lap completely in both the angular and radial directions, for in-
stance one survey could focus on the full-sky whilst the second

is only in the southern hemisphere, or the redshift range of one sur-
vey could be deeper than that of the other. In order to evaluate the
Fisher matrix it is necessary to split Eq. 37 into multiple parts. For
two surveys the first split is over the angular coordinates, where the
full Fisher matrix becomes the sum of the sub-Fisher matrices for
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The first term in the Fisher matrix for each k-mode vanishes as
h�(k)i = hu(k)i = 0. However the second term containing the
covariance matrix for the two tracers remains. The covariance ma-
trix encapsulates both the cosmological information within the two
fields via their auto- and cross-correlations, and the noise properties
inherent in both fields.

For the density field the noise term is given solely by the in-
verse of the galaxy shot noise, n

g

(r)

�1. For the velocity field there
is a contribution from both the inverse of the galaxy shot noise,
n
u

(r)

�1, and the error on the measurements of the peculiar ve-
locities themselves �2

u

(x). In all cases we allow the noise to be
spatially varying, and the number densities of density and velocity
tracers to be independent. Typically only a subset of a sample of
galaxies with measured redshifts will have measured peculiar ve-
locities due to the increased signal-to-noise required. For a single
galaxy type, combining the correlations and noise for the two fields
results in the covariance matrix
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The nature of the covariance matrix is such that it is both a func-
tion of spatial coordinates r and fourier modes k. However, under
the ‘classical approximation’, which can be used so long as the
wavelengths of the modes of interest in the power spectra are much
smaller than the scale over which the noise varies (typically the
size of the survey), the volume V can be replaced with the integralR
d3x (Hamilton 1997; Abramo 2012; Koda et al. 2014). In this

case
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In this study we assume that the number density of a given
sample and the noise in the velocity measurements does not vary
across the sky area of the survey (although, as will be shown sub-
sequently, variations in the sky coverage can be accounted for by
computing sub-Fisher matrices for the different sky areas). Instead

we assume that the number density is only a function of the distance
between the observer and the object, r. In particular we assume that
the noise in the velocity measurements consists of a constant frac-
tional error, ✏, multiplied by the distance to the object, which arises
from the scatter in the astrophysical relations used to measure the
peculiar velocity, plus some random velocity dispersion caused by
the non-linear motions of the objects.
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We adopt a constant �
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= 300 kms

�1, but the fractional er-
ror differs depending on the method used to obtain the peculiar
velocities and will be given in Section 4. The additional presence
of a zero-point offset, as already detailed in Section 2.4.4, can also
be incorporated into �

u

. However it is important to note that the
origin and form of these two shot-noise-like components is very
different, with the two original, linear, components of �
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arising
from statistical errors, whilst the zero-point offset is a systematic
error, logarithmic in nature.

As we assume that the number density and velocity error only
vary radially, we can make use of spherical symmetry to simplify
the integrals over the r- and k-vectors,
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The integral is typically taken over k 2 [k
min

, k
max

] where for
this study we take separate values of k

min

for each tracer. For the
density field k

min

= 2⇡/L
max

where L
max

is roughly the largest
separation between two galaxies in the sample, whilst for the ve-
locity field we assume k

min

= 0 as the velocity field still encodes
information far beyond the boundaries of the survey. In practice
these two different limits are imposed by removing elements from
the covariance matrix where there is expected to be no contribution
from the power spectrum, i.e., (using the form in Eq. 34) C

11

= 0

for k < 2⇡/L
max

.

3.1 Fisher matrix for multiple tracers and surveys

For two independent tracers of the same density and
velocity fields, the covariance matrix now contains
16 elements and up to 10 unique power spectra,
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(38)

The noise terms on the diagonal of the covariance matrix differ for
each sample and tracer. Cross-correlating two samples eradicates
the noise terms (hence improving the constraining power) as the
noise is assumed to be uncorrelated between the two samples.

For any two surveys there is no guarantee that they will over-
lap completely in both the angular and radial directions, for in-
stance one survey could focus on the full-sky whilst the second

is only in the southern hemisphere, or the redshift range of one sur-
vey could be deeper than that of the other. In order to evaluate the
Fisher matrix it is necessary to split Eq. 37 into multiple parts. For
two surveys the first split is over the angular coordinates, where the
full Fisher matrix becomes the sum of the sub-Fisher matrices for
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(McDonald & Seljak 2009),
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The first term in the Fisher matrix for each k-mode vanishes as
h�(k)i = hu(k)i = 0. However the second term containing the
covariance matrix for the two tracers remains. The covariance ma-
trix encapsulates both the cosmological information within the two
fields via their auto- and cross-correlations, and the noise properties
inherent in both fields.

For the density field the noise term is given solely by the in-
verse of the galaxy shot noise, n

g

(r)

�1. For the velocity field there
is a contribution from both the inverse of the galaxy shot noise,
n
u

(r)

�1, and the error on the measurements of the peculiar ve-
locities themselves �2

u

(x). In all cases we allow the noise to be
spatially varying, and the number densities of density and velocity
tracers to be independent. Typically only a subset of a sample of
galaxies with measured redshifts will have measured peculiar ve-
locities due to the increased signal-to-noise required. For a single
galaxy type, combining the correlations and noise for the two fields
results in the covariance matrix

C(r,k) =
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The nature of the covariance matrix is such that it is both a func-
tion of spatial coordinates r and fourier modes k. However, under
the ‘classical approximation’, which can be used so long as the
wavelengths of the modes of interest in the power spectra are much
smaller than the scale over which the noise varies (typically the
size of the survey), the volume V can be replaced with the integralR
d3x (Hamilton 1997; Abramo 2012; Koda et al. 2014). In this

case
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In this study we assume that the number density of a given
sample and the noise in the velocity measurements does not vary
across the sky area of the survey (although, as will be shown sub-
sequently, variations in the sky coverage can be accounted for by
computing sub-Fisher matrices for the different sky areas). Instead

we assume that the number density is only a function of the distance
between the observer and the object, r. In particular we assume that
the noise in the velocity measurements consists of a constant frac-
tional error, ✏, multiplied by the distance to the object, which arises
from the scatter in the astrophysical relations used to measure the
peculiar velocity, plus some random velocity dispersion caused by
the non-linear motions of the objects.

�2

u

= (✏H
0

d)2 + �2

u,rand

. (36)

We adopt a constant �
u,rand

= 300 kms

�1, but the fractional er-
ror differs depending on the method used to obtain the peculiar
velocities and will be given in Section 4. The additional presence
of a zero-point offset, as already detailed in Section 2.4.4, can also
be incorporated into �

u

. However it is important to note that the
origin and form of these two shot-noise-like components is very
different, with the two original, linear, components of �

u

arising
from statistical errors, whilst the zero-point offset is a systematic
error, logarithmic in nature.

As we assume that the number density and velocity error only
vary radially, we can make use of spherical symmetry to simplify
the integrals over the r- and k-vectors,
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The integral is typically taken over k 2 [k
min

, k
max

] where for
this study we take separate values of k

min

for each tracer. For the
density field k

min

= 2⇡/L
max

where L
max

is roughly the largest
separation between two galaxies in the sample, whilst for the ve-
locity field we assume k

min

= 0 as the velocity field still encodes
information far beyond the boundaries of the survey. In practice
these two different limits are imposed by removing elements from
the covariance matrix where there is expected to be no contribution
from the power spectrum, i.e., (using the form in Eq. 34) C

11

= 0

for k < 2⇡/L
max

.

3.1 Fisher matrix for multiple tracers and surveys

For two independent tracers of the same density and
velocity fields, the covariance matrix now contains
16 elements and up to 10 unique power spectra,

C(r, k, µ) =
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(38)

The noise terms on the diagonal of the covariance matrix differ for
each sample and tracer. Cross-correlating two samples eradicates
the noise terms (hence improving the constraining power) as the
noise is assumed to be uncorrelated between the two samples.

For any two surveys there is no guarantee that they will over-
lap completely in both the angular and radial directions, for in-
stance one survey could focus on the full-sky whilst the second

is only in the southern hemisphere, or the redshift range of one sur-
vey could be deeper than that of the other. In order to evaluate the
Fisher matrix it is necessary to split Eq. 37 into multiple parts. For
two surveys the first split is over the angular coordinates, where the
full Fisher matrix becomes the sum of the sub-Fisher matrices for
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(McDonald & Seljak 2009),

F
ij

= V

Z
k

max

k

min

d3k

(2⇡)3
F

ij

(k) (32)

=

V

2

Z
k

max

k

min

d3k

(2⇡)3
Tr


C�1

@C
@✓

i

C�1

@C
@✓

j

�
. (33)

The first term in the Fisher matrix for each k-mode vanishes as
h�(k)i = hu(k)i = 0. However the second term containing the
covariance matrix for the two tracers remains. The covariance ma-
trix encapsulates both the cosmological information within the two
fields via their auto- and cross-correlations, and the noise properties
inherent in both fields.

For the density field the noise term is given solely by the in-
verse of the galaxy shot noise, n

g

(r)

�1. For the velocity field there
is a contribution from both the inverse of the galaxy shot noise,
n
u

(r)

�1, and the error on the measurements of the peculiar ve-
locities themselves �2

u

(x). In all cases we allow the noise to be
spatially varying, and the number densities of density and velocity
tracers to be independent. Typically only a subset of a sample of
galaxies with measured redshifts will have measured peculiar ve-
locities due to the increased signal-to-noise required. For a single
galaxy type, combining the correlations and noise for the two fields
results in the covariance matrix
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The nature of the covariance matrix is such that it is both a func-
tion of spatial coordinates r and fourier modes k. However, under
the ‘classical approximation’, which can be used so long as the
wavelengths of the modes of interest in the power spectra are much
smaller than the scale over which the noise varies (typically the
size of the survey), the volume V can be replaced with the integralR
d3x (Hamilton 1997; Abramo 2012; Koda et al. 2014). In this

case
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In this study we assume that the number density of a given
sample and the noise in the velocity measurements does not vary
across the sky area of the survey (although, as will be shown sub-
sequently, variations in the sky coverage can be accounted for by
computing sub-Fisher matrices for the different sky areas). Instead

we assume that the number density is only a function of the distance
between the observer and the object, r. In particular we assume that
the noise in the velocity measurements consists of a constant frac-
tional error, ✏, multiplied by the distance to the object, which arises
from the scatter in the astrophysical relations used to measure the
peculiar velocity, plus some random velocity dispersion caused by
the non-linear motions of the objects.
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d)2 + �2
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. (36)

We adopt a constant �
u,rand

= 300 kms

�1, but the fractional er-
ror differs depending on the method used to obtain the peculiar
velocities and will be given in Section 4. The additional presence
of a zero-point offset, as already detailed in Section 2.4.4, can also
be incorporated into �

u

. However it is important to note that the
origin and form of these two shot-noise-like components is very
different, with the two original, linear, components of �

u

arising
from statistical errors, whilst the zero-point offset is a systematic
error, logarithmic in nature.

As we assume that the number density and velocity error only
vary radially, we can make use of spherical symmetry to simplify
the integrals over the r- and k-vectors,
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The integral is typically taken over k 2 [k
min

, k
max

] where for
this study we take separate values of k

min

for each tracer. For the
density field k

min

= 2⇡/L
max

where L
max

is roughly the largest
separation between two galaxies in the sample, whilst for the ve-
locity field we assume k

min

= 0 as the velocity field still encodes
information far beyond the boundaries of the survey. In practice
these two different limits are imposed by removing elements from
the covariance matrix where there is expected to be no contribution
from the power spectrum, i.e., (using the form in Eq. 34) C

11

= 0

for k < 2⇡/L
max

.

3.1 Fisher matrix for multiple tracers and surveys

For two independent tracers of the same density and
velocity fields, the covariance matrix now contains
16 elements and up to 10 unique power spectra,

C(r, k, µ) =
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(38)

The noise terms on the diagonal of the covariance matrix differ for
each sample and tracer. Cross-correlating two samples eradicates
the noise terms (hence improving the constraining power) as the
noise is assumed to be uncorrelated between the two samples.

For any two surveys there is no guarantee that they will over-
lap completely in both the angular and radial directions, for in-
stance one survey could focus on the full-sky whilst the second

is only in the southern hemisphere, or the redshift range of one sur-
vey could be deeper than that of the other. In order to evaluate the
Fisher matrix it is necessary to split Eq. 37 into multiple parts. For
two surveys the first split is over the angular coordinates, where the
full Fisher matrix becomes the sum of the sub-Fisher matrices for
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(McDonald & Seljak 2009),
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The first term in the Fisher matrix for each k-mode vanishes as
h�(k)i = hu(k)i = 0. However the second term containing the
covariance matrix for the two tracers remains. The covariance ma-
trix encapsulates both the cosmological information within the two
fields via their auto- and cross-correlations, and the noise properties
inherent in both fields.

For the density field the noise term is given solely by the in-
verse of the galaxy shot noise, n

g

(r)

�1. For the velocity field there
is a contribution from both the inverse of the galaxy shot noise,
n
u

(r)

�1, and the error on the measurements of the peculiar ve-
locities themselves �2

u

(x). In all cases we allow the noise to be
spatially varying, and the number densities of density and velocity
tracers to be independent. Typically only a subset of a sample of
galaxies with measured redshifts will have measured peculiar ve-
locities due to the increased signal-to-noise required. For a single
galaxy type, combining the correlations and noise for the two fields
results in the covariance matrix

C(r,k) =

2

4
PAA

gg

(k) +

1

n̄

A

g

(r)
PAA

ug

(k)

PAA

ug

(k) PAA

uu

(k) +

(�

A

u

(r))2

n̄

A

u

(r)

3

5 . (34)

The nature of the covariance matrix is such that it is both a func-
tion of spatial coordinates r and fourier modes k. However, under
the ‘classical approximation’, which can be used so long as the
wavelengths of the modes of interest in the power spectra are much
smaller than the scale over which the noise varies (typically the
size of the survey), the volume V can be replaced with the integralR
d3x (Hamilton 1997; Abramo 2012; Koda et al. 2014). In this

case
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In this study we assume that the number density of a given
sample and the noise in the velocity measurements does not vary
across the sky area of the survey (although, as will be shown sub-
sequently, variations in the sky coverage can be accounted for by
computing sub-Fisher matrices for the different sky areas). Instead

we assume that the number density is only a function of the distance
between the observer and the object, r. In particular we assume that
the noise in the velocity measurements consists of a constant frac-
tional error, ✏, multiplied by the distance to the object, which arises
from the scatter in the astrophysical relations used to measure the
peculiar velocity, plus some random velocity dispersion caused by
the non-linear motions of the objects.
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. (36)

We adopt a constant �
u,rand

= 300 kms

�1, but the fractional er-
ror differs depending on the method used to obtain the peculiar
velocities and will be given in Section 4. The additional presence
of a zero-point offset, as already detailed in Section 2.4.4, can also
be incorporated into �

u

. However it is important to note that the
origin and form of these two shot-noise-like components is very
different, with the two original, linear, components of �

u

arising
from statistical errors, whilst the zero-point offset is a systematic
error, logarithmic in nature.

As we assume that the number density and velocity error only
vary radially, we can make use of spherical symmetry to simplify
the integrals over the r- and k-vectors,
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The integral is typically taken over k 2 [k
min

, k
max

] where for
this study we take separate values of k

min

for each tracer. For the
density field k

min

= 2⇡/L
max

where L
max

is roughly the largest
separation between two galaxies in the sample, whilst for the ve-
locity field we assume k

min

= 0 as the velocity field still encodes
information far beyond the boundaries of the survey. In practice
these two different limits are imposed by removing elements from
the covariance matrix where there is expected to be no contribution
from the power spectrum, i.e., (using the form in Eq. 34) C

11

= 0

for k < 2⇡/L
max

.

3.1 Fisher matrix for multiple tracers and surveys

For two independent tracers of the same density and
velocity fields, the covariance matrix now contains
16 elements and up to 10 unique power spectra,

C(r, k, µ) =
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The noise terms on the diagonal of the covariance matrix differ for
each sample and tracer. Cross-correlating two samples eradicates
the noise terms (hence improving the constraining power) as the
noise is assumed to be uncorrelated between the two samples.

For any two surveys there is no guarantee that they will over-
lap completely in both the angular and radial directions, for in-
stance one survey could focus on the full-sky whilst the second

is only in the southern hemisphere, or the redshift range of one sur-
vey could be deeper than that of the other. In order to evaluate the
Fisher matrix it is necessary to split Eq. 37 into multiple parts. For
two surveys the first split is over the angular coordinates, where the
full Fisher matrix becomes the sum of the sub-Fisher matrices for
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(McDonald & Seljak 2009),
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The first term in the Fisher matrix for each k-mode vanishes as
h�(k)i = hu(k)i = 0. However the second term containing the
covariance matrix for the two tracers remains. The covariance ma-
trix encapsulates both the cosmological information within the two
fields via their auto- and cross-correlations, and the noise properties
inherent in both fields.

For the density field the noise term is given solely by the in-
verse of the galaxy shot noise, n

g

(r)

�1. For the velocity field there
is a contribution from both the inverse of the galaxy shot noise,
n
u

(r)

�1, and the error on the measurements of the peculiar ve-
locities themselves �2

u

(x). In all cases we allow the noise to be
spatially varying, and the number densities of density and velocity
tracers to be independent. Typically only a subset of a sample of
galaxies with measured redshifts will have measured peculiar ve-
locities due to the increased signal-to-noise required. For a single
galaxy type, combining the correlations and noise for the two fields
results in the covariance matrix
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The nature of the covariance matrix is such that it is both a func-
tion of spatial coordinates r and fourier modes k. However, under
the ‘classical approximation’, which can be used so long as the
wavelengths of the modes of interest in the power spectra are much
smaller than the scale over which the noise varies (typically the
size of the survey), the volume V can be replaced with the integralR
d3x (Hamilton 1997; Abramo 2012; Koda et al. 2014). In this

case
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In this study we assume that the number density of a given
sample and the noise in the velocity measurements does not vary
across the sky area of the survey (although, as will be shown sub-
sequently, variations in the sky coverage can be accounted for by
computing sub-Fisher matrices for the different sky areas). Instead

we assume that the number density is only a function of the distance
between the observer and the object, r. In particular we assume that
the noise in the velocity measurements consists of a constant frac-
tional error, ✏, multiplied by the distance to the object, which arises
from the scatter in the astrophysical relations used to measure the
peculiar velocity, plus some random velocity dispersion caused by
the non-linear motions of the objects.
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. (36)

We adopt a constant �
u,rand

= 300 kms

�1, but the fractional er-
ror differs depending on the method used to obtain the peculiar
velocities and will be given in Section 4. The additional presence
of a zero-point offset, as already detailed in Section 2.4.4, can also
be incorporated into �

u

. However it is important to note that the
origin and form of these two shot-noise-like components is very
different, with the two original, linear, components of �

u

arising
from statistical errors, whilst the zero-point offset is a systematic
error, logarithmic in nature.

As we assume that the number density and velocity error only
vary radially, we can make use of spherical symmetry to simplify
the integrals over the r- and k-vectors,

F
ij

=

⌦

sky

4⇡2

Z
r

max

0

r2dr

Z
k

max

k

min

k2dk

Z
1

0

dµ

Tr


C�1

(r, k, µ)
@C(r, k, µ)

@✓
i

C�1

(r, k, µ)
@C(r, k, µ)

@✓
j

�
. (37)

The integral is typically taken over k 2 [k
min

, k
max

] where for
this study we take separate values of k

min

for each tracer. For the
density field k

min

= 2⇡/L
max

where L
max

is roughly the largest
separation between two galaxies in the sample, whilst for the ve-
locity field we assume k

min

= 0 as the velocity field still encodes
information far beyond the boundaries of the survey. In practice
these two different limits are imposed by removing elements from
the covariance matrix where there is expected to be no contribution
from the power spectrum, i.e., (using the form in Eq. 34) C

11

= 0

for k < 2⇡/L
max

.

3.1 Fisher matrix for multiple tracers and surveys

For two independent tracers of the same density and
velocity fields, the covariance matrix now contains
16 elements and up to 10 unique power spectra,

C(r, k, µ) =

2

666664
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B

u

(r)

3

777775
(38)

The noise terms on the diagonal of the covariance matrix differ for
each sample and tracer. Cross-correlating two samples eradicates
the noise terms (hence improving the constraining power) as the
noise is assumed to be uncorrelated between the two samples.

For any two surveys there is no guarantee that they will over-
lap completely in both the angular and radial directions, for in-
stance one survey could focus on the full-sky whilst the second

is only in the southern hemisphere, or the redshift range of one sur-
vey could be deeper than that of the other. In order to evaluate the
Fisher matrix it is necessary to split Eq. 37 into multiple parts. For
two surveys the first split is over the angular coordinates, where the
full Fisher matrix becomes the sum of the sub-Fisher matrices for
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(McDonald & Seljak 2009),

F
ij

= V

Z
k

max

k

min

d3k

(2⇡)3
F

ij

(k) (32)

=

V

2

Z
k

max

k

min

d3k

(2⇡)3
Tr


C�1

@C
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i

C�1

@C
@✓

j

�
. (33)

The first term in the Fisher matrix for each k-mode vanishes as
h�(k)i = hu(k)i = 0. However the second term containing the
covariance matrix for the two tracers remains. The covariance ma-
trix encapsulates both the cosmological information within the two
fields via their auto- and cross-correlations, and the noise properties
inherent in both fields.

For the density field the noise term is given solely by the in-
verse of the galaxy shot noise, n

g

(r)

�1. For the velocity field there
is a contribution from both the inverse of the galaxy shot noise,
n
u

(r)

�1, and the error on the measurements of the peculiar ve-
locities themselves �2

u

(x). In all cases we allow the noise to be
spatially varying, and the number densities of density and velocity
tracers to be independent. Typically only a subset of a sample of
galaxies with measured redshifts will have measured peculiar ve-
locities due to the increased signal-to-noise required. For a single
galaxy type, combining the correlations and noise for the two fields
results in the covariance matrix

C(r,k) =

2

4
PAA

gg

(k) +

1

n̄

A

g

(r)
PAA

ug

(k)
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ug

(k) PAA

uu
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(r))2
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A

u

(r)

3

5 . (34)

The nature of the covariance matrix is such that it is both a func-
tion of spatial coordinates r and fourier modes k. However, under
the ‘classical approximation’, which can be used so long as the
wavelengths of the modes of interest in the power spectra are much
smaller than the scale over which the noise varies (typically the
size of the survey), the volume V can be replaced with the integralR
d3x (Hamilton 1997; Abramo 2012; Koda et al. 2014). In this

case

F
ij

=

1

2

Z
d3xd3k

(2⇡)3
Tr


C�1

@C
@✓

i

C�1

@C
@✓

j

�
(35)

In this study we assume that the number density of a given
sample and the noise in the velocity measurements does not vary
across the sky area of the survey (although, as will be shown sub-
sequently, variations in the sky coverage can be accounted for by
computing sub-Fisher matrices for the different sky areas). Instead

we assume that the number density is only a function of the distance
between the observer and the object, r. In particular we assume that
the noise in the velocity measurements consists of a constant frac-
tional error, ✏, multiplied by the distance to the object, which arises
from the scatter in the astrophysical relations used to measure the
peculiar velocity, plus some random velocity dispersion caused by
the non-linear motions of the objects.

�2

u

= (✏H
0

d)2 + �2

u,rand

. (36)

We adopt a constant �
u,rand

= 300 kms

�1, but the fractional er-
ror differs depending on the method used to obtain the peculiar
velocities and will be given in Section 4. The additional presence
of a zero-point offset, as already detailed in Section 2.4.4, can also
be incorporated into �

u

. However it is important to note that the
origin and form of these two shot-noise-like components is very
different, with the two original, linear, components of �

u

arising
from statistical errors, whilst the zero-point offset is a systematic
error, logarithmic in nature.

As we assume that the number density and velocity error only
vary radially, we can make use of spherical symmetry to simplify
the integrals over the r- and k-vectors,

F
ij

=

⌦

sky

4⇡2

Z
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max

0

r2dr

Z
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. (37)

The integral is typically taken over k 2 [k
min

, k
max

] where for
this study we take separate values of k

min

for each tracer. For the
density field k

min

= 2⇡/L
max

where L
max

is roughly the largest
separation between two galaxies in the sample, whilst for the ve-
locity field we assume k

min

= 0 as the velocity field still encodes
information far beyond the boundaries of the survey. In practice
these two different limits are imposed by removing elements from
the covariance matrix where there is expected to be no contribution
from the power spectrum, i.e., (using the form in Eq. 34) C

11

= 0

for k < 2⇡/L
max

.

3.1 Fisher matrix for multiple tracers and surveys

For two independent tracers of the same density and
velocity fields, the covariance matrix now contains
16 elements and up to 10 unique power spectra,

C(r, k, µ) =

2

666664
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777775
(38)

The noise terms on the diagonal of the covariance matrix differ for
each sample and tracer. Cross-correlating two samples eradicates
the noise terms (hence improving the constraining power) as the
noise is assumed to be uncorrelated between the two samples.

For any two surveys there is no guarantee that they will over-
lap completely in both the angular and radial directions, for in-
stance one survey could focus on the full-sky whilst the second

is only in the southern hemisphere, or the redshift range of one sur-
vey could be deeper than that of the other. In order to evaluate the
Fisher matrix it is necessary to split Eq. 37 into multiple parts. For
two surveys the first split is over the angular coordinates, where the
full Fisher matrix becomes the sum of the sub-Fisher matrices for
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the two non-overlapping sky areas and the overlap region.

F
ij

= F
ij

(⌦

sky,A

) + F
ij

(⌦

sky,B

) + F
ij

(⌦

sky,AB

) (39)

For example for a full-sky survey A and a hemispherical survey B
the Fisher matrix is calculated as the sum of the sub-Fisher matrix
for the northern 2⇡ steradians of the sky with the components of
the covariance matrix dependent on sample B removed plus the
sub-Fisher matrix for the 2⇡ southern steradians of the sky with all
terms in Eq. 38 retained. In this case the second sample B has no
non-overlapping contribution.

Even after splitting the full Fisher matrix in sub-matrices for
different angular regions, the overlapping area must still split up
further as the two samples may not overlap fully in redshift. Hence
the term F

ij

(⌦

AB

) must be further divided into three integrals over
the radial coordinates,

F
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) =
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(40)

This approach is valid under the classical approximation, the
derivation of which can also simply be thought of as a sum sub-
Fisher matrices. Hence, this approach remains applicable under the
condition that the modes of interest remain smaller than each sub
volume considered. For the combination of surveys considered in
this paper, the sub-volumes still remain large enough for this ap-
proximation to hold.

One final thing to note is that with more spectra comes a larger
number of k

min

depending on the type of spectra. For all spectra
involving the velocity field for either survey we still take k

min

= 0

whilst for the two galaxy-galaxy spectra we take different k
min

based on the L
max

of each sample and the L
max

between samples.

4 DATASETS

4.1 2MASS Tully-Fisher Survey

The 2MASS Tully-Fisher (2MTF, Masters et al. 2008; Hong et al.
2013; Masters et al. 2014; Hong et al. 2014) survey is an all-sky
survey of ⇠ 2000 nearby, bright spiral galaxies, with measured
redshifts and ‘true’ distances derived from fitting the Tully-Fisher
relation to measured HI line widths.

HI measurements of the galaxies are recovered from archival
data in the Cornell HI digital archive (Springob et al. 2005), sup-
plemented by additional observations by the Green Bank Telescope
(GBT) (Masters et al. 2014), the Parkes radio telescope (Hong et
al. 2013) and the ALFALFA survey (Haynes et al. 2011). The con-
version of these measurements into estimates of the logarithmic
distance ratio for each galaxy, that is the ratio between the ‘true’
distance and the distance inferred from the galaxy’s redshift, are
presented in Hong et al. (2013, 2014), alongside corrections for
Malmquist bias.

The final 2MTF sample covers the full-sky except for galactic
latitudes |b| < 5

�, where galactic dust prevents accurate obser-
vations.For these forecasts we hence assume a sky-area of 3.65⇡
steradians. It should be noted that the nature of the combined HI
observations from the GBT, Parkes and ALFALFA data results in
an inhomogenous sky coverage for the 2MTF, with fewer galaxies
with � < �40

� than would be expected.The number density below
� = �40

� is approximately a factor of 2 lower than that above this

declination. Bulk flow measurements using the 2MTF data account
for this using a weighting scheme, as would future cosmological
measurements. However, for this paper we do not treat the two sep-
arate sky areas separately, as we expect this inhomogeneity will
have little impact on the forecasts.

The number density of the 2MTF sample is shown in Figure 3
alongside the other samples used in the study. For the forecasts in
this paper we assume a fractional velocity error of ✏ = 0.22 (Hong
et al. 2014) and k

min

= 0.032hMpc

�1 for the forecasts using the
density field.

A key parameter in the Fisher matrix forecasts involving the
density field is the galaxy bias for a particular sample. Several past
studies have looked at the galaxy bias of HI selected samples, in-
cluding data from the same surveys that are used to form the 2MTF
sample. Typical values for the bias of neutral hydrogen with respect
to the underlying dark matter measured using simulations and ob-
servations are found be be ⇠ 0.7 � 1.0 with an uncertainty of 0.2
(Basilakos et al. 2007; Martin et al. 2012; Davé et al. 2013; Hopp-
mann et al. 2015; Padmanabhan et al. 2015). However, though the
2MTF galaxies are chosen to be gas-rich, the sample itself is se-
lected from IR photometry, and so would be typically expected to
have a higher bias than a fully HI selected sample. Looking at fore-
casts for the 2MTF survey using different values for the bias be-
tween 0.7 and 1.0, we find all of our constraints to be insensitive
to the exact value that we use. The velocity field forecasts are in-
dependent of the bias, and for the combined velocity and density
forecasts for the 2MTF sample alone and in combination with other
surveys, the majority of the information and improvement on f�

8

still comes from the peculiar velocity measurements. As such we
adopt a value of b = 1.0 for all our quoted forecasts.

4.2 6-degree Field Galaxy Survey

The 6-degree Field Galaxy Survey (6dFGS, Jones et al. 2004, 2005,
2009) is a combined galaxy redshift and peculiar velocity survey of
early-type galaxies within z 6 0.15, which covers the full south-
ern sky with the exception of the region about the galactic plane
with |b| < 10

�. The velocity subsample consists of galaxies with
z 6 0.05, with peculiar velocities derived using the Fundamental
plane relation, calibrated in Magoulas et al. (2012). The full Funda-
mental plane catalogue is presented in Campbell et al. (2014) and
subsequent measurements of the logarithmic distance ratios for the
galaxies are given in Springob et al. (2014).

Both the redshift sample, containing ⇠ 110, 000 galaxies, and
the peculiar velocity subsample of ⇠ 8800 galaxies will be used
within this study, to forecast constraints on measuring the velocity
and density fields from the velocity subsample alone, or through
combination with the full redshift survey. The number density of
these two samples is shown in Figure 3. Fisher matrix forecasts
for the density field only and for the combination of density and
velocity fields measured from the velocity sample have been pre-
sented in Beutler et al. (2012) and Koda et al. (2014) respectively.
In this study we go one further and look at the combined constraints
from the velocity subsample and full redshift survey combined, and
from combinations of 6dFGS galaxies with other surveys. For con-
sistency with the previous works, we adopt the same bias parameter
b = 1.4 and sky coverage ⌦

sky

= 1.65⇡ steradians. We use a frac-
tional distance error of ✏ = 0.26 as quoted in Johnson et al. (2014)
and k

min

= 0.02hMpc

�1

(0.008hMpc

�1

) for the forecasts us-
ing the density field from the velocity subsample and full redshift
survey repsectively.
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on quasi-linear scales. For our forecasts the majority of the in-
formation on the linear growth factor comes from large scales,
k < 0.1hMpc

�1, where RPT is reasonably reliable and as such
we deem this approach sufficient for our needs.

2.2 Redshift-space galaxy power spectra

Under the assumption of a linear, stochastic bias and within the
plane-parallel approximation, the redshift space galaxy density
field can be written in terms of the underlying matter density as

�
g

(k, µ) = D
g

(k, µ,�
g

)[(b+ fµ2

)�
m

(k) + ✏] (1)

(Dekel & Lahav 1999; Taylor & Watts 2001; Burkey & Taylor
2004) where �

m

is the matter density, f is the linear growth rate of
structure, µ is the cosine of the angle between the wave-vector and
the observer’s line of sight and ✏ is a stochastic noise term with the
properties h✏i = 0, and variance �2

✏

. D
g

parameterises the damp-
ing of the density field due to non-linear redshift space distortions.
We adopt the Lorentzian damping model

D
g

(k, µ,�
g

) =


1 +

(kµ�
g

)

2

2

��1/2

, (2)

where �
g

is related to the pairwise velocity dispersion between
pairs of galaxies.

Also in the linear regime, where the vorticity of the dark
matter velocity field is negligible, the line-of-sight velocity field,
u(k, µ), measured in redshift space from a set of galaxies can also
be related to the velocity divergence, ✓(k) of the underlying matter
distribution,

u(k, µ) = �aHfµD
u

(k,�
u

)

k
✓(k). (3)

Again redshift space distortions introduce a damping term D
u

,
which for this work is assumed to be a sinc function (Koda et al.
2014)

D
u

(k,�
u

) = sinc(k�
u

). (4)

The dark matter density and velocity divergence fields are in-
timately linked via the continuity equation, giving rise to the pre-
viously mentioned set of auto- and cross-power spectra P

mm

, P
m✓

and P
✓✓

. Using Eqs. 1, 3, and the cross-correlation coefficient, r
g

between the velocity and density fields as defined by Dekel & La-
hav (1999), these can be used to formulate expressions for the auto-
and cross-power spectra measured from a set of galaxies in redshift-
space,

PAA

gg

(k, µ) = (��2
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+ 2r
g

��1
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+ µ4

)f2D2

g
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mm

(k), (5)
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uu

(k, µ) = (aHµ)2k�2f2D2

u

P
✓✓

(k). (7)

where �
A

= f/b
A

. Note that PAA

ug

(k, µ) = PAA

gu

(k, µ).
This trio of models was adopted and tested by Koda et al.

(2014) using the GiggleZ simulations (Poole et al. 2015). They find
these models to be a good fit to the redshift space power spectra
measured from the simulation for k < 0.2hMpc

�1, which is suf-
ficient for the forecasts within this study.

2.2.1 Parameter values

For our forecasts, on top of our fiducial cosmology, we assume a
value of f = ⌦

0.554

m

= 0.522, which matches the prediction from
General Relativity (Linder & Cahn 2007). Based on the best-fitting

values of the RSD damping parameters and cross-correlation coef-
ficient found by Koda et al. (2014), we adopt values of r

g

= 1.0,
�
g

= 4.24h�1

Mpc and �
u

= 13.0h�1

Mpc. The exact values
used for these nuisance parameters are expected to have little im-
pact on the predicted growth rate constraints. It should be noted that
for multiple tracers, as described in the next section, we marginalise
over multiple sets of these nuisance parameters, however these are
given the same fiducial values. As found by Koda et al. (2014),
these values have a slight dependence on halo mass, reflecting how
different halo masses and galaxy populations undergo non-linear
RSD in different ways. Different surveys, containing different sam-
ples of galaxies, could hence be expected to have different best-
fitting values for our non-linear RSD parameterisation, however,
again, as the forecasts are expected to be robust to the exact values
used, we use the same fiducial value for each survey.

2.3 Power spectra for multiple tracers

Taking the case of multiple tracers, A and B, of the same underlying
dark matter field, i.e., two galaxy samples measured from the same
survey or two overlapping galaxy surveys, there exists both three
additional unique power spectra associated with the correlation be-
tween two galaxies from sample B and 4 from cross-correlations
of the velocity and densities measured from the two samples. In
total there are 10 distinct power spectra that can be formulated.
However, in our fiducial model, it is assumed that both sets of
galaxies will trace the underlying velocity field in the same way,
i.e., there is no scale-dependent velocity bias, or rather the veloc-
ity bias is unity on all scales. In this case PAB

ug

= PBA

gu

= PBB

ug

,
PAB

gu

= PBA

ug

= PAA

ug

, and PAA

uu

= PAB

uu

= PBB

uu

. Hence the
only cross-spectra of interest between the two tracers is
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gg
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+µ4

)f2D2
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(8)

resulting in only 6 unique spectra overall. This assumption will be
relaxed in the following section.

2.4 Extensions to the standard formalism

In this study we wish to look at the ability of peculiar velocity
surveys to provide constraints on parameters beyond our fiducial
model that may produce a measurable signal or quantifiable sys-
tematic effect on the scales probed by the velocity field. How these
are incorporated into our models is given in this section.

An illustrative example of the effects of some of the extensions
to our models, for reasonable parameter choices (we use the same
values as for the TAIPAN dataset detailed in Section 4.3), is given
in Fig. 1.

2.4.1 Primordial non-Gaussianity

Under the local ansatz, primordial non-Gaussian perturbations aris-
ing from certain inflationary models have a Bardeen potential
quadratic about the Gaussian field �, i.e., � = �+f

NL

(�2�h�2i).
The parameter f

NL

quantifies the strength of the deviation from
Gaussianity. These same non-Gaussian perturbations introduce a
scale dependent bias in the clustering of tracers (Dalal et al. 2008;
Matarrese & Verde 2008), which can in turn be used to constrain
f
NL

and hence place limits on the type of inflation that took place
in the early universe. The change in the galaxy bias takes the form

b
tot

= b+�b (9)
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We	also	need	some	
model	power	spectra.	
Based	on	Koda	et.	al.,	
2014.	

+	second	survey	and	cross	spectra	between	surveys!	

We	then	extend	these	to	incorporate	primordial	non-Gaussianity,	velocity	
bias,	scale	dependent	bias	and	zero-point	offsets.	More	on	velocity	bias	
later	on	(others	not	in	this	talk,	but	please	talk	to	me	later!)	
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2MTF	
•  ~2000	T-F	spiral	galaxies	with	

redshi`s	
•  Full-sky	(except	b	<	|5o|)	
•  cz	<	17,000	km/s.	Low	redshi`	
•  b	=	1.0	
•  22%	distance	error	
•  Talks	by	Lister	Staveley-Smith	and	

Tao	Hong.	

6dFGRS/6dFGSv	
•  ~110,000	redshi`s	with	8,000	

FP	PV’s	
•  Southern	sky	(except	b	<	|10o|)	
•  Z	<	0.2	(0.06)	
•  b	=	1.4	
•  26%	distance	error	
•  Talks	by	Jeremy	Mould,	

ChrisKna	Magoulas,	Caitlin	
Adams	

Current	Surveys	
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Table 1. Fisher matrix forecasts for the percentage uncertainties on cosmological parameters using only information in the velocity field

Velocity Field Only k
max

= 0.1hMpc�1 k
max

= 0.2hMpc�1

Survey Parameters 100⇥ �(f�
8

) / f�
8

100⇥ �(�
u

) /�
u

100⇥ �(f�
8

) / f�
8

100⇥ �(�
u

) /�
u

2MTF f�
8

30.3 - 26.7 -
f�

8

, �
u

51.2 179.0 35.1 50.7

6dFGSv f�
8

25.1 - 24.3 -
f�

8

, �
u

39.2 170.5 32.6 95.9

2MTF + f�
8

20.5 - 18.8 -
6dFGSv f�

8

, �
u

33.2 134.7, 145.2 24.7 43.7, 73.5

TAIPAN f�
8

10.2 - 9.9 -
f�

8

, �
u

16.0 68.5 13.1 36.0

WALLABY + WNSHS f�
8

13.0 - 10.7 -
f�

8

, �
u

22.4 73.8 14.2 15.1

TAIPAN + f�
8

8.5 - 7.5 -
WALLABY + WNSHS f�

8

, �
u

13.7 58.6, 54.2 9.8 27.2, 13.2

Figure 4. 1� errors ratios on f�
8

for the peculiar velocity samples of the 2MTF, 6dFGSv, WALLABY+WNSHS and TAIPAN samples, separately and in
combination, as a function of the maximum k used in the forecasts. Higher k

max

signifies the inclusion of more non-linear information. Solid lines show the
forecasts assuming perfect knowledge of the nuisance parameter, �

u

, whilst the dashed lines are when this is marginalised over. In the case of two surveys
combined, separate nuisance parameters for each survey are used.

veys, in particular the addition of the 2MTF data to the 6dFGS red-
shift and velocity surveys, and the combination of the TAIPAN and
WALLABY+WNSHS redshifts and peculiar velocities. The con-
straints on the growth rate, galaxy bias and nuisance parameters for
different combinations of surveys are given in Table 2

In all cases we find that using the “free” redshift information
in the peculiar velocity samples has a significant effect on the con-
straints, even though there are more unknown nuisance parameters
to take into account. The measurements of the growth rate are im-
proved by 30� 50% for all samples, with greater improvement for
k
max

= 0.2hMpc

�1. This reflects the fact that the velocity field
produces stronger constraints on linear scales where the fractional
distance error has less effect, whilst including smaller scales has a
large effect for the redshift space measurements. We find that our
forecasts for the 6dFGSv survey are in good agreement with the
forecasts of Koda et al. (2014), although our constraints for WAL-
LABY+WNSHS and TAIPAN are even tighter as we include the

combination of the full redshift survey and the peculiar velocity
subsample. The constraints from the 6dFGSv are now slightly bet-
ter than 2MTF due to its higher number density, which reduces the
shot-noise in both the velocity power spectrum and density power
spectrum measurements and can no longer be compensated for by
the smaller fractional distance error in the 2MTF sample.

We find that there are significant gains to be had in combining
the full redshift and velocity surveys from 6dFGS, with constraints
on the growth rate improving by an additional 30% compared to the
case where we use the redshift information from the peculiar ve-
locity subsample only. We also find that the addition of the 2MTF
survey still improves the constraints compared to the 6dFGSv and,
surprisingly, the 6dFGSv+6dFGRS sample, even though there are
additional nuisance parameters to marginalise over. Figure 5 shows
the percentage improvement on the 1� errors for f�

8

as a func-
tion of k

max

when we add the 2MTF data. We find an almost con-
stant 20% improvement, regardless of the k

max

. This is due to the
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Figure 5. The ratio of the 1� errors on f�
8

using both the velocity and den-
sity fields for the 6dFGSv and 6dFGSv+6dFGRS samples with and without
the inclusion of the 2MTF data, as a function of k

max

. For all k
max

and
regardless of our knowledge of the nuisance parameters, we find that the
inclusion of the 2MTF data improves the constraints by ⇡ 20%. This is
remarkable when one considers that the number of galaxies being intro-
duced is very small compared to the size of the 6dFGSv+6dFGRS sample,
and highlights the constraining power afforded by only a small number of
peculiar velocity measurements.

Figure 6. A demonstration of the scale-dependent improvement on the f�
8

errors when combining the WALLABY+WNSHS and TAIPAN surveys.
The plot shows the ratio of the errors on f�

8

measured in bins of width
�k = 0.01hMpc�1 between the combined and separate surveys.

knowledge of the nuisance parameters. Such a constraint at low
redshift will be able to put very tight limits on possible extension
to General Relativity.

5.3 f
NL

constraints

In this section we investigate whether peculiar velocities can
be used to improve constraints on primordial, local-type, non-
Gaussianity via the parameter f

NL

. We expect the use of the ve-
locity field can partially break the degeneracy with bias and add
additional information from the cross spectra between the density

Table 3. 68% confidence intervals for f
NL

for the WALLABY+WNSHS
and TAIPAN surveys, separately and in combination, using k

max

=
0.2hMpc�1. We provide predictions for constraints from the density field
alone, and when combined with the velocity field assuming perfect knowl-
edge of the galaxy bias and marginalising over it.

f
NL

constraints �(f
NL

)
Survey Parameters Density Only Density + Velocity

TAIPAN f
NL

116.5 111.5
f
NL

, � 175.6 161.1

WALLABY+WNSHS f
NL

116.7 79.1
f
NL

, � 183.3 97.0

TAIPAN+ f
NL

52.5 46.0
WALLABY+WNSHS f

NL

, � 74.5 60.3

and velocity fields. Table 3 shows the predicted 1� errors on f
NL

for the WALLABY+WNSHS and TAIPAN surveys, and their com-
bination, using only the redshift information and with additional
information from the peculiar velocity subsample.

For the 2 surveys alone, we find that the inclusion of pe-
culiar velocities improves constraints by up to 40%, with larger
gains if we have to marginalise over the bias, as the velocity field
helps partially break the degeneracy between � and f

NL

. We find
that the velocity field gives stronger improvement for the WAL-
LABY+WNSHS survey than for TAIPAN, the latter of which is less
sensitive to primordial non-Gaussianity as it’s galaxy bias is closer
to 1. The combination of WALLABY+WNSHS and TAIPAN
vastly improves constraints compared to the two surveys alone, by
at least a factor of 2. The constraints on f

NL

are very sensitive
to the use of the multi-tracer technique (McDonald & Seljak 2009)
and the large difference between the bias of the TAIPAN and WAL-
LABY+WNSHS galaxies has a large effect. This is especially ap-
parent for these two samples as the additional scale-dependent
bias introduced by the primordial non-Gaussianity depends on
the factor b � 1, which acts in opposite directions for the WAL-
LABY+WNSHS and TAIPAN samples. Hence for a given value of
f
NL

, there is a large difference between the large scale power spec-
tra. However, we do find that when the two surveys are combined
the benefit of using the peculiar velocity subsamples is minimal, as
the degeneracy between � and f

NL

is already significantly reduced
by the use of two very different tracers of the density field.

Whilst the effect of the multi-tracer technique and peculiar
velocity measurements on the f

NL

constraints is interesting, it is
worth noting that for the two samples the constraints on f

NL

are
not competitive compared to other large-scale structure surveys
within the same time-frame. For instance, the Fisher matrix fore-
casts of Zhao et al. (2016) for the extended Baryon Oscillation
Spectroscopic Survey (eBOSS, Dawson et al. 2016) predict simi-
lar constraints using emission line-galaxies, but constraints that are
a factor of over 3 better using Luminous Red Galaxies. Combining
all the samples from this survey can give even better constraints
(�

f

NL

⇠ 15). This increased constraining power comes from the
much larger cosmological volume probed by the eBOSS survey and
the range of different biases probed; due to the k�2 dependence of
the scale-dependent bias from primordial non-Gaussianity, the con-
straints on f

NL

are very sensitive to the largest modes that can be
measured.
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Table 2. Fisher matrix forecasts for the percentage uncertainties on cosmological parameters using information in both the velocity and density fields

Combined Density and Velocity Fields 100⇥ �(✓
i

) / ✓
i

Survey Parameters f�
8

� r
g

�
u

�
g

k
max

= 0.1hMpc�1

2MTF f�
8

, � 19.4 19.1 - - -
f�

8

, �, r
g

, �
u

, �
g

33.9 33.3 3.6 113.9 622.6

6dFGSv f�
8

, � 15.9 16.3 - - -
f�

8

, �, r
g

, �
u

, �
g

24.9 24.3 4.7 103.1 370.4

6dFGSv + f�
8

, � 11.2 12.3 - - -
6dFGRS f�

8

, �, r
g

, �
u

, �
g

16.7 17.2 1.8 83.9 143.0

2MTF + f�
8

, � 12.4 13.9, 12.5 - - -
6dFGSv f�

8

, �, r
g

, �
u

, �
g

20.0 21.5, 19.4 3.2, 3.1 80.9, 90.2 462.1, 30.9

2MTF + f�
8

, � 9.0 12.1, 9.8 - - -
6dFGSv + 6dFGRS f�

8

, �, r
g

, �
u

, �
g

13.8 17.1, 14.0 2.7, 1.0 67.8, 77.1 358.1, 136.4

TAIPAN f�
8

, � 4.2 4.7 - - -
f�

8

, �, r
g

, �
u

, �
g

7.0 7.3 2.3 34.8 46.3

WALLABY + f�
8

, � 4.0 4.6 - - -
WNSHS f�

8

, �, r
g

, �
u

, �
g

6.3 6.5 0.3 25.5 86.1

TAIPAN + f�
8
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WALLABY + WNSHS f�

8

, �, r
g

, �
u

, �
g

4.6 4.7, 4.8 1.2, 0.3 28.7, 21.9 38.4, 62.0

k
max

= 0.2hMpc�1

2MTF f�
8

, � 14.8 16.5 - - -
f�

8

, �, r
g

, �
u

, �
g

20.8 21.2 3.5 27.4 92.6

6dFGSv f�
8

, � 12.8 14.0 - - -
f�

8

, �, r
g

, �
u

, �
g

17.6 17.9 4.7 32.8 45.7

6dFGSv + f�
8

, � 8.0 8.9 - - -
6dFGRS f�

8

, �, r
g

, �
u

, �
g

11.7 12.1 1.8 29.2 21.5

2MTF + f�
8

, � 9.7 11.4, 10.6 - - -
6dFGSv f�

8

, �, r
g

, �
u

, �
g

13.3 14.3, 13.5 3.2, 3.0 23.5, 30.3 71.6, 42.3

2MTF + f�
8

, � 6.8 8.6, 7.5 - - -
6dFGSv + 6dFGRS f�

8

, �, r
g

, �
u

, �
g

9.7 11.2, 10.0 2.6, 1.0 22.0, 28.3 59.5, 20.0

TAIPAN f�
8

, � 2.3 2.6 - - -
f�

8

, �, r
g

, �
u

, �
g

4.1 4.2 2.3 12.1 6.8

WALLABY + f�
8

, � 2.7 3.3 - - -
WNSHS f�

8

, �, r
g

, �
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, �
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4.2 4.4 0.3 6.8 12.9

TAIPAN + f�
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2.8 3.0, 3.1 1.1, 0.3 10.9, 6.4 5.7, 9.7

large overlap area and difference in bias between the 2MTF and
6dFGS, and the constraining power introduced by the additional
peculiar velocity measurements. It has already been shown that a
small number of peculiar velocity measurements can improve con-
straints on the growth rate compared to redshift information alone,
and adding the 2MTF data gives an additional 20% peculiar veloc-
ities compared to the 6dFGSv sample alone.

Finally, we see that combining the full WALLABY+WNSHS
and TAIPAN surveys also improves the constraints by ⇡ 25%

compared to the individual surveys. This is similar to the improve-
ment found when combining just the peculiar velocity subsamples,
which combined with the claim of Beutler et al. (2012) that this
combination does little for the constraints using the density field
alone, indicates that combining the peculiar velocity samples has
a sizeable impact on the statistical power of the samples, without
even considering the fact that such a combination would likely im-
prove the systematic robustness of the results too.

This improvement is also true for scale dependent measure-
ments of the growth rate, as shown in Fig. 6. Here we show the ratio
of the errors on the f�

8

measurement for the combined and sepa-
rate samples, for both the velocity and density field only, in bins of
width �k = 0.01hMpc

�1. We find an interesting trend for the ve-
locity field, which is that combining the two surveys improves the
constraints for the TAIPAN survey mostly on small scales, whilst
improving the results from WALLABY+WNSHS alone on large
scales. Hence the combination of the two surveys has much greater
protential for constraining the scale dependence of the growth rate
than either of these surveys individually. The trend is less appar-
ent for the constraints using both the velocity and density fields,
although combining these two still improves the individual con-
straints for every k-bin.

Overall we find that the combination of WALLABY+WNSHS
and TAIPAN has the ability to achieve a measurement error of be-
tween 2% and 3% at k

max

= 0.2hMpc

�1 depending on our
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Figure 5. The ratio of the 1� errors on f�
8

using both the velocity and den-
sity fields for the 6dFGSv and 6dFGSv+6dFGRS samples with and without
the inclusion of the 2MTF data, as a function of k

max

. For all k
max

and
regardless of our knowledge of the nuisance parameters, we find that the
inclusion of the 2MTF data improves the constraints by ⇡ 20%. This is
remarkable when one considers that the number of galaxies being intro-
duced is very small compared to the size of the 6dFGSv+6dFGRS sample,
and highlights the constraining power afforded by only a small number of
peculiar velocity measurements.

Figure 6. A demonstration of the scale-dependent improvement on the f�
8

errors when combining the WALLABY+WNSHS and TAIPAN surveys.
The plot shows the ratio of the errors on f�

8

measured in bins of width
�k = 0.01hMpc�1 between the combined and separate surveys.

knowledge of the nuisance parameters. Such a constraint at low
redshift will be able to put very tight limits on possible extension
to General Relativity.

5.3 f
NL

constraints

In this section we investigate whether peculiar velocities can
be used to improve constraints on primordial, local-type, non-
Gaussianity via the parameter f

NL

. We expect the use of the ve-
locity field can partially break the degeneracy with bias and add
additional information from the cross spectra between the density

Table 3. 68% confidence intervals for f
NL

for the WALLABY+WNSHS
and TAIPAN surveys, separately and in combination, using k

max

=
0.2hMpc�1. We provide predictions for constraints from the density field
alone, and when combined with the velocity field assuming perfect knowl-
edge of the galaxy bias and marginalising over it.

f
NL

constraints �(f
NL

)
Survey Parameters Density Only Density + Velocity

TAIPAN f
NL

116.5 111.5
f
NL

, � 175.6 161.1

WALLABY+WNSHS f
NL

116.7 79.1
f
NL

, � 183.3 97.0

TAIPAN+ f
NL

52.5 46.0
WALLABY+WNSHS f

NL

, � 74.5 60.3

and velocity fields. Table 3 shows the predicted 1� errors on f
NL

for the WALLABY+WNSHS and TAIPAN surveys, and their com-
bination, using only the redshift information and with additional
information from the peculiar velocity subsample.

For the 2 surveys alone, we find that the inclusion of pe-
culiar velocities improves constraints by up to 40%, with larger
gains if we have to marginalise over the bias, as the velocity field
helps partially break the degeneracy between � and f

NL

. We find
that the velocity field gives stronger improvement for the WAL-
LABY+WNSHS survey than for TAIPAN, the latter of which is less
sensitive to primordial non-Gaussianity as it’s galaxy bias is closer
to 1. The combination of WALLABY+WNSHS and TAIPAN
vastly improves constraints compared to the two surveys alone, by
at least a factor of 2. The constraints on f

NL

are very sensitive
to the use of the multi-tracer technique (McDonald & Seljak 2009)
and the large difference between the bias of the TAIPAN and WAL-
LABY+WNSHS galaxies has a large effect. This is especially ap-
parent for these two samples as the additional scale-dependent
bias introduced by the primordial non-Gaussianity depends on
the factor b � 1, which acts in opposite directions for the WAL-
LABY+WNSHS and TAIPAN samples. Hence for a given value of
f
NL

, there is a large difference between the large scale power spec-
tra. However, we do find that when the two surveys are combined
the benefit of using the peculiar velocity subsamples is minimal, as
the degeneracy between � and f

NL

is already significantly reduced
by the use of two very different tracers of the density field.

Whilst the effect of the multi-tracer technique and peculiar
velocity measurements on the f

NL

constraints is interesting, it is
worth noting that for the two samples the constraints on f

NL

are
not competitive compared to other large-scale structure surveys
within the same time-frame. For instance, the Fisher matrix fore-
casts of Zhao et al. (2016) for the extended Baryon Oscillation
Spectroscopic Survey (eBOSS, Dawson et al. 2016) predict simi-
lar constraints using emission line-galaxies, but constraints that are
a factor of over 3 better using Luminous Red Galaxies. Combining
all the samples from this survey can give even better constraints
(�

f

NL

⇠ 15). This increased constraining power comes from the
much larger cosmological volume probed by the eBOSS survey and
the range of different biases probed; due to the k�2 dependence of
the scale-dependent bias from primordial non-Gaussianity, the con-
straints on f

NL

are very sensitive to the largest modes that can be
measured.
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Table 5. Table detailing the effects of scale-dependent galaxy bias on the f�
8

constraints for the TAIPAN and WALLABY+WNSHS surveys. Columns give
the systematic offset from the fiducial value as a percentage of the 1� error, the percentage error on f�

8

with and without marginalisation over the value of b
⇣

,
and the constraints on b

⇣

. All results assume perfect knowledge of other nuisance parameters, only f�
8

and � are left free, and we set k
max

= 0.2hMpc�1.
The top half of the table gives the results when only the redshift samples are used, whilst the lower half shows results from combining the redshift survey with
the peculiar velocity samples.

Survey Percentage Bias (f�
8

, �) 100⇥ �(f�
8

) / f�
8

100⇥ �(f�
8

) / f�
8

Marginalised 100⇥ �(b
⇣

) / b
⇣

Density Field Only
TAIPAN 31.8 -421.9 2.6 2.6 4.5

WALLABY+WNSHS 2.4 -87.9 3.8 3.8 35.9

Velocity + Density Fields
TAIPAN 91.3 -402.4 2.3 2.4 4.5

WALLABY+WNSHS 48.8 -75.6 2.7 2.8 35.2

6.1 Fisher matrix bias formalism

Huterer & Takada (2005), Huterer et al. (2006) and Amara &
Réfrégier (2007) present a simple expression under the Fisher ma-
trix formalism that allows for quantification of the offsets of param-
eters from their fiducial values due to systematic bias. This offset,
�✓

i

, can be given by projecting the inverse of the true Fisher matrix
F along some bias vector B

�✓
j

=

X

i

(F�1

)

ij

B
i

(42)

where the bias vector is computed in a similar way to the Fisher
matrix,
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=

1
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i

C�1

(

˜C�C)

�
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C is the true covariance matrix and ˜C is the systematically bi-
ased covariance matrix. When we look at the effect of neglecting
scale-dependent bias, we compute the true covariance matrix and
Fisher matrix using model power spectra that include the scale-
dependence, whilst the biased covariance matrix is computed using
only linear galaxy bias, or a velocity bias of unity. When looking at
the effects of a zero-point offset, the true covariance is that without
any offset.

The parameter bias can then be compared to the expected error
on the parameter to gauge its significance. However, the presence
of the systematic error will also have an effect on the Fisher matrix
forecasts and subsequent parameter errors. Hence when comparing
the systematic bias to the error we use the Fisher matrix forecasts
including the systematic effect, i.e., using the model without veloc-
ity bias.

6.2 Scale-dependent galaxy bias

The above formalism is first used to investigate the effect of
neglecting scale-dependent galaxy bias on measurements of the
growth rate. The predicted systematic bias on the growth rate
as a percentage of the 1� errors for the TAIPAN and WAL-
LABY+WNSHS surveys is given in Table 5. We find that results
using just the density field are subject to only a small (< 0.2�)
shift in the values of f�

8

from their fiducial values. As also shown
in Table 5 any systematic bias is largely absorbed into the value
of the � and the linear galaxy bias, which is generally treated as
a nuisance parameter in measurements of the growth rate. This is
shown graphically as 1� confidence ellipses in Fig 8, where we
have normalised � to 1 for both surveys.

When information from the velocity field is also included, the

Figure 8. 68% forecasted confidence ellipses on f�
8

and � (normalised to
1 for both surveys) neglecting scale-dependent spatial bias for the TAIPAN
and WALLABY+WNSHS surveys. The predictions using only the density
field and using both the velocity and density field are shown as solid and
dashed contours respectively.

potential for systematically biased constraints on the growth rate
increases, reaching 1� for the TAIPAN survey. Combining the ve-
locity and density fields breaks the degeneracy between the growth
rate and galaxy bias, such that the systematic effects of neglecting
the scale-dependence of the galaxy bias are not able to be compen-
sated for as easily as for as when only the density field is used.

Also included in Table 5 are the constraints on f�
8

with and
without marginalising over the scale-dependent galaxy bias param-
eter b

⇣

, and the constraints on this parameter itself. We find that
even though neglecting it can cause systematic shifts, marginalis-
ing over b

⇣

actually has little effect on the constraints on the growth
rate. Similar results were found in Desjacques & Sheth (2010).

Rather than being just a nuisance parameter, the amplitude
of the scale-dependent bias may also contain interesting insight
into the link between galaxies and the underlying dark matter. In
this sense it is interesting to note that WALLABY+WNSHS, and
the TAIPAN survey especially, can be expected to produce strong
constraints on this scale dependence, with our forecasts predict-
ing ⇠ 36% and ⇠ 5% measurements of b

⇣

for these two datasets.
Whilst the use of velocity field information improves the con-
straints on the growth rate and linear galaxy bias, it does little to
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that scale-dependent galaxy bias exists on smaller scales (for recent
studies see Scoccimarro 2004; McDonald & Roy 2009; Chan et al.
2012; Baldauf et al. 2013; Saito et al. 2014 and references therein).
Several studies have looked at the impact of this on measurements
of the growth rate (Smith et al. 2007; Poole et al. 2015; Amendola et
al. 2015). To overcome this, measurements of the growth rate typ-
ically include higher order bias terms in the models (Beutler et al.
2014; Gil-Marı́n et al. 2015; Howlett et al. 2015) or truncate their
fits at scales where the bias is expected to remain linear (Beutler
et al. 2012; Samushia et al. 2014). In addition to being a poten-
tial source of systematic error, measuring the scale-dependence of
the galaxy bias can give interesting insight into the relationship be-
tween galaxies and their host dark matter halos.

Additionally, in the context of cosmological measurements. it
is usually assumed that the velocity divergence measured from a set
tracers perfectly follows the underlying velocity divergence field
exactly. That is, ✓

g

= b
vel

✓
m

where b
vel

= 1. However, several
studies (Desjacques 2008; Desjacques & Sheth 2010; Biagetti et
al. 2014; Baldauf et al. 2015) have presented arguments of how the
velocities of peaks in the density field may be statistically biased
with respect to the underlying velocity field in a scale dependent
way.

In recent years many studies have attempted to measure this
velocity bias and its effect by comparing the velocity power spec-
trum measured from simulated halos and the corresponding dark
matter field (de la Torre & Guzzo 2012; Elia et al. 2012; Jennings
et al. 2015; Zheng et al. 2015), however the magnitude of this ef-
fect remains largely uncertain due to numerical resolution issues
and difficulties in measuring the velocity power spectrum. Regard-
less, most studies agree that the effect of the velocity bias is small
for k < 0.1hMpc

�1, and hence one could argue that it remains
unimportant for current measurements of the growth rate of struc-
ture from peculiar velocities, which relies primarily on the infor-
mation from linear scales. Nonetheless, as the constraining power
of peculiar velocity surveys increases it is of interest to investigate
the effect this unknown parameter could have of constraints of the
growth rate. This is especially true for scale-dependent growth rate
measurements, where the scale dependence of the velocity bias can
be misconstrued as a signature of modified dark energy or gravity
models.

To investigate the possible effects of scale-dependent spatial
and velocity bias, we adopt the following model. Using the peaks
approach, Desjacques & Sheth (2010) show that the spatial bias of
peaks in the density field follows

b = b
⌫

+ b
⇣

k2, (16)

where b
⌫

is the standard linear bias. Similarly, the velocity bias has
a k2 dependence of the form
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are the normalisation of the scale dependence, both
of which depend on the characteristic scale and mass of the trac-
ers in question. Different values for these parameters for different
datasets will be used in this study. A reasonable choice of values
can be theoretically motivated for a given mass M using the spec-
tral moments of the matter power spectrum, �
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, smoothed within a
Gaussian filter of some radius, R. From Bardeen et al. (1986),
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Figure 2. The spectral moments and resulting normalisation of the scale-
dependent spatial and velocity biases, b
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and R
v

, for a range of halo masses
at z = 0 for our fiducial cosmology. Also identified is the typical halo mass
and normalisations adopted for the TAIPAN and WALLABY+WNSHS
datasets.
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In addition to the spectral moments, b
⇣

also depends on the peak
height ⌫ = �

sc

/�
0

and mean curvature ū. �
sc

= 1.686 is the
density threshold for spherical collapse. The mean curvature is also
a function of the peak height and �, albeit a rather complex one,
requiring numerical integration to solve fully. As the expressions
are lengthy, we do not reproduce them here, but they can be readily
found within the Appendices of Desjacques et al. (2010) (Eqs.A59-
A60 and the accompanying text). Approximate fitting functions for
the required integrals for peaks with height v >> 1 can be found
in Bardeen et al. (1986) (Eqs.4.4 and 4.5).

The spectral moments, b
⇣

and R
v

for a range of halo masses
are plotted in Fig. 2. We also highlight the typical halo masses we
assume for the TAIPAN and WALLABY+WNSHS datasets. The
corresponding values of b

⇣

and R
v

are given in Section 4. Elia et
al. (2012) found that the form of the scale-dependent spatial and
velocity bias was well matched to that measured from simulations.

In the presence of velocity bias the auto- and cross-power
spectra for a given sample are modified as follows:
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and similarly for a second sample, B. The scale-dependent spa-
tial bias can be absorbed into the � parameter as � ! (1/� +

b
⇣

k2/f)�1. Also note that in the presence of velocity bias sev-
eral of the cross-spectra between the two fields can no longer be
written in terms of the correlation between two points on the same
field as each sample my trace the velocity field differently, i.e.,
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Table 6. Table detailing the effects of velocity bias on the f�
8

constraints for the TAIPAN and WALLABY+WNSHS surveys. Columns give the systematic
offset from the fiducial value as a percentage of the 1� error, and the percentage error on f�

8

with and without marginalisation over the value of R
v

, for
k
max

= 0.2hMpc�1. The top half of the table gives the results when only the peculiar velocity samples are used, whilst the lower half shows results from
combining the velocity and density fields information.

Survey Parameters Percentage Bias 100⇥ �(f�
8

) / f�
8

100⇥ �(f�
8

) / f�
8

Marginalised 100⇥ �(R
v

) /R
v

Velocity Field Only
TAIPAN f�

8

-26.3 9.9 14.0 192.7
f�

8

, �
u

-0.6 13.7 16.1 2821.6

WALLABY+WNSHS f�
8

-13.9 10.8 15.9 400.0
f�

8

, �
u

-2.0 14.2 18.6 2027.7

Velocity + Density Fields
TAIPAN f�

8

, � -589.8 2.6 3.6 9.4
f�

8

, �, r
g

, �
u

, �
g

33.3 4.1 4.9 111.3

WALLABY+WNSHS f�
8

, � -92.7 2.8 4.0 57.2
f�

8

, �, r
g

, �
u

, �
g

0.7 4.2 4.2 369.8

improve the errors on b
⇣

as the velocity power spectrum is primar-
ily noise-dominated on quasi- and non-linear scales.

Whilst we have used a physically motivated model for the
form and normalisation of the scale-dependent bias, the ex-
act strength of the systematic effects of neglecting the scale-
dependence will be model-dependent. Nonetheless, these predic-
tions motivate more detailed study of the potential systematics due
to scale-dependent galaxy bias that could arise in these surveys.
This could be done using simulations that mimic the proposed
galaxy distributions. Overall, we suggest that a model accounting
for scale dependence in the galaxy bias should be used for the next
generation TAIPAN and WALLABY+WNSHS surveys, especially
as doing so seems to come at little cost to the growth rate con-
straints.

6.3 Velocity bias

We also investigate the systematic effects of neglecting velocity
bias on the TAIPAN and WALLABY+WNSHS surveys by calcu-
lating the systematic bias on f�

8

as a percentage of the 1� fore-
casted errors. The results are summarised in Table 6 considering
the case where we use just the velocity field, and when the velocity
and density fields are combined, with k

max

= 0.1hMpc

�1 and
0.2hMpc

�1.
When using only the information in the velocity field and not

including RSD damping effects in our models, we find that we can
expect the constraints on f�

8

to be biased towards lower values by
up to 30% for the TAIPAN and WALLABY+WNSHS surveys at
k
max

= 0.2hMpc

�1, with some reduction in the systematic bias
for lower k

max

. The k2 dependence of the velocity bias means that
the reduction in power is more prevalent on small scales and the ef-
fect of neglecting the velocity bias becomes increasingly important
as we include smaller scale information.

Interestingly, we find that including and marginalising over
the RSD damping can effectively remove this bias on the f�

8

con-
straints as the damping of the power spectrum on small scales due
to velocity bias is similar to that caused by non-linear RSD. The
presence of velocity bias can be compensated for by assuming a
stronger non-linear damping term (larger �

u

). This means that the
value of �

u

is significantly biased whilst the constraints on f�
8

become unbiased. In the sense that �
u

is treated as a nuisance pa-
rameter, this means that we can neglect the effects of velocity bias
so long as a model with appropriate freedom in the non-linear RSD

Figure 9. 68% forecasted confidence ellipses on f�
8

and � (normalised
to 1 for both surveys) when velocity bias is neglected, for the TAIPAN
and WALLABY+WNSHS surveys. Our fiducial values are denoted by the
dashed lines, whilst neglecting velocity bias significantly shifts the mea-
sured values away from their fiducial ones (solid contours). This can be
compensated for if non-linear RSD is marginalised over (dashed contours).

damping is used. This assumption breaks down however if a strong
prior is placed on the value of �

u

(in which case, in the presence
of velocity bias, the data will likely prefer a value of �

u

outside the
prior range), or if �

u

is not treated solely as a nuisance parameter,
and one wishes to obtain information on, for instance, the non lin-
ear relationship between galaxies and their host dark matter halos.
In this case it becomes important to marginalise over the velocity
bias.

Also shown in Table 6 is the effect of this marginalisation on
the constraints on f�

8

. We find that marginalising over the R
v

pa-
rameter has a large effect on the recovered 1� errors for f�

8

, in-
creasing them by between 20% and 40%. Again this is in agree-
ment with the results of Desjacques & Sheth (2010).

When combining the density and velocity fields, the system-
atic effects of velocity bias are much more apparent. The presence
of velocity bias affects not just the velocity-velocity power spec-
trum but also the density-density power spectrum and the cross
spectrum between the two fields, such that the systematic effects
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Figure 10. 68% forecasted constraints on f�
8

in k-bins of width �k =
0.01hMpc�1 for the TAIPAN and WALLABY when neglecting the ef-
fect of velocity bias. Even though the true growth rate assumed here is
scale-independent (dashed line), the forecasts for TAIPAN in different k-
bins show a strong scale-dependence due to the k2 dependence of the ve-
locity bias.

are increased whilst the statistical errors on f�
8

are reduced by the
large increase in information. We find that when fitting the model
assuming perfect knowledge of the nuisance parameters the pres-
ence of velocity bias can bias the value of f�

8

away from its fidu-
cial value by nearly 1� for the WALLABY+WNSHS survey and
over 5� for the TAIPAN survey at k

max

= 0.2hMpc

�1. This is
further demonstrated in Fig. 9, where we plot the 68% confidence
regions on f�

8

and � (normalised to 1 for both surveys) with and
without including the effects of velocity bias in the model. We can
see that neglecting velocity bias reduces the measured value of f�

8

far from its true value.
The scale-dependent nature of velocity bias means that not

marginalising over this effect can result in measurements of the
growth rate that can appear to be scale-dependent and hence seem
to be a signature of modified gravity models. In particular if the
growth rate is measured in k-bins as per Fig. 6, then a scale-
independent growth rate can still appear scale-dependent in the
presence of velocity bias, to high significance for future surveys. In
Fig. 10 we plot the forecasted constraints on f�

8

for the TAIPAN
and WALLABY surveys in k-bins of width �k = 0.01hMpc

�1,
which is a similar procedure to that used in Macaulay et al. (2012)
and Johnson et al. (2014) to look for scale-dependence. We see that
ignoring the k dependence of the velocity bias causes a significant
scale-dependence to be measured in the growth rate which could be
easily taken as a sign of modified gravity.

6.4 Zero-point offsets

The final systematic we test is the effect of an offset between the
measured and true value of the zero-point of the astrophysical re-
lation used to infer each galaxy’s true distance. A zero-point offset
acts as a shot-noise term, raising/lowering the overall amplitude of
the velocity power spectrum. The effect of a zero-point offset on
measurements of the growth rate is presented in Table 7.

Even though we adopt a significantly higher value for the zero-
point offset than would be expected for the next generation surveys
we consider, the effect on the growth rate constraints is very small,

being at worst only 10% of the 1� errors. The reason is as fol-
lows. The zero-point offset acts as a shot-noise term in the velocity
power spectrum. However this is also true for the observational er-
rors in the peculiar velocities arising from intrinsic scatter in the
astrophysical relation and random non-linear motions.

The component due to random non-linear motions is assumed
not to vary with redshift, and so can be expected to become sub-
dominant compared to the other contributions above some redshift.
The balance then is between the statistical observational error and
the systematic error introduced by the zero-point, both of which
will increase with redshift. However, looking at the expressions for
these two components (Eqs. 36 and 30), it becomes apparent that
unless the error in the logarithmic distance ratio due to a zero-point
offset is significantly larger than that assumed here (which is al-
ready very conservative); or the intrinsic scatter in the astrophysical
relationship used to infer the galaxy’s true distance is much smaller
than is currently believed feasible, then the statistical observational
error will always dominate over the systematic error from a zero-
point offset. This is shown in Fig. 11, where we plot the different
error contributions as a function of redshift for the parameter values
assumed in this study.

With this in mind we conclude that for measurements of the
velocity power spectrum it is highly unlikely that constraints on
the growth rate will be biased if an offset in the zero-point is ne-
glected. This is corroborated by the study of Johnson et al. (2014)
who found that there results were largely insensitive to whether or
not the zero-point was marginalised over.

That said, looking back at Table 7, marginalising over a possi-
ble zero-point offset has negligible impact on the growth rate con-
straints, whilst it may allow for broad constraints to be placed on
the zero-point offset itself. Though we have shown that a zero-point
offset hardly affects power spectrum constraints, the same cannot
be said of other techniques using peculiar velocity measurements
to obtain cosmological information, such as the bulk flow. If the
zero-point offset is marginalised over, this could be used as a prior
for other measurements.

7 CONCLUSIONS

In this work we have used the Fisher matrix formalism to in-
vestigate the cosmological constraints that can be obtained using
current and next generation peculiar velocity and redshift surveys.
This has built on the work of Burkey & Taylor (2004) and Koda
et al. (2014) though with substantial extensions. Our main conclu-
sions can be summarised as follows:

• We have extended the redshift space power spectrum models
of Koda et al. (2014) to incorporate the effects of primordial non-
Gaussianity, scale-dependent biases, and a zero-point offset, as well
including the � parameterisation to test the consistency of GR.
• We have demonstrated how the Fisher matrix approach can

be used to forecasts constraints for two surveys each with measure-
ments of the velocity and density field, treating the overlapping and
non-overlapping regions of the survey, both in angular and radial
directions, as sub-matrices.
• Forecasts on the growth rate have been obtained for the cur-

rently available 2MTF and 6dFGS surveys. In particular we find
that:

(i) The peculiar velocity measurements from 2MTF should be
able to obtain an independent measurement of the growth rate
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Conclusions	
Ø 	We	present	an	extended	Fisher	matrix	method	for	forecasKng	peculiar	
velocity	and	redshi`	surveys	in	combinaKon	

	
Ø 	Significant	improvement	can	be	gained	from	combining	mulKple	PV	surveys,	
such	as	2MTF	+	6dF	(improves	growth	rate	by	20%)	

Ø 	TAIPAN	and	WALLABY+WNSHS	will	be	AMAZING	for	growth	rate		
measurements.	Combining	these	can	give	3%	measurement!	

Ø 	We	may	have	to	start	considering	scale-dependent	effects	in	more	detail	for	
future	surveys	as	they	are	so	constraining.	

Paper	submi,ed	to	MNRAS,	so	keep	and	eye	out	on	ArXiV	for	Howle,,	
Staveley-Smith	and	Blake	2016.	Could	extend	this	to	look	at	modified	gravity?	


