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Introduction

• Several papers in recent years doing relativistic perturbation 
theory analysis of cosmological distance-redshift relation D(z)

• Three areas:

• “Doppler lensing” as a new probe of structure 

• related to SN1a error analysis

• Bias in H0 at low-z

• 2nd order effect

• Bias in distance to the “cosmic photosphere”

• claimed big effect on CMB cosmology

• would also impact SN cosmology

• But things are not quite as they might appear…..



1) Doppler-lensing and anti-lensing
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ABSTRACT
Doppler lensing is the apparent change in object size and magnitude due to pecu-
liar velocities. Objects falling into an overdensity appear larger on its near side, and
smaller on its far side, than typical objects at the same redshifts. This e↵ect dominates
over the usual gravitational lensing magnification at low redshift. Doppler lensing is
a promising new probe of cosmology, and we explore in detail how to utilize the ef-
fect with forthcoming surveys. We present cosmological simulations of the Doppler
and gravitational lensing e↵ects based on the Millennium simulation. We show that
Doppler lensing can be detected around stacked voids or unvirialised over-densities.
New power spectra and correlation functions are proposed which are designed to be
sensitive to Doppler lensing. We consider the impact of gravitational lensing and in-
trinsic size correlations on these quantities. We compute the correlation functions and
forecast the errors for realistic forthcoming surveys, providing predictions for con-
straints on cosmological parameters. Finally, we demonstrate how we can make 3-D
potential maps of large volumes of the Universe using Doppler lensing.
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1 INTRODUCTION

Light rays from distant sources are focused by overdensi-
ties (or defocused by underdensities) along the line of sight,
leading to apparent magnification (or demagnification) of
images. But besides this gravitational lensing, there is a fur-
ther e↵ect which appears to magnify or demagnify the im-
ages of objects in the Universe. This Doppler lensing e↵ect
arises from the peculiar velocity of the source, and was first
highlighted and investigated in general by Bonvin (2008)
(see also Bonvin et al. (2006)). Bolejko et al. (2013) then
showed that the e↵ect can dominate over gravitational lens-
ing, and even reverse its e↵ect, leading to an ‘anti-lensing’
phenomenon. Doppler lensing gives a new window into the
peculiar velocity field in addition to the usual redshift space
distortion measurements.

The e↵ect is a consequence of the distortion introduced
by mapping from redshift-space to real space, as illustrated
in Figure 1. Imagine we have three spherical galaxies with
the same physical size, and (as an extreme case) the same
measured redshift z

s

. Galaxy A is at the centre of a spher-
ical overdensity, and we ignore the contribution from gravi-
tational lensing. A’s redshift is purely cosmological, and its
angular size is typical for objects at this redshift. Galaxy B

CB A

Figure 1. Three spherical galaxies of the same physical size and
same observed redshift. A is at the centre of a spherical overden-
sity while B and C are falling towards the centre.

is physically nearer to us, with a smaller cosmological red-
shift, but has a peculiar velocity away from us so that its
net redshift is z

s

. Its angular size is therefore larger than
typical at this measured redshift. Finally, galaxy C has a
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Antilensing: The Bright Side of Voids
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More than half of the volume of our Universe is occupied by cosmic voids. The lensing magnification

effect from those underdense regions is generally thought to give a small dimming contribution: objects on

the far side of a void are supposed to be observed as slightly smaller than if the void were not there, which

together with conservation of surface brightness implies net reduction in photons received. This is

predicted by the usual weak lensing integral of the density contrast along the line of sight. We show that

this standard effect is swamped at low redshifts by a relativistic Doppler term that is typically neglected.

Contrary to the usual expectation, objects on the far side of a void are brighter than they would be

otherwise. Thus the local dynamics of matter in and near the void is crucial and is only captured by the full

relativistic lensing convergence. There are also significant nonlinear corrections to the relativistic linear

theory, which we show actually underpredicts the effect. We use exact solutions to estimate that these can

be more than 20% for deep voids. This remains an important source of systematic errors for weak lensing

density reconstruction in galaxy surveys and for supernovae observations, and may be the cause of the

reported extra scatter of field supernovae located on the edge of voids compared to those in clusters.

DOI: 10.1103/PhysRevLett.110.021302 PACS numbers: 98.62.Sb

Introduction.—Lensing phenomena are measured not
only around virialized clusters of galaxies but also through
and around unvirialized cosmic voids, which occupy well
above half the volume of the Universe. Here we show how
the standard lensing magnification effect can be over-
whelmed by relativistic corrections to the size and bright-
ness of sources in and near voids.

Magnification in the linear approximation.—The lensing
magnification effect can be expressed in terms of the
convergence !, which corrects the background angular
diameter distance ( !dA):

dAðzÞ ¼ !dAðzÞ½1% !ðzÞ&: (1)

The convergence in a perturbed lambda cold dark matter
("CDM) universe is usually given as a line of sight integral
over the density contrast ",

! ¼ !" ¼ 3

2
H2

0#m

Z #S

0
d#

ð#S % #Þ
#S

#ð1þ zÞ"ð#Þ; (2)

where d# ¼ dz=H ¼ %d$, # is the comoving distance, $
conformal time, and S denotes the source. In fact, the full
relativistic expression is [1,2] (see also Ref. [3])

! ¼ !r2$ þ !v þ !SW þ !I; (3)

where the Sachs-Wolfe term !SW is given by the difference
in gravitational potential $ between source and observer,
and !I is a line of sight integral over $ and its conformal
time derivatives$0,$00. These two terms are subdominant
[1], and we will not discuss their detailed form, although

we do include them in our numerical calculations below.
{The perturbed metric is ds2 ¼ a2½%ð1þ 2$Þd$2þ
ð1% 2$Þdx2&.g
The usual form (2) is an approximation to the first term

on the right-hand side of (3),

!r2$ ¼
Z #S

0
d#

ð#S % #Þ
#S

#r2
?$: (4)

The screen-space Laplacian is r2
? ¼ r2 % ðn ( rÞ2 %

2#%1n ( r, where n is the unit direction from the source.
The radial derivatives lead to terms proportional to $, $0,
and$00 [2], which are much smaller than the term r2$ on
the sub-Hubble scales of interest. Thus in (4), we may
replace r2

?$ by r2$, which is given in terms of the
density contrast " by the Poisson equation. The general
relativistic Poisson equation also involves the peculiar
velocity (vi ¼ @iv):

r2$ ¼ 3H2
0#m

2a
ð"% 3aHvÞ; (5)

v ¼ % 2a

3H2
0#m

ð$0 þ aH$Þ: (6)

By (6), aHv is of order $ and may be neglected in (5) on
the relevant scales. Then (4) reduces to the usual lensing
term (2). For an underdensity, "< 0, so that !" < 0 if the
underdensity is the dominant structure along the line of
sight. Then (1) implies that the angular distance should be

PRL 110, 021302 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
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Effect of peculiar motion in weak lensing
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We study the effect of peculiar motion in weak gravitational lensing. We derive a fully relativistic

formula for the cosmic shear and the convergence in a perturbed Friedmann universe. We find a new

contribution related to galaxies’ peculiar velocities. This contribution does not affect cosmic shear in a

measurable way, since it is of second order in the velocity. However, its effect on the convergence (and

consequently on the magnification, which is a measurable quantity) is important, especially for redshifts

z ! 1. As a consequence, peculiar motion modifies also the relation between the shear and the

convergence.

DOI: 10.1103/PhysRevD.78.123530 PACS numbers: 98.80.Es, 95.30.Sf, 95.35.+d, 98.62.Sb

I. INTRODUCTION

Mapping the large-scale structure of the universe is one
of the most important current challenges for cosmology.
Weak gravitational lensing represents a promising tool to
achieve this goal, since it is directly sensitive to the distri-
bution of matter in the universe, independent of its nature
(baryon, dark matter. . .). Gravitational lensing describes
indeed the deflection of light rays from distant sources by
the gravitational potential along the line of sight. It induces
consequently a modification of the shape of the sources.
This distortion of images contains information about the
evolution of large-scale structure, i.e. about the geometry
and dynamics of the universe (see e.g. [1,2] and references
therein). Weak gravitational lensing can be divided in two
parts: the shear, that distorts the shape of the source; and
the convergence, that magnifies or demagnifies it. Both of
these effects have already been measured.

Cosmic shear is detected through the correlations it
induces on the ellipticity of galaxies. It was measured for
the first time in 2000, by four independent teams [3]. Since
then, many other experiments have detected cosmic shear
in random patches of the sky [4,5]. In the next few years,
weak lensing surveys, like CFHTLS [6], the Dark Energy
Survey [7], and Pan-STARRS [8] will deliver accurate
measurements ( & 1% level) over large parts of the sky.
In the further future, even more challenging experiments
like Euclid [9], LSST [10], and SNAP [11] are planned.

The other component of weak lensing, the convergence,
can be detected through the modifications it induces on the
galaxy (or quasar) number density over a given flux thresh-
old [12]. The convergence (or more precisely the magnifi-
cation) has already been robustly detected using quasar-
galaxy correlations (see e.g. [13] and references therein).
Moreover, recently [14] has highlighted the possibility to
measure accurately the magnification autocorrelations
with the Square Kilometer Array (SKA) [15]. A precision
of 10% is expected at the beginning and & 1% later on.

Hence the convergence provides an additional precise ob-
servational quantity, useful to constrain cosmology. In
order to make optimal use of this observational informa-
tion, one needs to understand the underlying theory of
weak lensing accurately.
In this paper, we present a fully relativistic description of

weak gravitational lensing. More precisely, we calculate
the Jacobi map, that relates the surface of a galaxy to its
angular image at the observer position, following the for-
malism presented in [16]. This map describes the distortion
of a light beam by density perturbations along the geodesic
between the source and the observer. The shear and the
convergence are then extracted from this application. Our
derivation differs from the standard one in two points.
First, in the usual derivation the 4" 4 Jacobi map is

reduced to a 2" 2matrix, called the magnification matrix,
by assuming that the source and the image belong to the
same two-dimensional subspace, normal to the photon
direction and to the observer four-velocity. The conver-
gence is then defined as the trace of the magnification
matrix and the shear as the traceless part. However, the
source four-velocity differs generally from the observer
four-velocity. As a consequence the source and the image
do not belong to the same two-dimensional subspace. In
this paper we take into account this difference. We show
that the Jacobi map cannot be reduced to a 2" 2matrix but
only to a 3" 3 matrix, the third line describing the pro-
jection of the source plane into the observer plane. We
establish that this generates an additional shear component.
However, since this effect is second order in the peculiar
velocity of the source, it is not large enough to be observed.
Second, in the usual derivation the shear and the con-

vergence are expressed as functions of the source confor-
mal time. However, conformal time is not an observable
quantity. Hence, in this paper we calculate the shear and
the convergence as functions of the source redshift, which
is observable. We show that this modification generates
new contributions to the convergence. Whereas most of
those terms can be safely neglected with respect to the
standard one, we establish that the contribution of the*camille.bonvin@unige.ch
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source peculiar velocity is important, especially for red-
shifts z & 1. More particularly, for surveys in which the
sources are situated at redshift 0.5, we expect a modifica-
tion of order 50% relative to the standard results. For larger
redshifts of the source the effect of peculiar motion de-
creases, whereas the standard term increases. However, at
redshift 1, we still expect the velocity term to be !1% of
the standard term, i.e. measurable by the SKA. Further-
more, we show that the transformation from conformal
time to redshift does not affect the shear component. As
a consequence, the relation between the shear and the
convergence is modified by peculiar velocities.

The paper is organized as follows. In Sec. II we derive a
general formula for the magnification matrix valid in
(nearly) arbitrary geometries. In Sec. III we apply this
formula to a perturbed Friedmann universe. In Sec. IV,
we investigate in detail the shear component of the mag-
nification matrix. Finally, in Sec. V we calculate the con-
vergence component and we determine its angular power
spectrum. We investigate also the relation between cosmic
shear and convergence.

Notation.—We denote four-vectors with Greek indices,
k!. Three-dimensional vectors are denoted bold face k, or
with Latin indices ki. We use the metric signature
ð#;þ;þ;þÞ.

II. MAGNIFICATION MATRIX

We consider an inhomogeneous and anisotropic uni-
verse with geometry ds2 ¼ g"#dx

"dx#. We are interested
in the propagation of a light beam in this arbitrary space-
time. We follow the derivation presented in [16]. We
denote by ’ the phase of the light beam. The wave vector
is then given by k! ¼ #r!’. We construct the deviation
vector field $x! connecting two neighboring rays. Since all
the rays of the beam have the same phase, the deviation
vector satisfies $x!k! ¼ 0. Furthermore, it obeys the geo-
desic deviation equation [17]

D2$x!ð%Þ
D%2

¼ R!
&'$k

&k'$x$; (1)

where % is an affine parameter along the geodesics, D
D% '

k!r! represents the covariant derivative along geodesics,
and R!

&'$ is the Riemann tensor associated with the metric

ds2.
We consider the case of a light beam emitted by a galaxy

at spacetime position S and received by an observer at O
(see Fig. 1).

We denote by vO the observer velocity and vS the source
velocity. The photon energy measured at the source, re-
spectively, at the observer is

!S ¼ #k!ð%SÞv!
S ; (2)

!O ¼ #k!ð%OÞv!
O: (3)

The solution of Eq. (1) is then given by [18]

$x!ð%SÞ ¼ J!&ð%SÞ$(&ð%OÞ; (4)

where

$(!ð%Þ ' 1

!O
k&r&$x

!ð%Þ: (5)

Here J!&ð%SÞ is the Jacobi map, that relates the deviation

vector at the source $x!ð%SÞ ' $x!S to the angular vector at
the observer $(!ð%OÞ ' $(!O. As we shall see, these two
four-vectors belong to two different two-dimensional
planes, orthogonal to the source peculiar velocity (respec-
tively the observer peculiar velocity) and the photon direc-
tion at the source (respectively at the observer).
Each ray can be parameterized by its affine parameter %

and three other parameters yi that label the ray. This
parameterization is not unique and one can therefore
make changes of the form

yi ¼ gið~yjÞ; % ¼ ~%þ hð~yjÞ: (6)

Under this reparameterization the connection vector $x!

transforms as [17]

$~x! ¼ $x! þ k!$h: (7)

At the source, we can therefore choose a parameteriza-
tion such that $x!SvS! ¼ 0. Moreover, $x!S k!ð%SÞ ¼ 0 in-
duces $x!SnS! ¼ 0, where nS is the photon direction at the
source: nS ¼ 1

!S
kð%SÞ # vS. Hence $x!S lives in a two-

dimensional subspace orthogonal to the source velocity
and to the photon direction. It lies consequently in the
plane of the galaxy.
In addition to the choice of gi and h in Eq. (6), there is

another degree of freedom corresponding to the scales of
the affine parameter on the different rays. We can therefore
require that at O, vO!k

! ¼ vO!
dx!

d% ¼ #!O, for all rays.
With this choice, we get $x!r!!O ¼ 0, which gives
$(!OvO! ¼ 0. Furthermore, we can easily show that
$(!ð%Þk!ð%Þ ¼ 0, which implies $(!OnO! ¼ 0, where nO
is the photon direction at the observer: nO ¼ 1

!O
kð%OÞ #

vO. Hence $(!O lives in a two-dimensional subspace or-

O

S

dΩO

dAS

FIG. 1. A light beam emitted by a galaxy at spacetime position
S and received by an observer at O. At the observer position, the
plane normal to the observer four-velocity is indicated.
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! ¼
Z "O

"S

d"
ð"# "SÞð"O # "Þ

"O # "S
r2

?!þ 3!S

# 2
Z "O

"S

d"
"# "S

"O # "S

_!# 4

ð"O # "SÞ

&
Z "O

"S

d"!þ
!
1# 1

H Sð"O # "SÞ

"

&
#
ðvS # vOÞ ' nþ!S #!O þ 2

Z "O

"S

d" _!
$
; (31)

and #1, #2, and w are not affected.
The complete relativistic magnification matrix in a per-

turbed Friedmann universe defined in Eqs. (23)–(25), (27),
and (31) contains therefore additional terms to the standard
one. In the next section, we investigate the effect of the
third line of the matrix on the shape of a galaxy, and more
particularly on the shear. And in Sec. V, we discuss in more
detail the different contributions to the convergence !. We
determine that the only term which can be relevant is the
one involving the galaxy’s peculiar velocity.

IV. THE SHEAR

In this section, we study the effect of the third line of the
magnification matrix on the shape of a galaxy. In order to
simplify the calculation, we restrict ourselves to the pecu-
liar velocity contribution. This means that we consider a
homogeneous and isotropic Friedmann universe, but we
allow for nonzero peculiar velocity of the source vS and of
the observer vO. The magnification matrix becomes then

Ĵ i
jð"O;"SÞ ¼ #"O # "S

1þ zS

&
1# ! 0 0
0 1# ! 0

ðvS # vOÞE1 ðvS # vOÞE2 0

0
@

1
A;

(32)

where

! ¼
!
1# 1

H Sð"O # "SÞ

"
ðvS # vOÞ ' n: (33)

The usual shear components #1 and #2 vanish, but as we
will see the third line generates an additional shear
deformation.

From Eqs. (10) and (32), we find

$0 ¼
v1$1

1# !
þ v2$2

1# !
; (34)

where v1 ( ðvS # vOÞ 'E1 and v2 ( ðvS # vOÞ 'E2. At
first order in vS and vO, Eq. (34) becomes

$0 # v1$1 # v2$2 ¼ 0; (35)

that represents the equation of a two-dimensional plane.
This reflects directly the fact that the galaxy, described by
!S does not belong to the parallel transported observer

plane: ðE%
1 ð&SÞ; E%

2 ð&SÞÞ, but it rather belongs to the plane
defined by Eq. (35).
We now assume that the galaxy is a disc of radius r.

Hence in spherical coordinate

$1 ¼ r sin' cos(; $2 ¼ r sin' sin(;

$0 ¼ r cos':
(36)

Combined with Eq. (35), this gives

$1ð(Þ ¼ )r
tð(Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2ð(Þ

p cos(;

$2ð(Þ ¼ )r
tð(Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2ð(Þ

p sin(;

(37)

with

tð(Þ ¼ 1

v1 cos(þ v2 sin(
: (38)

Theþ sign is for( 2 ½0;)=2+ [ ½); 3)=2+ and the# sign
for ( 2 ½)=2;)+ [ ½3)=2; 2)+.
The observer measures

'1ð(Þ ¼ $1ð(Þ
1# !

¼ ) r

1# !

tð(Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2ð(Þ

p cos(;

'2ð(Þ ¼ $2ð(Þ
1# !

¼ ) r

1# !

tð(Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2ð(Þ

p sin(;

(39)

where we have already removed the monopole contribution
"O#"S

1þzS
.

We now show that ð'1ð(Þ;'2ð(ÞÞ describes an ellipse,
and we determine its semiaxis a and b. We consider,
without loss of generality, the case where v2 ¼ 0. This
simply means that we align E1 on vS # vO. We then
determine a and b such that

'21ð(Þ
a2

þ '22ð(Þ
b2

¼ 1; 8(: (40)

Using Eq. (39) for 'ið(Þ, we find

b ¼ r

1# !
and a ¼ r

1# !
ð1þ v2

1Þ#1=2: (41)

Hence we see that the third line of the magnification
matrix Ĵ deforms a disc into an ellipse and consequently it
induces an additional shear effect. Since this new contri-
bution does not derive from a scalar potential, as the usual
component, it can generate B-modes. Peculiar motion
constitutes therefore an intrinsic source of B-modes in
cosmic shear. Moreover, contrary to the B-modes’ contri-
bution from source redshift clustering [21] that peaks at
small scales, the velocity contribution is expected to peak
at rather large scales, where peculiar velocity correlations
are larger. However, this effect is second order in the
velocity difference v1. It is therefore too small to be
detected by current and future experiments and conse-
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Fluctuations of the luminosity distance
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We derive an expression for the luminosity distance in a perturbed Friedmann universe. We define the
correlation function and the power spectrum of the luminosity distance fluctuations and express them in
terms of the initial spectrum of the Bardeen potential. We present semianalytical results for the case of a
pure CDM (cold dark matter) universe. We argue that the luminosity distance power spectrum represents a
new observational tool which can be used to determine cosmological parameters. In addition, our results
shed some light into the debate whether second order small scale fluctuations can mimic an accelerating
universe.
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I. INTRODUCTION

Some years ago, to the biggest surprise for the physics
community, measurements of luminosity distances to far
away type Ia supernovae have indicated that the Universe
presently undergoes a phase of accelerated expansion [1].
If the Universe is homogeneous and isotropic, i.e. a
Friedmann-Lemaı̂tre universe, this means that the energy
density is dominated by some exotic ‘‘dark energy’’ which
obeys an equation of state of the form P<!!=3. The best
known dark energy candidate is vacuum energy or, equiv-
alently, a cosmological constant. This discovery has lately
been supported by several other combined data sets, like
the cosmic microwave background (CMB) anisotropies
combined with either large scale structure or measure-
ments of the Hubble parameter [2].

On the other hand, since quite some time, it is known
that locally measured cosmological parameters like H0 or
the deceleration parameter q0 might not be the ones of the
underlying Friedmann universe, but they might be dressed
by local fluctuations [3]. Therefore, it is of great impor-
tance to derive a general formula of the luminosity distance
in a universe with perturbations. To some extent, this has
been done in several papers before [4,5]. But the formula
which we derive here is new. We shall comment on the
relations later on.

Lately, it has even been argued that second order pertur-
bations might be responsible for the observed acceleration
and that no cosmological constant or dark energy is
needed [6,7]. This claim is very surprising, as it seems to
require that backreaction leads to big perturbations out to
very large scales, contrary to what is observed in the
CMB. This proposal has thus promptly initiated a heated
debate [8].

On the one hand, the present work is a contribution in
this context. We calculate the measurable luminosity dis-
tance in a perturbed Friedmann universe and determine its

fluctuations (within linear perturbation theory). We show
that these remain smaller than 1 and therefore higher order
perturbations are probably not relevant. The main point of
our procedure is that we use only measurable quantities
and not some abstract averaged expansion rate to deter-
mine the deceleration parameter. We actually calculate the
luminosity distance dL"n; z# where n defines the direction
of the observed supernova and z its redshift. We then
determine the power spectrum C‘"z; z0# defined by

dL"n; z# $
X

‘m

a‘m"z#Y‘m"n#; (1)

C‘"z; z0# $ ha‘m"z#a%‘m"z0#i: (2)

Here the h&i denotes a statistical average. Like for the
cosmic microwave background, statistical isotropy implies
that the C‘’s are independent of m.

We then analyze whether the deviations of the angular
diameter distance from its background value can be suffi-
cient to fake an accelerating universe.

Aside from this problem, the new variable which is
defined and calculated in this paper might in principle
present an interesting and novel observational tool to de-
termine cosmological parameters. And this is actually the
main point of our work. We hope to initiate a new obser-
vational effort, the measurement of the luminosity distance
power spectrum, with this paper. A detailed numerical
calculation of the dL power spectrum and the implementa-
tion of a parameter search algorithm are postponed to
future work. Here we simply show that for large redshifts,
z ' 0:4 and sufficiently high multipoles, ‘ > 10 the lens-
ing effect dominates. However, at smaller redshift and
especially at low ‘’s other terms can become important,
most notably the Doppler term due to the peculiar motion
of the supernova.

The paper is organized as follows: In Sec. II we derive a
general formula for the luminosity distance valid in
(nearly) arbitrary geometries. In Sec. III we apply the
formula to a perturbed Friedmann universe. In Sec. IV
we derive general expressions for the dL power spectrum
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!!O%!S"H S
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!S$

!
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!!O%!S"H S

"
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!!O%!S"
Z !O

!S
d!!$ 2

!!O%!S"H S

Z !O

!S
d! _!%2

Z !O

!S
d!
!!%!S"
!!O%!S"

_!$
Z !O

!S
d!
!!%!S"!!O%!"
!!O%!S"

"!

%
Z !O

!S
d!
!!%!S"!!O%!"
!!O%!S"

r2!

)
: (59)

A detailed derivation of this result starting from Eq. (58) is
given in Appendix B. In this equation the first line, apart
from the background contribution, contains the terms due
to peculiar motion of the observer and emitter (Doppler
terms). The second line can be identified as ‘‘gravitational
redshift.’’ This is, however, not entirely correct since this
term does not vanish even if !S # !O. The third line
collects integrated effects proportional to line of sight
integrals of ! and its time derivative, and the fourth and
last line represent the lensing term with r2! / "#. This
term has been discussed in the literature before [11]. An
equivalent of the above formula also can be found in [12].

Equations (58) and (59) are the final expressions for the
luminosity distance in a perturbed Friedmann universe, as
a function of the measured source redshift zS and its
direction %n. In the next section we determine the lumi-
nosity distance power spectrum which is, in principle, an
observable quantity.

IV. THE LUMINOSITY DISTANCE POWER
SPECTRUM

We now want to determine the power spectrum of the
perturbed luminosity distance, as defined in the introduc-
tion. For notational simplicity, we drop the~and use dL to
denote the luminosity distance in a perturbed Friedman
universe. From Eqs. (1) and (2) and the addition theorem
for spherical harmonics, one obtains the correlation func-
tion

#d L!zS"%1 #dL!zS0"%1hdL!zS;n"dL!zS0n0"i

#
X

‘

2‘$ 1

4$
C‘!zS; zS0"P‘!n & n0"; (60)

where P‘ is the Legendre polynomial of order ‘.

A. The dipole

Let us first briefly look at the dipole coming from the
peculiar motion of the observer, the term containing the
scalar product n & vO. The power spectrum of this term is
given by

hd!v"L !zS;n"d!v"L !zS0 ;n0"i #
!zS $ 1"!zS0 $ 1"

3H SH S0
hv2

Oi!n & n0":

(61)

We assume that, like for the anisotropies in the cosmic
microwave background, this term completely dominates
the dipole. The luminosity distance dipole therefore has the
same direction as the CMB dipole. To determine its am-
plitude we insert #dL!!S" # !zS $ 1"!!O % !S". We then
obtain

C1 #
#

4$
9
hv2

Oi
$ H%1

S H%1
S0

!!O % !S"!!O % !S0"
: (62)

The CMB dipole is given by the expression in square
brackets. In a pure CDM universe with H # 2=! and
!O=!S #

%%%%%%%%%%%%%%
zS $ 1
p

we obtain for the amplitude of the
luminosity distance dipole

FIG. 2 (color online). We show the dipole amplitude in a pure
CDM universe in units of the CMB dipole as a function of z for
z0 # 0:1, 0.5, 1, 2, and 4 from top to bottom.
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Here we have also transformed the parameter ! into the
conformal time " via the relation

d"
d!
! n0"!# ! 1$ 2

Z !

!S
d!0r! % n:

Now " is parametrizing the unperturbed photon geodesic
and we interpret the potential as a function of ", !""# !
!"";x""##. We use the notation _! & @"!, so that d!

d" !_!' n %r!. We now also take into account expansion,
which gives ~dL !

a2
O
aS
dL.

Furthermore, we relate the peculiar velocities to the
Bardeen potential via the first order perturbations of
Einstein’s equations. Setting "~u## ! a$1"1$!; vi# gives
[10],

vi""# ! $ 1

4$Ga2"%' p#

!
_a
a
@i!' @i _!

"
: (54)

With this we find the following result for the luminosity
distance in an perturbed Friedmann universe

~dL""S;n# !
a2
O

aS
""O $ "S#

(
1$!O ' vO % n' 2

"O $ "S
Z "O

"S
d"!

' 2n %
"Z "O

"S
d"r!' 1

"O $ "S
Z "O

"S
d"

Z "

"S
d"0r!' 1

4$Ga2
S"%' p#""S#

"Hr!'r _!#""S#
#

$ 1

"O $ "S
Z "O

"S
d"

Z "

"S
d"0""0 $ "S#"r2!$ ninj@i@j!#

)
; (55)

where we have introduced H & _a=a ! a$1 da
d" & Ha. In what follows, we further simplify the formulas by normalizing

the scale factor to aO & 1:
Here we have used the linear perturbation theory solution for the source velocity vS. One might argue that the

supernovae are highly nonlinear objects inside galaxies and do not move with the velocity obtained from linear
perturbation theory. However, we shall be interested in distances and angles which are sufficiently large so that the
nonlinear contributions to the supernova velocities are uncorrelated and therefore considering only the linear part of it in
the correlation function is sufficient.

Equation (55) is the luminosity distance of a source in direction$n at conformal time "S. However, this quantity is not
directly measurable. What we do measure instead is the redshift of the source zS ! "zS ' &zS, where "zS ' 1 ! 1=a""S#.
Now

~d L""S;n# ! ~dL""""zS#;n# & ~dL""zS;n# ! ~dL"zS;n# $
d
d"zS

~dL"zS;n#&zS: (56)

Furthermore,

d
d "zS

~dL"zS;n# ! "1' zS#$1 ~dL 'H$1
S ' first order and

&~zS ! "1' zS#&zS ! "1' zS#
#

!S $!O ' 2
Z "O

"S
d"n %r!' "vO $ vS# % n

$
: (57)

Inserting this in Eq. (55) leads to

~dL"zS;n# ! "1' zS#
(
""O $ "S# '

1

H S
"!O $ vO % n# $ ""O $ "S 'H$1

S #!S

' 2
Z "O

"S
d"!' 2n %

"
$ 1

H S

Z "O

"S
d"r!'

Z "O

"S
d"

Z "

"S
d"0r!

' "O $ "S $H$1
S

8$Ga2
S"%' p#""S#

"Hr!'r _!#""S#
#
$
Z "O

"S
d"

Z "

"S
d"0""0 $ "S#"r2!$ @i@j!ninj#

)
: (58)

After several integrations by part, one can also derive the following expression for the luminosity distance, which also can
be found elsewhere [4,7], where it has been derived using the evolution equations of the expansion and the shear
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III. THE LUMINOSITY DISTANCE IN A
PERTURBED FRIEDMANN UNIVERSE

A. Conformally related luminosity distances

We consider two geometries related by

d~s2 ! ~g!"dx!dx" ! a2"x#g!"dx!dx" ! a2"x#ds2: (26)

We want to relate the angular diameter distances of the two
metrics. If ~k is a lightlike geodesic for the metric d~s2 with
affine parameter ~#, then k ! a2 ~k is a lightlike geodesic for
ds2 with affine parameter # determined by

d~#
d#
! a2:

Furthermore, be ~u! ! dx!
d~$ the 4-velocity of an observer

with metric d~s2 and be ~$ its proper time such that
~g!"~u!~u" ! $1, then u! ! dx!

d$ is the corresponding
4-vector of the observer with respect to the metric ds2

with proper time $ if d~$
d$ ! a. In other words

~u ! ! dx!

d~$
! dx!

d$
d$
d~$
! a$1u!: (27)

The redshift of a photon emitted at S and observed at O
determined with respect to the two metrics is therefore
related by

1% ~z ! ~!S

~!O
! "~g!"

~k!~u"#S
"~g!"~k!~u"#O

! aO"g!"k!u"#S
aS"g!"k!u"#O

! aO
aS
"1% z#: (28)

To determine the relation between the Jacobi maps
J%& !

'x%O
'(&S

we just have to remember that angles are not

affected by conformal transformations, but distances scale
with the conformal factor a. Therefore

~J"S;O# ! '~x%O
'(&S

! aO
'x%O
'(&S

! aOJ"S;O#; (29)

det~J"S;O# ! a2
O detJ"S;O#: (30)

For the angular distance relation we finally obtain

~dL ! "1% ~z#
!!!!!!!!!!!!!!!!!!!!!!!!!
j det~J"S;O#j

q

! a2
O

aS
"1% z#

!!!!!!!!!!!!!!!!!!!!!!!!!
j detJ"S;O#j

q
! a2

O

aS
dL: (31)

This relation is very useful in Friedmann cosmology.
The Friedmann metric is given by

d~s2 ! a2"$d)2 % *ijdxidxj# ! a2ds2; (32)

where * is the metric of a 3-space with constant curvature
K. The luminosity distance of a photon emitted at confor-
mal time )S and observed at )O with respect to the metric
ds2 is simply )O $ )S !

R)O
)S
d). The Friedmann equa-

tion for a universe containing matter, radiation, curvature,
and a cosmological constant reads
"

_a
a

#
2
! H2

0&!ma$1 %!rada$2 %!K %!"a2'; (33)

where we have normalized aO ! 1 and we have introduced
the density parameters !m ! +m")O#=+c")O#, !rad !
+rad")O#=+c")O#, !K ! $K=H2

0 , and !" ! "="3H2
0#.

After the variable transformation to z% 1 ! 1=a, dz !
$da=a2 we obtain

d) ! H$1
0 dz

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!rad"1% z#4 %!m"z% 1#3 %!K"z% 1#2 %!"

p :

This leads to the well-known expression for the luminosity
distance to an object emitting at redshift zS observed today
at zO ! 0,

dL"zS#Friedman ! )0 $ )S
aS

! 1% zS
H0

Z zS%1

1

dx
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!radx4 %!mx3 %!Kx2 %!"

p : (34)

Comparing this expression with the measured luminosity
distance from supernovae type Ia at different redshifts has
led to the claim that the cosmological constant be non-
vanishing [1].

B. The Jacobi map in a perturbed Friedmann universe

We now consider a Friedmann universe with scalar
perturbations. In longitudinal (or Newtonian) gauge the
metric is given by

~g!"dx!dx" ! a2&$"1% 2##d)2 % "1$ 2$#*ijdxidxj':
(35)

For perfect fluids the metric perturbations # and $ are

equal. We assume in the sequel $ ! #. Furthermore, we
consider a spatially flat universe (K ! 0), so that *ij ! 'ij.

We now determine the luminosity distance for the metric

ds2 ! $"1% 2##d)2 % "1$ 2##'ijdxidxj: (36)

We then relate this to the physical luminosity distance via
the relation (31).

We assume that the galaxy containing the supernova as
well as the one containing the observer are moving with the
cosmic fluid. To first order in the perturbations, the four-
velocity of the cosmic fluid is given by
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What’s new in Doppler (or anti) lensing?
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What’s new in Doppler (or anti) lensing?

• Long history of observations

• Rubin-Ford effect (1976)

• …… Tully-Fisher … Faber-Jackson … Dn-sigma …

• Cosmic flows II; 6df survey…

• What’s new in theory?
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What’s new in Doppler (or anti) lensing?

• Long history of observations

• Rubin-Ford effect (1976)

• …… Tully-Fisher … Faber-Jackson … Dn-sigma …

• Cosmic flows II; 6df survey…

• What’s new in theory?

• classic paper by Sasaki et al ’87

• Wasn’t this all thrashed out in relation to SN1a cosmology? 



Correlated fluctuations in luminosity distance and the importance of peculiar motion in
supernova surveys
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Large scale structure introduces two different kinds of errors in the luminosity distance estimates from
standardizable candles such as supernovae Ia (SNe)—a Poissonian scatter for each SN and a coherent
component due to correlated fluctuations between different SNe. Increasing the number of SNe helps
reduce the first type of error but not the second. The coherent component has been largely ignored in
forecasts of dark energy parameter estimation from upcoming SN surveys. For instance it is commonly
thought, based on Poissonian considerations, that peculiar motion is unimportant, even for a low redshift
SN survey such as the Nearby Supernova Factory (SNfactory; z ! 0:03–0:08), which provides a useful
anchor for future high redshift surveys by determining the SN zero point. We show that ignoring coherent
peculiar motion leads to an underestimate of the zero-point error by about a factor of 2, despite the fact
that SNfactory covers almost half of the sky. More generally, there are four types of fluctuations: peculiar
motion, gravitational lensing, gravitational redshift and what is akin to the integrated Sachs-Wolfe effect.
Peculiar motion and lensing dominates at low and high redshifts, respectively. Taking into account all
significant luminosity distance fluctuations due to large scale structure leads to a degradation of up to 60%
in the determination of the dark energy equation of state from upcoming high redshift SN surveys, when
used in conjunction with a low redshift anchor such as the SNfactory. The most relevant fluctuations are
the coherent ones due to peculiar motion and the Poissonian ones due to lensing, with peculiar motion
playing the dominant role. We also discuss to what extent the noise here can be viewed as a useful signal,
and whether corrections can be made to reduce the degradation.

DOI: 10.1103/PhysRevD.73.123526 PACS numbers: 98.80."k, 95.30.Sf, 98.80.Es, 98.80.Jk

I. INTRODUCTION

The problem of the cosmological constant, or more
generally dark energy, is one of the deepest problems in
cosmology today. While there are by now multiple lines of
evidence for the existence of dark energy [1], the evidence
from type Ia supernovae (SNe) was historically what con-
vinced a large fraction of the cosmology community that
this enigmatic form of energy should be taken seriously
[2,3]. Upcoming and ongoing SN surveys [4], with vastly
improved statistics, promise to constrain the equation of
state of dark energy to unprecedented precision, thus shed-
ding light on the issue of whether the apparent acceleration
of the universe is caused by the cosmological constant, a
dynamical scalar field or departure from Einstein gravity
[5].

There has been much recent work on projections for the
determination of dark energy properties from these SN
surveys. By and large, they focus on the following aspects
of the error budget: intrinsic statistical error, systematic
error and gravitational lensing-induced scatter (e.g. [6–12]
and references therein). The intrinsic statistical error refers
to the intrinsic spread in SN luminosity even after suitable
standardizing corrections have been applied. It is typical to
assume that the intrinsic spread in magnitude has a (root-

mean-squared; rms) size of !intr: ! 0:1–0:15 for each SN
[13]. This kind of intrinsic statistical error can be beaten
down by having a large number of SNe. There are several
sources of systematic error, such as Malmquist bias, lumi-
nosity evolution, imperfect corrections for dust extinction,
and so on. They are not necessarily diminished by having a
large number of SNe, although a large sample often helps
in identifying and characterizing them. Lastly, gravita-
tional lensing by intervening structures introduces fluctua-
tions in the observed flux of SNe. So far, the focus has been
on how gravitational lensing introduces a Poissonian scat-
ter rather analogous to the intrinsic spread. This kind of
error can likewise be reduced by having a large sample of
SNe [6,12].

The existing discussion can be improved in two ways.
First of all, gravitational lensing by large scale structure
introduces not only a Poissonian scatter to the individual
SN flux, but also correlated flux fluctuations between
different SNe. One can view the correlated fluctuations as
a consequence of the large scale coherence of the interven-
ing structures. Second, large scale structure introduces
fluctuations beyond that captured by gravitational lensing,
and like lensing, these fluctuations have a Poissonian com-
ponent as well as a correlated or coherent component. It is
worth noting that an expression for all the first order
fluctuations in the luminosity distance—first order in met-
ric and energy-momentum perturbations—has been
worked out for quite some time e.g. [15–17] (with minor
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ing all other possible fluctuations. We have added the
argument n to !dL to emphasize the fact that !dL depends
on direction (or angle) in addition to redshift.

Gravitational lensing modifies the observed flux of an
object without changing its redshift. The gravitational
lensing magnification Flensed=Funlensed is worked out in
many places e.g. [29,38]:

 magnification ! 1" 2
Z "e

0
d"
#"e $ "%"

"e
r2##"%;

(16)

where# is the gravitational potential fluctuation, andr2 is
the Laplacian in comoving space.

The gravitational lensing contribution to !dL is therefore

 !dL ! $
Z "e

0
d"
#"e $ "%"

"e
r2##"%: (17)

In summary, the total peculiar motion and lensing con-
tributions to !dL are

 !dL#z;n% ! ve & n$ 1

"e

!
a
a0

"

e
#ve & n$ v0 & n%

$
Z "e

0
d"
#"e $ "%"

"e
r2##"%: (18)

To reiterate: ve and v0 are the peculiar velocities of the
emitter and observer, and n is the line-of-sight unit vector
pointing away from the observer (n here plays the role of !
in Eq. (7)); the comoving distance to emitter "e, the scale
factor at emission ae and its derivative with respect to
conformal time a0e are evaluated at redshift z. One can
see from above that for small "e or at a low redshift, the
peculiar motion term proportional to 1="e becomes im-
portant, while at a large redshift, the lensing term (second
line) is more important. A more rigorous derivation of !dL ,
together with an explanation of why other first order con-
tributions can be ignored, is given in Appendix C.

B. From "dL to the magnitude covariance matrix

Our next task is to compute the second moment of !dL
for Eq. (6), and the two-point correlation of !dL for Eq. (7).
This is carried out in detail in Appendix D. Let us sum-
marize the results here.

From Eq. (6) and (8), it can be shown that

 #$Poiss:
i %2 ! #$Poiss:;lens

i %2 " #$Poiss:;vel:
i %2 (19)

 

#$Poiss:;lens
i %2 '

!
5

ln10

"
2
!

3H2
0!m

2

"
2 Z "i

0

d"
a2

!#"i $ "%"
"i

"
2

(
Z d2k?
#2%%2 P#k?; a%

#$Poiss:;vel:
i %2 '

!
5

ln10

"
2
!

1$ ai
a0i"i

"
2
#D0i%2

(
Z d3k
#2%%3

k2
z

k4 P#k; a ! 1%; (20)

where P#k; a% and P#k?; a% represent the mass power spec-
trum at scale factor a and at wavenumber k and k ! k?
respectively, kz and k? denote the line-of-sight and trans-
verse components of the wave vector (k? is the norm of the
2D vector k?), D is the linear growth factor and D0 is its
derivative with respect to conformal time, and any quantity
with the subscript i is evaluated at z ! zi. The symbol
#$Poiss:;lens:

i %2 stands for the Poissonian lensing term that is
often studied: it gives the variance in convergence, up to a
factor of )5= ln10*2. The term #$Poiss:;vel:

i %2 gives the vari-
ance in luminosity distance due to peculiar motion, up to
the same factor. Note that there is no cross velocity-lensing
term—it vanishes because the lensing projection forces
kz ! 0.

Likewise, from Eq. (7) and (18), using the plane-parallel
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where Clens
ij and Cvel:

ij are the lensing and peculiar motion contributions to the correlation matrix Cij. The window function
for the lensing term Wlens

ij depends on the survey geometry: the integration of ! and !0 is over the survey area, which is
allowed to depend on the redshift bin i or j for the sake of generality. The expression given forWlens

ij in terms of the Bessel
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ing all other possible fluctuations. We have added the
argument n to !dL to emphasize the fact that !dL depends
on direction (or angle) in addition to redshift.

Gravitational lensing modifies the observed flux of an
object without changing its redshift. The gravitational
lensing magnification Flensed=Funlensed is worked out in
many places e.g. [29,38]:
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d"
#"e $ "%"

"e
r2##"%;

(16)

where# is the gravitational potential fluctuation, andr2 is
the Laplacian in comoving space.

The gravitational lensing contribution to !dL is therefore
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In summary, the total peculiar motion and lensing con-
tributions to !dL are
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To reiterate: ve and v0 are the peculiar velocities of the
emitter and observer, and n is the line-of-sight unit vector
pointing away from the observer (n here plays the role of !
in Eq. (7)); the comoving distance to emitter "e, the scale
factor at emission ae and its derivative with respect to
conformal time a0e are evaluated at redshift z. One can
see from above that for small "e or at a low redshift, the
peculiar motion term proportional to 1="e becomes im-
portant, while at a large redshift, the lensing term (second
line) is more important. A more rigorous derivation of !dL ,
together with an explanation of why other first order con-
tributions can be ignored, is given in Appendix C.

B. From "dL to the magnitude covariance matrix

Our next task is to compute the second moment of !dL
for Eq. (6), and the two-point correlation of !dL for Eq. (7).
This is carried out in detail in Appendix D. Let us sum-
marize the results here.

From Eq. (6) and (8), it can be shown that
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where P#k; a% and P#k?; a% represent the mass power spec-
trum at scale factor a and at wavenumber k and k ! k?
respectively, kz and k? denote the line-of-sight and trans-
verse components of the wave vector (k? is the norm of the
2D vector k?), D is the linear growth factor and D0 is its
derivative with respect to conformal time, and any quantity
with the subscript i is evaluated at z ! zi. The symbol
#$Poiss:;lens:

i %2 stands for the Poissonian lensing term that is
often studied: it gives the variance in convergence, up to a
factor of )5= ln10*2. The term #$Poiss:;vel:

i %2 gives the vari-
ance in luminosity distance due to peculiar motion, up to
the same factor. Note that there is no cross velocity-lensing
term—it vanishes because the lensing projection forces
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where Clens
ij and Cvel:

ij are the lensing and peculiar motion contributions to the correlation matrix Cij. The window function
for the lensing term Wlens

ij depends on the survey geometry: the integration of ! and !0 is over the survey area, which is
allowed to depend on the redshift bin i or j for the sake of generality. The expression given forWlens

ij in terms of the Bessel
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I. INTRODUCTION

The challenge to discover the nature of dark energy is
pushing all methods and measures of cosmology to their
limits. The luminosity distances to type 1a supernovae
(SNe) which first revealed the cosmic acceleration [1–3],
are now being pursued to obtain tighter constraints on
cosmological model parameters [4–7]. Observational pro-
grams, such as the Supernova Legacy Survey [8], the
Supernova Factory [9], Essence [10], the Carnegie
Supernova Project [11], in addition to ongoing efforts by
existing groups, are currently underway, hoping to achieve
!10% constraints on the dark energy equation of state
parameter. In order to decisively advance our understand-
ing, and test for a possible time-evolution of the dark
energy, a dedicated space-based mission is planned as
part of the NASA/DOE Joint Dark Energy Mission
(JDEM).

The luminosity distance-redshift relation, however, has a
basic limitation as a tool for cosmology in an inhomoge-
neous universe. Large-scale structures distort the distances
and redshifts. It is well known that peculiar velocities of
SNe induced by the internal properties of host galaxies and
clusters contribute a random component to distance esti-
mates. Assuming the underlying cosmology is known,
these peculiar velocities can be used to both determine a
reference frame of the large-scale structure as well as map
the mass distribution of the local universe. (See
Refs. [12,13], as well as the recent Refs. [14,15] for
more recent analysis.) In the case of cosmological mea-
surements in the Hubble diagram, peculiar velocities act as
a source of noise and it is generally assumed that velocity-
induced errors can be reduced by averaging over many
SNe.

Furthermore, gravitational lensing of SN light reduces
the accuracy with which the true luminosity distance can

be determined for an individual SN [16–19], thereby com-
plicating an easy interpretation of the Hubble diagram. The
effect comes from the slight modification of the observed
SN flux due to lensing by the intervening large-scale
structure [20–23]. Since the intervening mass distribution
is spatially correlated, as characterized by the dark matter
and baryonic mass power spectrum, the lensing distortion
of luminosity distances to SNe along different lines-of-
sight is also correlated. Typically, this correlation peaks for
lines-of-sight with arcminute angular separations, but dis-
tances to SNe at large angular separations will also suffer a
few percent correlation. The net result will be an increase
in noise, and therefore an increase in the errors on cosmo-
logical parameters extracted from the SN Hubble diagram.
The lensing effect generally argues against use of survey
geometries in the form of ‘‘pencil beams’’ or small areas on
the sky as well as surveys that are long in one direction, but
narrow in the other [24].

Our primary concern in this paper is large-scale bulk
flows [25], peculiar motions that are coherent on scales
above !60 Mpc, which correlate individual SN distance
estimates spread over ten or more degrees angular scale. In
this case the effect comes from the slight Doppler shifting
of both the source and observer, affecting both the inferred
redshift and the flux, resulting in a nonlinear correction to
the luminosity distance. This correlated noise cannot be
reduced simply by increasing the sample size and is ex-
pected to affect the error budget from low to intermediate
redshifts (z < 0:2). Because the Hubble diagram at these
low redshifts must be pinned down accurately in order that
we may hope to find a possible time variation in the dark
energy equation of state [26,27], it follows that accounting
for bulk motions is a necessity.

Fluctuations and anisotropies in luminosity distance
have been studied previously, with most of the focus on
formalism [28,29] and the role of gravitational lensing (e.g.
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to extract new cosmological parameters. The full covari-
ance matrix must be established as a function of cosmo-
logical parameters to obtain an accurate gauge of
cosmological parameter uncertainty.

None of these considerations will deter upcoming
searches for SNe for cosmological purposes, though a
careful consideration must be given to account for velocity
fluctuations at low redshifts and lensing effects at high
redshifts. Since peculiar velocity correlations are only
significant at z < 0:2, one can potentially ignore low red-
shift SNe when fitting distance data to cosmological esti-
mates. In this case, we find that the parameter errors are not
significantly affected by velocity correlations except that
the errors are increased by the fractional factor in which the
SN sample is reduced. In fact, this increase is larger than
the case where all SNe are used to estimate cosmology, but
with a proper accounting of the correlations. So, instead of
simply throwing away data, such as low-redshift SNe, it
may be best to keep the sample as a whole, but develop
techniques to account for peculiar velocity correlations.

Since the low, ‘ ! 6 multipoles in the velocity anisot-
ropy spectrum dominate the SN distance covariance, if
such multipoles can be determined independently of the
SN measurements then corrections, at least partially, can
be applied to the interpretations of the Hubble diagram.
While we have not investigated the required accuracy for a
correction, if a signal-to-noise ratio of 10 or better mea-
surement in each multipole is required, then independent
bulk flow measurements at redshifts ranging over 0.01 to
0.1 must involve a source surface density of 103 sr"1 and
an uncertainty in the velocity measurement of each object
below 100 km s"1. If a lower signal-to-noise ratio mea-
surement is adequate then the surface density can be
correspondingly reduced. Such a surface density of sources
and a velocity error may be achievable with cluster studies
of the kinetic Sunyaev-Zeld???ovich [40] effect with the
upcoming Planck surveyor [41], though foregrounds and
internal motions within clusters will contaminate bulk flow
measurements and reduce the overall signal-to-noise ratio
levels [42]. Another approach will be to consider informa-
tion from an almost all-sky peculiar velocity survey based
on low-redshift galaxy samples. In the past, the IRAS Point
Source Redshift Catalog (PSCz) has allowed modeling of
the spherical harmonic moments of the velocity field [43]
out to a redshift of 0.02. We encourage the development of
techniques to use information from such surveys to correct
the correlations in the low-redshift part of the Hubble
diagram.

It is interesting to note that the dimensionless fluctua-
tions of the angular-diameter distance dA due to large-scale
bulk motions are identical to that for the luminosity dis-
tance,

!dA=dA # !dL=dL: (6)

This means our results for velocity covariances apply

equally to distances based on angular-diameter measure-
ments. Possible scenarios include the distances to large-
scale structure obtained through baryon acoustic oscilla-
tions [44], distances to galaxies using the Sunyaev-
Zeld́ovich effect (for a recent example, see [45]) or other
features such as radio lobes [46,47], and probes of cosmol-
ogy using the Alcock-Pazcynski [48] test which employ
the angular-diameter distance to a correlation radius. The
survey details will differ in all cases, so that the extent to
which velocity correlations of low-redshift, wide-
separation objects contribute noise will also vary.

We can also consider dimensionless fluctuations of the
Hubble constant arising from velocity correlations, due to a
Hubble bubble or other effects of large-scale structure, as
inferred from either luminosity or angular-diameter dis-
tances. Using dL, we note that H"1 # d=dz$dL=%1& z'(
whereby
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The second term on the right includes the correction due to
the peculiar acceleration. At low redshifts, this is equiva-
lent to !H # "!dL & !z%1& 1

2 %1" q'z&O%z2'', which
we obtain by perturbing the redshift expansion of the
luminosity distance. Here, !X is the fractional perturbation
to X # H, dL, z and !z # %1& 1=z'n̂ ) %vSNe " vobs'. (See
Refs. [28,31].) In principle, the deceleration parameter q,
also varies on the sky and suffers from correlations.
Although few if any theoretical models for the origin of
the cosmic acceleration predict inhomogeneities in q,
large-scale structure may be expected to distort q at the
same level as H. Similar to fluctuations associated with
distance in Eq. (4), one can define a covariance for the
Hubble constant anisotropies using the line-of-sight pro-
jected correlation function for the velocity field. This co-
variance is
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where Fl is defined below Eq. (3). Compared to fluctua-
tions of the luminosity distance, anisotropies in the Hubble
constant are larger by a factor of+3" 5 depending on the
redshift and the deceleration parameter (see Fig. 4). The
increase comes from the correction to fluctuations associ-
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[30]). The attention has only recently expanded to include
peculiar motions [31]. Our intention is to examine the
consequences of correlated distortions of luminosity dis-
tances due to bulk motions for the interpretation of the
Hubble diagram and efforts to extract cosmological infor-
mation about dark energy. Turning the problem around, we
will also examine whether low-redshift SNe can provide a
way to measure large-scale bulk flows.

II. CALCULATIONAL METHOD

In order to quantify these statements, we will first sum-
marize the errors induced by peculiar velocity fluctuations.
The effect resulting from velocities involve two differ-
ences: first, the inferred redshift is modified by the differ-
ence in the velocity of the source relative to the observer,
projected along the line-of-sight; second, the motion at the
observer leads to a dipole correction to the distance. In
combination, we obtain (see, Ref. [28] for details including
their equation 3.15; also [29,31]):

!dL
dL
! n̂ "

!
vSNe #

a
a0"
$vSNe # vobs%

"
; (1)

where n̂ is the unit vector along the line-of-sight, vSNe is the
SN velocity, vobs is the velocity of the observer, " is the
comoving radial distance to the SN, and the prime denotes
the derivative with respect to the conformal time. Unless
otherwise stated, here and throughout, we take a unit
system in which c ! 1. The covariance matrix of errors
in luminosity distance is

Cov ij & #2
int$zi%!ij ' Cvv$zi; zj;$ij%; (2)

where #2
int$zi% is the variance term that affects each dis-

tance individually (e.g. due to random velocities, or the
intrinsic uncertainty in the calibration of SN light curves).
While in practice this error is different from one SNe to
another, in our calculations we ignore such complications
arising from survey parameters and assume the same nu-
merical value for variance. Cvv$zi; zj; $ij% is defined as the
correlation of the errors in two luminosity distance esti-
mates in the SN Hubble diagram, for SNe at redshifts zi
and zj and a projected angular separation of $ij on the sky,
due to the modification of the luminosity distance by
peculiar velocities.

Equation (2) defines the full covariance matrix due to
peculiar velocities. The covariance in luminosity distance
errors can be computed, following Refs. [32,33], whereby
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with Fl ! $l# 1%!!=)2l=2$l=2%!* cosl%=2, and the summa-
tion is over even values of l. We assume that SNe are point
sources that trace the linear velocity field, but if there is a
velocity bias, then the correlations could be enhanced
(unless SNe are underbias with respect to the peculiar
velocity field with a velocity bias factor less than unity).
Note that Pvv$k; zi; zj% is the power spectrum of velocity
fluctuations between redshifts zi and zj respectively, which
can be written as

Pvv$k; zi; zj% ! D0$zi%D0$zj%Pmm$k%=k2; (4)

where Pmm is the mass fluctuation power spectrum andD is
the mass growth factor. This form only accounts for linear
fluctuations at large scales. The variance related to velocity
fluctuations can be obtained in the limit where zi ! zj and
$ij ! 0. We additionally included nonlinear velocities,
corresponding to internal motions of SNe within halos
such as groups and clusters, and found that these also do
not affect error estimates. This is due to the fact that the
velocity-induced variance is smaller than the intrinsic er-
ror, #2

int. The effect on the Hubble diagram, however, is not
negligible since correlations between errors are dominated
by the large-scale bulk flows at low redshifts.

In Fig. 1(a), we show the luminosity distance covariance
Cvv$zi; zj; $ij% with equal redshifts and also with zi ! 0:2
for different values of zj, as a function of the separation
angle $ij. In Fig. 1(b) we show the covariance as a function
of z ! zi ! zj for several illustrative values of $ij. For
reference, we also plot the variance due to gravitational
lensing (with $ij ! 0) as a function of redshift z and
compare it to an intrinsic SN magnitude error of !m !
0:1, which is the expected level to which SN light curves
may be calibrated in upcoming searches. We note that the
recent Supernova Legacy Survey (SNLS) has reached an
average intrinsic error of 0.12 (in magnitudes) [7]. Peculiar
velocities are a concern for SNe separated by angular
scales of tens or more square degrees as seen in Fig. 1(a),
and at low redshifts, z & 0:2, as seen in Fig. 1(b).

To determine the impact on cosmological parameter
estimates, we compute the Fisher information matrix

F &' !
X
ij

@dL$zi%
@p&

$Cov#1%ij
@dL$zj%
@p'

: (5)

If the errors are uncorrelated in the Hubble diagram,
then the final error on a given cosmological parameter
obtained by model fitting is proportional to #int=

%%%%%%%%%%%
N$zi%

p
.

But in the case that there are correlations between
data points due to bulk flows, the final error is close
to #int

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1' )N$zi% # 1*r2

p
=
%%%%%%%%%%%
N$zi%

p
where r +

Cov$i; j%=
%%%%%%%%%%%%%%%%%%%%%%%%%%
Var$i%Var$j%

p
is the average correlation between

data points. The limit r! 0 corresponds to the case of
uncorrelated errors, but in the limit of perfect correlation,
r! 1, the error remains as #int with no improvement from
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ABSTRACT

We analyze the effect that peculiar velocities have on the cosmological inferences we make using luminosity
distance indicators, such as Type Ia supernovae. In particular we study the corrections required to account for
(1) our own motion, (2) correlations in galaxy motions, and (3) a possible local under- or overdensity. For all
of these effects we present a case study showing the impact on the cosmology derived by the Sloan Digital Sky
Survey-II Supernova Survey (SDSS-II SN Survey). Correcting supernova (SN) redshifts for the cosmic microwave
background (CMB) dipole slightly overcorrects nearby SNe that share some of our local motion. We show that
while neglecting the CMB dipole would cause a shift in the derived equation of state of ∆w ∼ 0.04 (at fixed Ωm), the
additional local-motion correction is currently negligible (∆w ! 0.01). We then demonstrate a covariance-matrix
approach to statistically account for correlated peculiar velocities. This down-weights nearby SNe and effectively
acts as a graduated version of the usual sharp low-redshift cut. Neglecting coherent velocities in the current sample
causes a systematic shift of ∆w ∼ 0.02. This will therefore have to be considered carefully when future surveys
aim for percent-level accuracy and we recommend our statistical approach to down-weighting peculiar velocities
as a more robust option than a sharp low-redshift cut.

Key words: cosmology: observations – supernovae: general

Online-only material: color figures

1. INTRODUCTION

Concordance cosmology (ΛCDM) is a successful model of
our universe, fitting observations of Type Ia supernovae (Riess
et al. 1998; Perlmutter et al. 1999; Astier et al. 2006; Wood-
Vasey et al. 2007; Riess et al. 2004, 2007; Kowalski et al.
2008; Hicken et al. 2009; Kessler et al. 2009; Freedman et al.
2009), the cosmic microwave background (CMB; Page
et al. 2003; Tegmark et al. 2006; Spergel et al. 2007; Komatsu
et al. 2009, 2011), baryon acoustic oscillations (BAOs;
Eisenstein et al. 2005; Percival et al. 2007, 2010; Blake et al.
2011b, 2011d), and growth of structure (Blake et al. 2011a,
2011c), among others. However, it relies on the existence of
dark components of the universe—dark energy and dark mat-
ter—whose nature remains mysterious. This has given rise to
questions about the validity of our theory of gravity itself. There-
fore enormous observational effort is continuing to better char-
acterize the dark sector by measuring the expansion history of
the universe and the growth of structure within it.

Type Ia supernovae remain a lynch-pin in this effort, and
more surveys are underway, or planned, to gather ever more
high quality data to try to reduce the uncertainties on our
cosmological parameters down below the 1% level and search
for possible variations in the equation of state of dark energy. To
achieve this accuracy we will have to address small systematic
effects that had previously been negligible. In this paper we
consider systematic errors that could arise from neglecting the
peculiar velocities and gravitational redshifts induced by large-
scale structure.

The customary diagnostic in supernova (SN) cosmology
is the Hubble diagram, a measurement of luminosity as a
function of redshift. When using Type Ia supernovae to measure
this magnitude–redshift relation, the redshift used should be
entirely due to the expansion of the universe. In practice this is
never the case, as large-scale structure in the universe induces
peculiar motions so that the measured redshift contains some
contribution from peculiar velocities. To date, the majority
of the effort in calibrating Type Ia supernova measurements
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ABSTRACT

We analyze the effect that peculiar velocities have on the cosmological inferences we make using luminosity
distance indicators, such as Type Ia supernovae. In particular we study the corrections required to account for
(1) our own motion, (2) correlations in galaxy motions, and (3) a possible local under- or overdensity. For all
of these effects we present a case study showing the impact on the cosmology derived by the Sloan Digital Sky
Survey-II Supernova Survey (SDSS-II SN Survey). Correcting supernova (SN) redshifts for the cosmic microwave
background (CMB) dipole slightly overcorrects nearby SNe that share some of our local motion. We show that
while neglecting the CMB dipole would cause a shift in the derived equation of state of ∆w ∼ 0.04 (at fixed Ωm), the
additional local-motion correction is currently negligible (∆w ! 0.01). We then demonstrate a covariance-matrix
approach to statistically account for correlated peculiar velocities. This down-weights nearby SNe and effectively
acts as a graduated version of the usual sharp low-redshift cut. Neglecting coherent velocities in the current sample
causes a systematic shift of ∆w ∼ 0.02. This will therefore have to be considered carefully when future surveys
aim for percent-level accuracy and we recommend our statistical approach to down-weighting peculiar velocities
as a more robust option than a sharp low-redshift cut.
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1. INTRODUCTION

Concordance cosmology (ΛCDM) is a successful model of
our universe, fitting observations of Type Ia supernovae (Riess
et al. 1998; Perlmutter et al. 1999; Astier et al. 2006; Wood-
Vasey et al. 2007; Riess et al. 2004, 2007; Kowalski et al.
2008; Hicken et al. 2009; Kessler et al. 2009; Freedman et al.
2009), the cosmic microwave background (CMB; Page
et al. 2003; Tegmark et al. 2006; Spergel et al. 2007; Komatsu
et al. 2009, 2011), baryon acoustic oscillations (BAOs;
Eisenstein et al. 2005; Percival et al. 2007, 2010; Blake et al.
2011b, 2011d), and growth of structure (Blake et al. 2011a,
2011c), among others. However, it relies on the existence of
dark components of the universe—dark energy and dark mat-
ter—whose nature remains mysterious. This has given rise to
questions about the validity of our theory of gravity itself. There-
fore enormous observational effort is continuing to better char-
acterize the dark sector by measuring the expansion history of
the universe and the growth of structure within it.

Type Ia supernovae remain a lynch-pin in this effort, and
more surveys are underway, or planned, to gather ever more
high quality data to try to reduce the uncertainties on our
cosmological parameters down below the 1% level and search
for possible variations in the equation of state of dark energy. To
achieve this accuracy we will have to address small systematic
effects that had previously been negligible. In this paper we
consider systematic errors that could arise from neglecting the
peculiar velocities and gravitational redshifts induced by large-
scale structure.

The customary diagnostic in supernova (SN) cosmology
is the Hubble diagram, a measurement of luminosity as a
function of redshift. When using Type Ia supernovae to measure
this magnitude–redshift relation, the redshift used should be
entirely due to the expansion of the universe. In practice this is
never the case, as large-scale structure in the universe induces
peculiar motions so that the measured redshift contains some
contribution from peculiar velocities. To date, the majority
of the effort in calibrating Type Ia supernova measurements
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Figure 3. Velocity two-point correlation, ξ12, in units of ( km s−1)2. The upper
panel shows the correlation as a function of z2 (the redshift of the higher redshift
supernova) compared to a low-redshift supernova at a fixed z1 = 0.01, for three
different angular separations (0◦, 30◦, and 100◦). As the redshift separation
increases the correlation diminishes. The lower panel shows the correlation
as a function of angular separation, in the case where the two supernovae
are at the same redshift (z2 = z1 = 0.01, 0.02, 0.05, and 0.1). For a fixed
angular separation the correlation is most dramatic at low redshifts because this
corresponds to a smaller physical distance than the same angular separation at
high redshifts. ξ12 is given by the last two lines of Equation (29).

The peculiar-motion-induced magnitude covariance is related
to the velocity correlation function ξ vel

ij by

Cvel
ij =

[
5

c ln 10

]2 [
1 − ai

a′
i

c

χ̃i

][

1 − aj

a′
j

c

χ̃j

]

ξ vel
ij , (26)

where c is the speed of light, χ̃ ≡ R0χ is the radial comoving
distance, a = R/R0 is the normalized scale factor, and the
prime denotes the conformal time derivative. All quantities with
a subscript i or j are to be evaluated at the redshift of the SN in
question. For a non-flat universe χ̃ → R0Tk(χ ).

A numerical code to compute both ξ vel
ij and Cvel

ij for a
pair of points at arbitrary redshifts and angular separation in
the standard cosmological model of ΛCDM is available at
http://www.astro.columbia.edu/∼lhui/PairV. We illustrate the
results of that code in Figures 3 and 4, and in what follows
we explain the theory behind those calculations.

To calculate the expected velocity correlation function given
a theoretical model we need information about how structure
grows. To first order this is given by the linear growth factor
D(z) ≡ δ(z)/δ(0), where the overdensity δ = (ρ − ⟨ρ⟩)/⟨ρ⟩.
As input we also use the mass power spectrum of density
fluctuations observed at the present time P (k)z=0, where k is
the comoving wavenumber (inverse distance).

Using these we can estimate the distribution of peculiar veloc-
ities expected in a particular theoretical model. Concentrating
for the moment only on the dispersion (the diagonal terms in
the velocity correlation function), one finds the dispersion in
peculiar velocities to be (Hui & Greene 2006),

σ vel
vi

2 ≡ ξ vel
ii = D′(zi)

2
∫ ∞

0

dk

6π2
P (k)z=0, (27)

Figure 4. Magnitude covariance due to peculiar motion (Equation (29)). As
for Figure 3 the upper panel shows, for three different angular separations,
the covariance between a z1 = 0.01 source and a source at a higher redshift,
z2. The lower panel shows for fixed redshifts (z2 = z1 = 0.01, 0.02, 0.05,
and 0.1) how the covariance drops as the angular separation increases. To
get a feel for how much additional uncertainty the correlated component
adds to the uncorrelated dispersion consider that for these four redshifts the
canonical 300 km s−1 dispersion corresponds to σ 2

m ∼ (25, 10, 7, 5) × 10−3,
respectively (see Appendix A). So the strongest correlated uncertainties are
an order of magnitude lower than the random dispersion. However, the random
dispersion can be beaten down by raising the number of SNe, while the correlated
covariance cannot. Thus, as the total number of SNe increases the correlated
noise becomes comparatively more and more important.

which results in a dispersion in apparent magnitude of

σ vel
i

2 =
[

5
c ln 10

]2 [
1 − ai

a′
i

c

χ̃i

]2

σ vel
vi

2
. (28)

In principle this dispersion is sensitive to nonlinear fluctuations,
but the velocity power spectrum weights larger-scale modes
more than the density power spectrum does and we find that
when using the linear mass power spectrum for a ΛCDM model
the resulting value for σvi

agrees with the canonical value of
300 km s−1 to better than 10% for all redshifts of interest. The
off-diagonal components of Cij should be at least as well fit by
linear theory since they are less sensitive to small-scale structure
than σvi

.
The off-diagonal part of Cij, given by Cvel

ij in Equation (23),
accounts for the effects of correlated peculiar flows. Expressing
this quantity in an observer-centric form Hui & Greene (2006)
show that for a flat universe,

Cvel
ij =
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c ln 10
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c

χ̃i

] [
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×
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ℓ=0

(2ℓ + 1)j ′
ℓ(kχ̃i)j ′

ℓ(kχ̃j )Pℓ(x̂i · x̂j), (29)

where Pℓ is the Legendre polynomial, jℓ is the spherical Bessel
function, and j ′

ℓ is its derivative with respect to its argument. It
is useful to note that j ′

ℓ(x) = jℓ−1 − (ℓ + 1)jℓ/x. This observer-
centric form can be derived from Equation (22), D7, and D10

6

The Astrophysical Journal, 741:67 (15pp), 2011 November 1 Davis et al.

Figure 3. Velocity two-point correlation, ξ12, in units of ( km s−1)2. The upper
panel shows the correlation as a function of z2 (the redshift of the higher redshift
supernova) compared to a low-redshift supernova at a fixed z1 = 0.01, for three
different angular separations (0◦, 30◦, and 100◦). As the redshift separation
increases the correlation diminishes. The lower panel shows the correlation
as a function of angular separation, in the case where the two supernovae
are at the same redshift (z2 = z1 = 0.01, 0.02, 0.05, and 0.1). For a fixed
angular separation the correlation is most dramatic at low redshifts because this
corresponds to a smaller physical distance than the same angular separation at
high redshifts. ξ12 is given by the last two lines of Equation (29).

The peculiar-motion-induced magnitude covariance is related
to the velocity correlation function ξ vel

ij by

Cvel
ij =

[
5

c ln 10

]2 [
1 − ai

a′
i

c

χ̃i

][

1 − aj

a′
j

c

χ̃j

]

ξ vel
ij , (26)

where c is the speed of light, χ̃ ≡ R0χ is the radial comoving
distance, a = R/R0 is the normalized scale factor, and the
prime denotes the conformal time derivative. All quantities with
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more than the density power spectrum does and we find that
when using the linear mass power spectrum for a ΛCDM model
the resulting value for σvi

agrees with the canonical value of
300 km s−1 to better than 10% for all redshifts of interest. The
off-diagonal components of Cij should be at least as well fit by
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.
The off-diagonal part of Cij, given by Cvel
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What’s new in Doppler (or anti) lensing?

• Long history of observations

• Rubin-Ford effect (1976)

• Tammann, Sandage & Yahil (1979)

• …… Tully-Fisher … Faber-Jackson … Dn-sigma …

• Cosmic flows II; 6df survey…

• What’s new in theory?

• long history back to Zel’dovich ’64

• classic paper by Sasaki et al ’87

• Wasn’t this all thrashed out in relation to SN1a cosmology?

• Hui & Greene ’06; Cooray & Caldwell ’06; Davis et al 2011

• So it’s “not even wrong”?

• not quite… lowest order effect is traditional pec. vel. 

• but next order (finite z) effect depends on absolute motion

• violates Equivalence Principle!



Kaiser & Hudson, 2014

• Perturbation to the distance (at fixed z) from velocities (alone)

• (δd/d)z = - (a/a'χ)(vS.n - vO.n) + vS.n 

• a=scale factor, χ=conformal distance (dχ=dz/H), n=LOS

• S=source, O=observer, '= d/dη, η=conformal time

• At low z, a'χ/a=z, so first term dominates
• it depends only on relative velocity

• But for finite z 2nd term becomes important

• this depends on absolute peculiar motion of sources

• what if observer and sources share a common motion?

• perhaps caused by the attraction of a distant mass excess

• would we see a dipole in (δd/d)z = vS.n?

• this would conflict with the Equivalence Principle

• our observations 'transform gravity away' locally since 
both sources and observer are in free fall so we should 
only be able to detect the tidal influence of distant matter



Observed
region

Distant
attractor

g



Whence (δd/d)z = -(a/a'χ)(vS.n - vO.n) + vS.n ?

• Size of source of diameter l at distance χ is θ=θ0(χ)=l/aχ

• and dθ/dz = (l/χ)(1 - a/a'χ)

• so at fixed z, δθ = θ0(χ) - θ0(χ(z+δz)) = -(dθ/dz) δz

• But a moving observer will suffer relativistic aberration

• angular sizes modulated by factor (1 - n.vO)

• so (δθ/θ)z = -(dθ/dz)(δz/θ) - n.vO

• or (δθ/θ)z = (a/a'χ - 1) δz/(1+z) - n.vO

• which, with δz/(1+z) = n.(vS-vO) is equivalent to above

• -(δθ/θ)z = (δdA/dA)z = (δd/d)z   (since (δΣ/Σ)z = 0)

• note - asymmetry caused by motion of the observer



Q: So is (δd/d)z an absolute speedometer?

• A: No.  Velocities in the formula are velocities on the past light 
cone of the observer.  And velocities change with time.

• Case 1: Unsupported motions: these decay as v ~ 1/a = (1+z)

• can rewrite (δθ/θ)z = (a/a'χ)[(1-a'χ/a)(1+z)n.vS - n.vO]

• where all velocities are at the same (present) time η0

• but a'χ/a ~ z at small z, so

• (δθ/θ)z = (a/a'χ)n.(vS - vO)

• plus corrections that are smaller by factor ~z2

• only depends on relative velocity

• no effect from distant attractors



Q: So is (δd/d)z an absolute speedometer?
• Case 2: More interesting: velocities associated with structure.

• dv/dt = -Hv + g 

• g is the peculiar gravity

• Expressing (δθ/θ)z in terms of velocity at present epoch does 
not banish dependence on absolute velocity (or gravity)

• But to be consistent, one needs to include the gravitational 
redshift (Sachs & Wolfe effect) in δz/(1+z)

• Result is (δθ/θ)z = (a/a'χ)n.(vS - vO) - n.gS/H + z-1⎰dχ.g(χ)

• no observable effect from distant attractors

• independent of choice of "background"

• gives consistent approach to calculating e.g. SN1a covariance



2) Bias in H0 from 2nd order pertn theory



Scale dependence of cosmological backreaction

Nan Li* and Dominik J. Schwarz+

Fakultät für Physik, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
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Because of the noncommutation of spatial averaging and temporal evolution, inhomogeneities and

anisotropies (cosmic structures) influence the evolution of the averaged Universe via the cosmological

backreaction mechanism. We study the backreaction effect as a function of averaging scale in a

perturbative approach up to higher orders. We calculate the hierarchy of the critical scales, at which

10% effects show up from averaging at different orders. The dominant contribution comes from the

averaged spatial curvature, observable up to scales of!200 Mpc. The cosmic variance of the local Hubble

rate is 10% (5%) for spherical regions of radius 40 (60) Mpc. We compare our result to the one from

Newtonian cosmology and Hubble Space Telescope Key Project data.
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Various cosmological observations, interpreted in the
framework of spatially flat, homogeneous, and isotropic
cosmogonies, have now confirmed the accelerated expan-
sion of the Universe. The most direct evidence comes from
the study of supernova (SN) of type Ia [1]. Many attempts
have been proposed to understand this mystery, e.g.,
dark energy in the form of a cosmological constant,
quintessence field or modification of gravity. However,
these suggestions always rely on the homogeneity and
isotropy of the cosmic medium, which are rather rough
approximations.

The Universe hosts enormous structures. In our neigh-
borhood, there seem to exist two voids, both 35 to 70 Mpc
across, associated with the so-called velocity anomaly [2],
a large filament known as the Sloan great wall about
400 Mpc long [3] and the Shapely supercluster with a
core diameter of 40 Mpc at a distance of !200 Mpc
from us [4]. Furthermore, based on the Hubble Space
Telescope (HST) Key Project data [5], evidence for a
significant anisotropy in the local Hubble expansion at
distances of !100 Mpc was found [6], and an anisotropy
of SN Ia Hubble diagrams extending to larger distances has
been reported recently [7]. Therefore, spatial homogeneity
and isotropy seem to be valid only on scales larger than
!100 Mpc [8], and effects of local inhomogeneities are
worthy of investigation. More specifically, observables
from within a few 100 Mpc must be revisited critically.
The most fundamental of those are cosmic distances and
the Hubble constant H0.

In this paper, we study the averaging of the inhomoge-
neous and anisotropic Universe over a local domain in
space-time. We stick to the idea of cosmological inflation,
assuming that the Universe approaches homogeneity and
isotropy at scales as large as the Hubble distance.

Many cosmological observables are averaged quantities.
For instance, the matter power spectrum is a Fourier trans-
form and thus a volume average weighted by a factor eik"x.
Another very important example is the idealized measure-
ment of H0 [9]. One picks N standard candles in a local
volume V (e.g., SN Ia in the Milky Way’s neighborhood
out to !100 Mpc), measures their luminosity distances di
and recession velocities vi ¼ czi (zi being the redshift of
each candle) and performs the average H0 $ 1

N

PN
i¼1

vi

di
. In

the limit of a very big sample, it turns into a volume
average H0 ¼ 1

V

R
v
d dV.

Cosmological observations are made on the past light
cone, so one should average over a light-cone volume.
However, for objects at z % 1, spatial averaging on a
constant-time-hypersurface is a good approximation, as
the Universe does not change significantly on the temporal
scale involved.
Because of the nonlinearity of the Einstein equations,

spatial averaging and temporal evolution do not commute.
Hence, inhomogeneities and anisotropies affect the evolu-
tion of the averaged Universe via the so-called ‘‘backreac-
tion mechanism’’ [10–16]. Below, we utilize Buchert’s
averaging method [12] to estimate the order of magnitude
of backreaction effects and study the signatures of averag-
ing from the local measurement of H0.
Buchert’s setup is well adapted to the situation of a real

observer, if we are allowed to neglect the difference be-
tween baryons and cold dark matter (CDM). On scales
* 10 Mpc, baryon pressure is insignificant, and a real
observer comoves with matter, uses her own clock and
regards space to be time-orthogonal. These conditions
define a comoving synchronous coordinate system. There
are no primordial vector perturbations from cosmological
inflation, so we assume the Universe to be irrotational. As
we are concerned about the present Universe, radiation is
thus neglected. Moreover, the cosmological constant is
also supposed to vanish, as we ask whether averaging could
mimic a component of dark energy. Following Buchert, we

*li@physik.uni-bielefeld.de
+dschwarz@physik.uni-bielefeld.de

PHYSICAL REVIEW D 78, 083531 (2008)

1550-7998=2008=78(8)=083531(6) 083531-1 ! 2008 The American Physical Society

k0 ¼ 0:002=Mpc and spectral index ns ¼ 0:960 and use
H0 ¼ 72 km=s=Mpc [20]. We see that the theoretical band
matches the experimental data well, without any fit pa-
rameter in the panel. Moreover, we see from Fig. 2 that the
value of !H is positive within "100 Mpc. This is consis-
tent with the result in a recent paper [24] that we are
located in a 200–300 Mpc underdense void, which is
expanding faster than the global Hubble rate.

Before we can claim that we have observed the expected
1=r2 behavior in Eq. (18) and thus the evidence for cos-
mological backreaction, we must make sure that statistical
noise cannot account for it. In the case of a perfectly
homogeneous coverage of the averaged domain with stan-
dard candles, we would expect a 1=r3=2 behavior. In Fig. 2,
we show the statistical noise for the actual data set
(1=ðPk

i¼1 giÞ1=2), which is smaller than our result
Eq. (18). It turns out that the sampling noise for this small
data set is still too large to claim that the inhomogeneity of
the Universe can be detected in the relative fluctuation of
the Hubble rate observed by the HST Key Project.
However, it is fully consistent with our theoretical expec-
tations. Actually the fluctuation !H appears to be smaller

than expected, and one might wonder why that is so. From
the theoretical expectation plotted in Fig. 2, we find that at
"40ð60Þ Mpc, the value ofHD differs from its global value
72 km=s=Mpc (WMAP5) by about 10% (5%), whereas the
expected variance for a perfectly homogeneous and iso-
tropic Universe is 8% (2%).
A similar analysis of the Hubble diagram was pioneered

in Refs. [25–28], in which the velocity field of the local
Universe and its influence on the correlated fluctuations in
luminosity distance and the Hubble rate was analyzed. Two
essential differences to this work are that our analysis
includes effects to higher orders and we study the scale
dependence of the averaged observables. Although the
relative fluctuation of the Hubble rate was not explicitly
analyzed in Refs. [25–27], it seems to us that our results are
consistent with those findings.
To summarize, we argue that cosmological averaging

(backreaction) gives rise to observable effects up to scales
of "200 Mpc. However, it is not sufficient to explain the
observed accelerated expansion at this point.
We find a hierarchy of backreaction effects. The aver-

aged spatial curvature hRiD leads to 10% (1%) effects up
to "80ð240Þ Mpc in a dust model with h ¼ 0:7. Below
"40 Mpc, the cosmic variance of the Hubble rate is larger
than 10%, which coincides with the estimate from the
effect of peculiar motions in Newtonian setup. Within
"30 Mpc, the kinematical backreaction hQiD, due to sec-
ond order perturbations caused by local inhomogeneities
and anisotropies, enters the game. Cosmological backreac-
tion may put some of the steps on the cosmological dis-
tance ladder in question, as they are deeply in the domain
of large backreaction, i.e., large fluctuations among small
averaged volumes.
Our findings call for revisiting local observations, like

galaxy redshift surveys, in terms of possible backreaction
signatures. The large scale physics of primordial CMB
anisotropies is not affected. However, this statement cannot
be made for secondary effects, e.g., the late integrated
Sachs-Wolfe effect.
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FIG. 2 (color online). Relative fluctuation of the Hubble rate
from cosmological backreaction and its cosmic variance band
(thick lines) compared to the empirical mean and variance of !H

obtained from the HST Key Project data [5] as a function of
averaging radius. The thin line shows the ensemble mean of !H .
The band enclosed by the thick lines indicates the effect of the
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We investigate the effect that the average backreaction of structure formation has on the dynamics of

the cosmological expansion, within the concordance model. Our approach in the Poisson gauge is fully

consistent up to second order in a perturbative expansion about a flat Friedmann background, including a

cosmological constant. We discuss the key length scales which are inherent in any averaging procedure of

this kind. We identify an intrinsic homogeneity scale that arises from the averaging procedure, beyond

which a residual offset remains in the expansion rate and deceleration parameter. In the case of the

deceleration parameter, this can lead to a quite large increase in the value, and may therefore have

important ramifications for dark energy measurements, even if the underlying nature of dark energy is a

cosmological constant. We give the intrinsic variance that affects the value of the effective Hubble rate and

deceleration parameter. These considerations serve to add extra intrinsic errors to our determination of the

cosmological parameters, and, in particular, may render attempts to measure the Hubble constant to

percent precision overly optimistic.

DOI: 10.1103/PhysRevD.80.083525 PACS numbers: 98.80.Jk, 04.20.Cv, 91.30.Cd

I. INTRODUCTION

The Universe appears to be close to homogeneous and
isotropic, on average, on large scales, but it exhibits a very
clumpy distribution of matter on small scales. To account
for this structure, the standard cosmological model relies
on the separation of the geometry of spacetime into a
perfectly homogeneous and isotropic Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) background describ-
ing the large-scale properties of the Universe, such as the
expansion rate, and small fluctuations around this back-
ground solution. This provides a straightforward perturba-
tive treatment of the growth of structure under the influence
of gravitation. The explicit construction of the background
by a smoothing or averaging procedure applied to the
clumpy Universe is often ignored, and the background
appears as an artificial mathematical object used to per-
form the calculations of gauge invariant quantities charac-
terizing the physical properties of the clumpy Universe.

The essence of this ‘‘averaging problem’’ comes when
we try to match the late time Universe today, which is full
of structure, to the early time Universe, which is not. At the
end of inflation we are left with a universe with curvature
characterized by some constant kinf ( ¼ 0;"1 in some
units), and a cosmological constant, !inf , which are fixed
for all time (and might be zero), and perturbations which
are of a tiny amplitude and well outside the Hubble radius;
there is no averaging problem at this time, and the idea of
background plus perturbations is very natural and simple to
define. Fast forward to today, where structures are non-

linear, are inside the Hubble radius, and many have broken
away from the cosmic expansion altogether. We may still
apparently describe the Universe as FLRW plus perturba-
tions to high accuracy; that is, it is natural and seemingly
correct to define a FLRW background, but it is implicitly
assumed that this background is the same one that we are
left with at the end of inflation, in terms of kinf and !inf .
Mathematically we can follow a model from inflation to
today, but when we try to fit our models to observations to
describe our local Universe we are implicitly smoothing
over the structure, and this can contaminate what we think
our inflationary background FLRW model should be.
Indeed, it is not clear that the background smoothed model
should actually obey the field equations at all. Within the
standard paradigm, then, the averaging problem also be-
comes a fitting problem; are the background parameters we
are fitting with the CMB actually the same as those when
fitting type Ia supernovae? (See [1] for a discussion of
these issues.)
Because of the nonlinearity of the Einstein field equa-

tions, the explicit construction of a homogeneous back-
ground is far from trivial and it has been know for a long
time that the local fluctuations may influence the way the
Universe behaves on average [2]; this effect is usually
dubbed backreaction and has started to be investigated in
detail (see, e.g., [3–26] and references therein) often as a
possible solution to the dark energy problem itself. The
problem is mathematical: if we have an inhomogeneous
matter distribution in some spacetime, and we try to cal-
culate a homogeneous ‘‘background’’ by smoothing the
matter content and calculating the new smoothed metric,
we get a different answer than if we smooth the metric
directly; this difference is usually termed backreaction in
this context.
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Abstract. The calculation of the averaged Hubble expansion rate in an averaged perturbed
Friedmann-Lemâıtre-Robertson-Walker cosmology leads to small corrections to the back-
ground value of the expansion rate, which could be important for measuring the Hubble
constant from local observations. It also predicts an intrinsic variance associated with the
finite scale of any measurement of H0, the Hubble rate today. Both the mean Hubble rate
and its variance depend on both the definition of the Hubble rate and the spatial surface on
which the average is performed. We quantitatively study different definitions of the averaged
Hubble rate encountered in the literature by consistently calculating the backreaction effect
at second order in perturbation theory, and compare the results. We employ for the first
time a recently developed gauge-invariant definition of an averaged scalar. We also discuss
the variance of the Hubble rate for the different definitions.
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relation holding in a recently proposed “geodesic light-cone” gauge, we show how it can
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turbation theory is better understood. We present, in particular, the complete result on
the luminosity-redshift relation in the Poisson gauge up to second order for a fairly generic
perturbed cosmology, assuming that appreciable vector and tensor perturbations are only
generated at second order. This relation provides a basic ingredient for the computation of
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Keywords: cosmological perturbation theory, dark energy theory, gravity

c⃝ 2012 IOP Publishing Ltd and Sissa Medialab srl doi:10.1088/1475-7516/2012/11/045

JCAP11(2012)045

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

The second-order luminosity-redshift
relation in a generic inhomogeneous
cosmology

Ido Ben-Dayan,a,b Giovanni Marozzi,c,d Fabien Nugiere and
Gabriele Venezianoc,f

aCanadian Institute for Theoretical Astrophysics,
60 St George, Toronto ON, M5S 3H8, canada

bPerimeter Institute for Theoretical Physics,
Waterloo, Ontario N2L 2Y5, Canada
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24 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
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Abstract. Using a recently proposed gauge invariant formulation of light-cone averaging,
together with adapted “geodesic light-cone” coordinates, we show how an “induced backreac-
tion” e↵ect emerges, in general, from correlated fluctuations in the luminosity distance and co-
variant integration measure. Considering a realistic stochastic spectrum of inhomogeneities of
primordial (inflationary) origin we find that both the induced backreaction on the luminosity-
redshift relation and the dispersion are larger than näıvely expected. On the other hand the
former, at least to leading order and in the linear perturbative regime, cannot account by it-
self for the observed e↵ects of dark energy at large-redshifts. A full second-order calculation,
or even better a reliable estimate of contributions from the non-linear regime, appears to be
necessary before firm conclusions on the correct interpretation of the data can be drawn.
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Figure 4. The distance-modulus di↵erence of eq. (6.3) is plotted for a pure CDM model (thin line),
for a CDM model including the contribution of IBR2 (dashed blue line) plus/minus the dispersion
(coloured region), and for a ⇤CDM model with ⌦⇤ = 0.73 (thick line) and ⌦⇤ = 0.1 (dashed-dot
thick line). We have used for all backreaction integrals the cut-o↵ k = 1Mpc�1.

on the correct interpretation of the data can be drawn. Also, the di↵erent behaviour of
the di↵erent backreaction contributions, at small z

s

and large z
s

, could represent an im-
portant signature to distinguish the e↵ects due to averaged inhomogeneities from the more
conventional dynamical e↵ects of homogeneous dark energy sources.

The second comment is that, although a reliable estimate of the full backreaction on
the averaged luminosity distance requires a full second-order calculation, some suitable linear
combinations of averages of di↵erent powers of d

L

only depend on the first-order quantity �1
(defined by the expansion of d

L

). As an example, one can show that the following equality
holds at second order for any value of the real parameter ↵:

⌦�
d
L

/dFLRW
L

�
↵

↵
� ↵

⌦
d
L

/dFLRW
L

↵
= 1� ↵+

↵(↵� 1)

2
h�2

1i. (6.4)

This quantity can be plotted for a given inhomogeneous model, and compared with its (de-
terministic) value in a ⇤CDM model, for various values of ↵. The result is that the two
models disagree for generic ↵, leading to the conclusion that realistic inhomogeneities added
to CDM lead to a model that can be distinguished, in principle, from the conventional ⇤CDM
scenario. In practice, however, we only have a single quantity measured by the supernovae
experiments (basically the received flux of radiation), and one cannot exclude that the two
models happen to give the same result for that particular observable.
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Abstract. Starting from the luminosity-redshift relation recently given up to second or-
der in the Poisson gauge, we calculate the e↵ects of the realistic stochastic background of
perturbations of the so-called concordance model on the combined light-cone and ensemble
average of various functions of the luminosity distance, and on their variance, as functions
of redshift. We apply a gauge-invariant light-cone averaging prescription which is free from
infrared and ultraviolet divergences, making our results robust with respect to changes of
the corresponding cuto↵s. Our main conclusions, in part already anticipated in a recent
letter for the case of a perturbation spectrum computed in the linear regime, are that such
inhomogeneities not only cannot avoid the need for dark energy, but also cannot prevent,
in principle, the determination of its parameters down to an accuracy of order 10�3 � 10�5,
depending on the averaged observable and on the regime considered for the power spectrum.
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Figure 6. The fractional correction to the flux (f�, thin curves) and to the luminosity distance (fd,
thick curves), for a perturbed ⇤CDM model with ⌦⇤0 = 0.73. Unlike in figure 3, we have taken
into account the non-linear contributions to the power spectrum given by the HaloFit model of [17]
(including baryons), and we have used the following cuto↵ values: kUV = 10hMpc�1 (dashed curves)
and kUV = 30hMpc�1 (solid curves).
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Figure 7. The averaged distance modulus hµi�µM of eq. (3.6) (thick solid curve), and its dispersion
of eq. (3.9) (shaded region), for a perturbed ⇤CDM model with ⌦⇤0 = 0.73. Unlike figure 4, we
have taken into account the non-linear contributions to the power spectrum given by the HaloFit
model of [17] (including baryons), and used the cut-o↵ kUV = 30hMpc�1. The averaged results are
compared with the homogeneous values of µ predicted by unperturbed ⇤CDM models with (from
bottom to top) ⌦⇤0 = 0.68, 0.69 0.71, 0.73, 0.75, 0.77, 0.78 (dashed curves). The right panel simply
provides a zoom of the same curves, plotted in the smaller redshift range 0.5  z  2.

the distance modulus that can be inferred from SNe Ia data. Our results for the dispersion are
already implicitly contained in figure 7 but, for the sake of clarity, we have separately plotted
our value of �

µ

in figure 8, where the thick solid curve represents the value of �
µ

obtained from
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Figure 6. The fractional correction to the flux (f�, thin curves) and to the luminosity distance (fd,
thick curves), for a perturbed ⇤CDM model with ⌦⇤0 = 0.73. Unlike in figure 3, we have taken
into account the non-linear contributions to the power spectrum given by the HaloFit model of [17]
(including baryons), and we have used the following cuto↵ values: kUV = 10hMpc�1 (dashed curves)
and kUV = 30hMpc�1 (solid curves).
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The effect of a stochastic background of cosmological perturbations on the luminosity-redshift relation

is computed to second order through a recently proposed covariant and gauge-invariant light-cone

averaging procedure. The resulting expressions are free from both ultraviolet and infrared divergences,

implying that such perturbations cannot mimic a sizable fraction of dark energy. Different averages are

estimated and depend on the particular function of the luminosity distance being averaged. The energy

flux being minimally affected by perturbations at large z is proposed as the best choice for precision

estimates of dark-energy parameters. Nonetheless, its irreducible (stochastic) variance induces statistical

errors on !"ðzÞ typically lying in the few-percent range.
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Establishing the existence of dark energy and deter-
mining its parameters is one of the central issues in
modern cosmology. Evidence of a sizable dark-energy
component in the cosmic fluid comes from different
sources: cosmic microwave background anisotropies,
models of large-scale-structure formation and, most
directly, the luminosity-redshift relation of Type Ia super-
novae used as standard candles.

In this latter case, on which we concentrate our
attention, the analysis is usually made in the simplified
context of a homogeneous and isotropic Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) cosmology. The
issue has then been raised about whether inhomogeneities
may affect the conclusion of such a naive analysis.
Inhomogeneous models in which we occupy a privileged
position in the Universe, for instance, can mimic dark
energy (as first pointed out in Ref. [1]), but look both
unrealistic and highly fine-tuned. More interestingly, we
should address this question in the presence of stochasti-
cally isotropic and homogeneous perturbations of the kind
predicted by inflation. We present here the main ideas and
results of such a study, while its detailed derivation and
discussion are presented in Ref. [2] and in a forthcoming
paper [3].

There is by now general agreement that superhorizon
perturbations cannot mimic dark-energy effects [4]. By
contrast, the impact of subhorizon perturbations is still
unsettled [5–7] owing to the appearance of ultraviolet diver-
gences (see Ref. [8] for the possible observational impact of
such ultraviolet divergences on the anisotropy of the
Hubble flow) while computing their ‘‘backreaction’’ on
certain classes of large-scale averages [6,7]. The possibility

that these effects may simulate a substantial fraction of dark
energy, or that they may at least play some role in the
context of near-future precision cosmology, has to be seri-
ously considered.
In order to address these issues, we have studied the

luminosity-redshift relation in a spatially flat " plus cold
dark matter ("CDM) model perturbed by a stochastic
background of inhomogeneities. The luminosity distance
dL now depends on the redshift z as well as on the angular
coordinates of the sources and must be inserted in an
appropriate light cone and ensemble average [9,10].
Unlike the analyses in Refs. [6,7], we find a result always
free from ultraviolet divergences and with no significant
infrared contributions either. As a consequence, correc-
tions are typically small, certainly too small to mimic a
sizeable fraction of dark energy. However, interestingly
enough, both their size and their z dependence strongly
depend on the particular function of dL being averaged.
We find, in particular, that the energy flux ## d$2

L is
practically unaffected by inhomogeneities, while the most
commonly used variables (like the distance modulus !#
5log10dL) may receive much larger corrections. This cre-
ates (at least in principle) intrinsic ambiguities in the
measure of the dark-energy parameters, unless the back-
reaction of stochastic inhomogeneities is properly taken
into account. Actually, the advantages of flux averaging for
minimizing biases on dark-energy parameters was first
pointed out in Ref. [11], where it was shown how the
binning of data in appropriate redshift intervals can reduce
the bias due to systematic effects such as weak lensing. It is
intriguing that the preferred role played by the flux variable
also comes out in this Letter where we perform a
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modes!kð!Þ, we can then obtain an expression for ðI"Þ#1

where first-order contributions drop out because of the
ensemble average, and the scalar perturbations only appear
through the so-called dimensionless power spectrum,
P ðk;!Þ ¼ ðk3=2"2Þj!kð!Þj2.

Unfortunately, ðI"Þ#1 contains integrals over null geo-
desics lying on the past light cone of the given observer
(see Ref. [10], Sec. 3.2), which get intertwined with the
time dependence of P , forcing us to proceed with an
approximate numerical integration. This will be done
below after inserting (as an instructive example) an illus-
tration of the limiting CDM case, where all integrals but
the one over k can be done analytically thanks to the time
independence of P ([10], Sec. 5).

In that case, the result can be written in the form

f"ðzÞ ¼
Z 1

0

dk

k
P ðkÞ½f1;1ðk; zÞ þ f2ðk; zÞ'; (9)

where f1;1 and f2 are complicated—but known—analytic
functions of their arguments [3]. Furthermore, the leading
contribution in the region of z relevant for dark-energy
phenomenology comes from terms of the type fðk; zÞ (
ðk=H 0Þ2 ~fðzÞ, where H 0 is the present Hubble scale. We
can then write to a very good accuracy,

f"ðzÞ ’ ½~f1;1ðzÞ þ ~f2ðzÞ'
Z 1

0

dk

k

!
k

H 0

"
2
P ðkÞ; (10)

where an explicit calculation gives [3]

~f 1;1ðzÞ ¼
10# 12

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
þ 5zð2þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
Þ

27ð1þ zÞð
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
# 1Þ2 ; (11)

~f 2ðzÞ ¼ # 1

189

$
2# 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
þ zð9# 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
Þ

ð1þ zÞð
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
# 1Þ

%
: (12)

The absolute value (and sign) of f"ðzÞ are illustrated in
Fig. 1 showing the accuracy of the leading order terms
[Eq. (10)], and confirming that the backreaction of a real-
istic spectrum of stochastic perturbations induces negli-
gible corrections to the averaged flux at large z (the larger
corrections at small z due to ‘‘Doppler terms’’ has been
discussed in Ref. [10]). In addition, it shows that in any
case, such corrections have the wrong z dependence (in
particular, they change sign at some z) to simulate even a
tiny dark-energy component. For the considered spectrum
(behaving as kns#5log2k at large k, see Ref. [13]) the
spectral integral is convergent and very weakly sensitive
to the chosen value of the UV cutoff [10] representing here
the limit of validity of our perturbative approach.

We now come to the more realistic #CDM case, where
the f" correction should be obtained by a full numerical
integration of Eqs. (7) and (8). For simplicity, we will only
take into account those terms giving the leading
(k2-enhanced) contributions in the CDM case. For
#CDM we can generally expect a smaller correction due

to the fact that the spectrum is now suppressed at large k by
a lower value of the equality scale keq [13]. This is con-

firmed by the explicit numerical result for jf"j presented in
Fig. 2. The small value of jf"j at large z leads us to
conclude that the averaged flux is a particularly appropriate
quantity for extracting from the observational data the
‘‘true’’ cosmological parameters. As we are going to see
now, the situation is somewhat different for other functions
of dL.
Indeed, let us apply the general result of Eq. (3) to the

flux variable S ¼ " and consider two important examples:

Fð"Þ ¼ "#1=2 ( dL and Fð"Þ ¼ #2:5log10"þ const(
# (the distance modulus). For the luminosity distance,
following the notations of Eq. (2) and using the general
result from Eq. (3), we obtain
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FIG. 1. The fractional correction f" of Eq. (9) (solid curve)
compared with the same quantity given to leading order by
Eq. (10) (dashed curve) in the context of an inhomogeneous
CDM model. We have used for P ðkÞ the inflationary scalar
spectrum with the WMAP parameters [17] and the transfer func-
tion given in Ref. [13] (see also Ref. [10]). The plotted curve
refers, as an illustrative example, to an UV cutoff kUV ¼ 1 Mpc#1.
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FIG. 2. The fractional correction to the flux f" of Eq. (7) (thin
curves) is compared with the fractional correction to the lumi-
nosity distance fd of Eq. (13) (thick curves) for a #CDM model
with $# ¼ 0:73. We have used two different cutoff values:
kUV ¼ 0:1 Mpc#1 (dashed curves) and kUV ¼ 1 Mpc#1 (solid
curves). The spectrum is the same as that of Fig. 1 adapted to
#CDM.
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fd ¼ "ð1=2Þf! þ ð3=8Þhð!1=!0Þ2i: (13)

Similarly, for the distance modulus we obtain

h!i"!FLRW ¼ "1:25ðlog10eÞ½2f! " hð!1=!0Þ2i';
(14)

where f! is defined in Eq. (7).
As clearly shown by the two above equations, the cor-

rections to the averaged values of dL and ! are qualita-
tively different from those of the flux (represented by f!)
because of the extra contribution (inevitable for any non-
linear function of the flux) proportional to the square of the
first-order fluctuations. As mentioned before, the averaged
flux corrections have leading spectral contributions of the
type k2P ðkÞ. On the contrary, the new corrections to dL and
! are due to the so-called ‘‘lensing effect’’; they dominate
at large z and have leading spectral contributions of the
type k3P ðkÞ (as already discussed in Ref. [10]). The
explicit numerical integration reported in Fig. 2 confirms
that as a result, jf!j ( fd at large z. We stress that even
the k3-enhanced contributions are UV finite for the case
under consideration.

We also stress that our results concerning the effects of
lensing are in good agreement with previous estimates of
the bias on supernova observables [14] and other cosmo-
logical parameters [15] induced by weak-lensing magnifi-
cation effects. Unlike in those papers, however, our general
approach automatically includes (and estimates the effects
of) all possible corrections due to the stochastic fluctua-
tions of the cosmological background to second order for
all given functions of the flux (or of dL). In fact, as
discussed in detail in Refs. [2,3], the fractional correction
fd also includes, besides the lensing effect, Doppler,
Sachs-Wolfe, integrated Sachs-Wolfe, frame-dragging
effects, etc.

Let us now briefly discuss to what extent the enhanced
corrections due to the squared first-order fluctuations can
affect the determination of the dark-energy parameters if
quantities other than the flux are used in the fits. To this
purpose, we consider the much used (average of the) dis-
tance modulus given in Eq. (14), referred to as usual to the
homogeneous Milne model with !M ¼ 5log10½ð2þ zÞz=
ð2H0Þ'. In Fig. 3 we compare the averaged value h!i"
!M with the corresponding expression in a homogeneous
"CDM model with different values of #". We also show
the expected dispersion around the averaged result repre-
sented by the square root of the variance [10]. The latter is
given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h!2i" ðh!iÞ2

q
¼ )2:5ðlog10eÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð!1=!0Þ2i

q
; (15)

while for the flux we simply find

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð!=!0Þ2i" ðh!=!0iÞ2

q
¼ )

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð!1=!0Þ2i

q
: (16)

As illustrated in Fig. 3, we find that even for the distance
modulus, the effect of inhomogeneities on the average only
affects the determination of #" at the third decimal figure
(see also Fig. 2), at least for the inflationary power spec-
trum with the "CDM transfer function of Ref. [13]. In that

case, the curves for h!i and !FLRW are practically coinci-
dent at large z. We have considered other spectra which
take into account nonlinear effects and have more power at
short scales, like those obtained following [16]. Using such
spectra only affects very mildly the k2-enhanced terms
(hence the flux) while they increase the corrections wher-
ever the k3-enhanced lensing terms play a major role. In
particular, the variance due to the fluctuations, which is
already at the few-percent level at large z for the power
spectrum of Ref. [13] (see Fig. 3), can be further increased
[3]. Note that even for these improved spectra, all our
integrals are still free of UV divergences since, in any
case, P falls faster than k"3 (i.e., the matter density con-
trast spectrum grows slower than k).
Our main conclusions can be summarized as follows:
(1) Dealing directly with the experimentally measured

luminosity-redshift relation within a gauge-independent
approach leads to results for the fractional corrections to
the averaged variables and the corresponding variances
which are automatically free from UV (and IR) divergen-
ces for any function of the luminosity distance. This can be
contrasted with the case of more formal spacelike averages
[6,7] for which the physical interpretation of the results
may have no direct relation with the observed cosmic
acceleration (first reference in [5]) and, as shown in
Ref. [7], the accidental cancellation of UV divergences is
strongly dependent on the observable considered.
(2) The actual value of the backreaction strongly

depends on the quantity being averaged. It turns out to be
minimal for the flux!, which is also practically insensitive
to the short-distance behavior of the power spectrum.
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FIG. 3. The averaged distance modulus h!i"!M (thick solid
curve) and its dispersion of Eq. (15) (shaded region) are com-
puted for#" ¼ 0:73 and compared with the homogeneous value
for the unperturbed "CDM models with #" ¼ 0:69, 0.71, 0.73,
0.75, 0.77 (dashed curves). We have used kUV ¼ 1 Mpc"1 and
the same spectrum as in Fig. 2.

PRL 110, 021301 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

11 JANUARY 2013

021301-4



Value of H0 in the Inhomogeneous Universe

Ido Ben-Dayan,1 Ruth Durrer,2 Giovanni Marozzi,2 and Dominik J. Schwarz3
1Deutsches Elektronen-Synchrotron DESY, Theory Group, D-22603 Hamburg, Germany

2Université de Genève, Département de Physique Théorique and CAP,
24 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland

3Fakultät für Physik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
(Received 5 February 2014; published 6 June 2014)

Local measurements of the Hubble expansion rate are affected by structures like galaxy clusters or voids.
Here we present a fully relativistic treatment of this effect, studying how clustering modifies the mean
distance- (modulus-)redshift relation and its dispersion in a standard cold dark matter universe with a
cosmological constant. The best estimates of the local expansion rate stem from supernova observations at
small redshifts (0.01 < z < 0.1). It is interesting to compare these local measurements with global fits to
data from cosmic microwave background anisotropies. In particular, we argue that cosmic variance (i.e., the
effects of the local structure) is of the same order of magnitude as the current observational errors and must
be taken into account in local measurements of the Hubble expansion rate.
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The Hubble constant H0 determines the present expan-
sion rate of the Universe. For most cosmological phenom-
ena, a precise knowledge of H0 is of utmost importance. In
a perfectly homogeneous and isotropic world,H0 is defined
globally. But the Universe contains structures like galaxy
clusters and voids. Thus, the local expansion rate measured
by means of cepheids and supernovae at small redshifts
does not necessarily agree with the expansion rate of an
isotropic and homogeneous model that is used to describe
the Universe at the largest scales.
Recent local measurements of the Hubble rate [1,2] are

claimed to be accurate at the few percent level, e.g., Ref. [1]
finds H0 ¼ ð73.8# 2.4Þ km s−1Mpc−1. In the near future,
observational techniques will improve further, such that the
local value of H0 will be determined at 1% accuracy [3],
competitive with the current precision of indirect measure-
ments of the global H0 via the cosmic microwave back-
ground (CMB) anisotropies [4].
The observed distance modulus μ is related to the

bolometric flux Φ and the luminosity distance dL by
(log≡log10)

μ ¼ −2.5 log½Φ=Φ10 pc& ¼ 5 log½dL=ð10 pcÞ&: ð1Þ

The relation between the intrinsic luminosity L, the
bolometric flux Φ, and the luminosity distance dL of a
source is Φ ¼ L=4πd2L. In a flat cold dark matter universe
with a cosmological constant (ΛCDM) with present matter
density parameterΩm, the luminosity distance as a function
of redshift z is given by

dLðzÞ ¼
1þ z
H0=c

Z
z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z0Þ3 þ 1 −Ωm

p : ð2Þ

As long as we consider only small redshifts, z ≤ 0.1,
the dependence on cosmology is weak, dLðzÞ≃ c½zþ
ð1 − 3Ωm=4Þz2&=H0, and the result varies by about 0.2%
when Ωm varies within the 2σ error bars determined by
Planck [4]. However, neglecting the model-dependent
quadratic term induces an error of nearly 8% for z≃ 0.1.
The observed Universe is inhomogeneous and aniso-

tropic on small scales, and the local Hubble rate is expected
to differ from its global value for two reasons. First, any
supernova (SN) sample is finite (sample variance), and,
second, we observe only one realization of a random
configuration of the local structure (cosmic variance).
Thus, even for arbitrarily precise measurements of fluxes
and redshifts, the local H0 differs from the global H0.
Sample variance is fully taken into account in the literature,
but cosmic variance is usually not considered.
In the context of Newtonian cosmology, cosmic variance

of the local H0 has been estimated in Refs. [5–8]. The first
attempts to estimate cosmic variance of the local Hubble
rate in a relativistic approach can be found in Refs. [9,10]
(see, also, Ref. [11]) based on the ensemble variance of the
expansion rate averaged over a spatial volume. It has been
shown that this approach agrees very well with the
Newtonian one [9], and it predicts a cosmic variance which
depends on the sampling volume on the subpercent to
percent level. However, this approach still neglects the fact
that observers probe the past light cone and not a spatial
volume. Also, the measured quantity is not an expansion
rate but a set of the bolometric fluxes and redshifts.
In this Letter, we present the first fully relativistic

estimation of the effects of clustering on the local meas-
urement of the Hubble parameter without making any
special hypothesis about how the fluctuations can be
modeled around us. Considering only the measured
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quantities and the cosmological standard model with
stochastic inhomogeneities, we study the effect of cosmic
structures on the local determination ofH0, i.e., taking light
propagation effects fully into account. Other relativistic
approaches were recently proposed in Refs. [12,13]. In
Ref. [12], a “Swiss cheese” model was used in modeling
the local Universe; in Ref. [13], a “Hubble bubble” model
was used and the perturbation of the expansion rate, which
is not directly measurable, was considered.
We shall find that the mean value of the Hubble

parameter is modified at the subpercent level, while the
contribution from clustering to the error budget is larger,
typically 2% to 3%, hence, as large as observational errors
quoted in the literature [1]. As we shall see, the small
modification of the mean of the Hubble parameter can be
reduced by a factor of 3 by using the flux instead of the
distance modulus. On the other hand, the cosmic variance
induced by inhomogeneities on H0 is independent of the
observable used. Finally, we find that even for an infinite
number of SN Ia within 0.01 < z < 0.1 with identical
redshift distribution compared to a finite sample consid-
ered, clustering induces a minimal error of about 2% for a
local determination of H0.
Following Refs. [14,15], we use cosmological perturba-

tion theory up to second order with an almost scale-
invariant initial power spectrum to determine the mean
perturbation of the bolometric flux (and of the distance
modulus) from a standard candle and its variance.
Let us first consider the fluctuation of the mean on a

sphere at fixed observed redshift z. We denote the light-
cone average [16] over a surface at fixed redshift by h! ! !i
and a statistical average by ! ! !. Using the results of
Refs. [17,18] (see, also, Ref. [19]), the fluctuation of the
flux Φ ∝ d−2L , away from its background value in the
Friedmann-Lemaître universe [denoted by ðdFLL Þ−2] is
given by

d−2L ¼ ðdFLL Þ−2½1þ Φ1=Φ0 þ Φ2=Φ0'; ð3Þ

where we expand Φ ¼ Φ0 þ Φ1 þ Φ2 up to second order in
perturbation theory. The ensemble average of hΦ1=Φ0i
vanishes at first order but not at second order and must be
added to another second order contribution from Φ2=Φ0;
we obtain (see, e.g., Ref. [20])

hd−2L iðzÞ ¼ ðdFLL Þ−2½1þ fΦðzÞ'; ð4Þ

where for z ≪ 1,

fΦðzÞ≃ −
!

1

HðzÞΔη

"
2

hð~vs · ~nÞ2i: ð5Þ

Here, ~n denotes the direction to a given SN and ~vs its
peculiar velocity, η is conformal time,Δη ¼ η0 − ηðzÞ is the
difference between the present time and the time at redshift

z, and H is the conformal Hubble parameter. In Ref. [15],
the full contribution is given in terms of 39 Fourier integrals
over the dimensionless power spectrum of the Bardeen
potential today, Pψ ðkÞ ¼ ðk3=2π2ÞjΨkðη0Þj2 with different
kernels. We have removed the observer velocity since
observations are usually quoted in the CMB frame corre-
sponding to ~v0 ¼ 0. A nonvanishing observer velocity
would nearly double the effect in Eq. (5). The dominant
peculiar velocity contribution at low redshift gives

fΦðzÞ≃ −
!

1

HðzÞΔη

"
2 τ2ðzÞ

3

Z
kUV

H0

dk
k
k2PψðkÞ; ð6Þ

where

τðzÞ ¼
Z

ηs

ηin

dη
aðηÞ
aðηsÞ

gðηÞ
gðη0Þ

:

gðηÞ is the growth factor, and the source and the observer
times are indicated with the suffixes s and 0.
The brightness of supernovae is typically expressed in

terms of the distance modulus μ. Because of the nonlinear
function relating μ and Φ, one obtains different second
order contributions,

hμi − μFL ¼ −
2.5

lnð10Þ

#
fΦ −

1

2
hðΦ1=Φ0Þ2i

$
; ð7Þ

where at z ≪ 1, we also find

hðΦ1=Φ0Þ2i≃ −4fΦ: ð8Þ

The approximate equalities in Eqs. (5) and (8) are valid
for z ≪ 1, where the first order squared contribution of the
peculiar velocity terms dominates over the other second
order contributions. For z ∼ 0.3 and larger, additional
contributions notably due to lensing become relevant,
see Refs. [14,15].
For measurements of the Hubble parameter, low redshift

SNe are used in order to minimize the dependence of the
result on cosmological parameters. As a consequence,
Eqs. (5) and (8) are good approximations for the aim of
this Letter.
Hereafter, we use the cosmological parameters from

Planck [4], the linear transfer function given in Ref. [21]
taking baryons into account, and kUV ¼ 0.1 hMpc−1, see
Ref. [15] for details. Increasing the cutoff does not change
our result due to two effects: the kernel k2PψðkÞ of the
peculiar velocity contribution decreases at large k, and
small-scale fluctuations are incoherent (see below) and
their contribution to the variance decays like 1=N, where N
is the number of supernovae.
As an illustration for the effects of cosmic structure on

the observed flux from a SN, we plot in Fig. 1 the average
hd−2L iðzÞ and its variance (as defined in Ref. [20]) using
Eqs. (4)–(6) and (8). Figure 1 clearly shows how at low

PRL 112, 221301 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
6 JUNE 2014

221301-2

quantities and the cosmological standard model with
stochastic inhomogeneities, we study the effect of cosmic
structures on the local determination ofH0, i.e., taking light
propagation effects fully into account. Other relativistic
approaches were recently proposed in Refs. [12,13]. In
Ref. [12], a “Swiss cheese” model was used in modeling
the local Universe; in Ref. [13], a “Hubble bubble” model
was used and the perturbation of the expansion rate, which
is not directly measurable, was considered.
We shall find that the mean value of the Hubble

parameter is modified at the subpercent level, while the
contribution from clustering to the error budget is larger,
typically 2% to 3%, hence, as large as observational errors
quoted in the literature [1]. As we shall see, the small
modification of the mean of the Hubble parameter can be
reduced by a factor of 3 by using the flux instead of the
distance modulus. On the other hand, the cosmic variance
induced by inhomogeneities on H0 is independent of the
observable used. Finally, we find that even for an infinite
number of SN Ia within 0.01 < z < 0.1 with identical
redshift distribution compared to a finite sample consid-
ered, clustering induces a minimal error of about 2% for a
local determination of H0.
Following Refs. [14,15], we use cosmological perturba-

tion theory up to second order with an almost scale-
invariant initial power spectrum to determine the mean
perturbation of the bolometric flux (and of the distance
modulus) from a standard candle and its variance.
Let us first consider the fluctuation of the mean on a

sphere at fixed observed redshift z. We denote the light-
cone average [16] over a surface at fixed redshift by h! ! !i
and a statistical average by ! ! !. Using the results of
Refs. [17,18] (see, also, Ref. [19]), the fluctuation of the
flux Φ ∝ d−2L , away from its background value in the
Friedmann-Lemaître universe [denoted by ðdFLL Þ−2] is
given by

d−2L ¼ ðdFLL Þ−2½1þ Φ1=Φ0 þ Φ2=Φ0'; ð3Þ

where we expand Φ ¼ Φ0 þ Φ1 þ Φ2 up to second order in
perturbation theory. The ensemble average of hΦ1=Φ0i
vanishes at first order but not at second order and must be
added to another second order contribution from Φ2=Φ0;
we obtain (see, e.g., Ref. [20])

hd−2L iðzÞ ¼ ðdFLL Þ−2½1þ fΦðzÞ'; ð4Þ

where for z ≪ 1,
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Here, ~n denotes the direction to a given SN and ~vs its
peculiar velocity, η is conformal time,Δη ¼ η0 − ηðzÞ is the
difference between the present time and the time at redshift

z, and H is the conformal Hubble parameter. In Ref. [15],
the full contribution is given in terms of 39 Fourier integrals
over the dimensionless power spectrum of the Bardeen
potential today, Pψ ðkÞ ¼ ðk3=2π2ÞjΨkðη0Þj2 with different
kernels. We have removed the observer velocity since
observations are usually quoted in the CMB frame corre-
sponding to ~v0 ¼ 0. A nonvanishing observer velocity
would nearly double the effect in Eq. (5). The dominant
peculiar velocity contribution at low redshift gives
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terms of the distance modulus μ. Because of the nonlinear
function relating μ and Φ, one obtains different second
order contributions,
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where at z ≪ 1, we also find

hðΦ1=Φ0Þ2i≃ −4fΦ: ð8Þ

The approximate equalities in Eqs. (5) and (8) are valid
for z ≪ 1, where the first order squared contribution of the
peculiar velocity terms dominates over the other second
order contributions. For z ∼ 0.3 and larger, additional
contributions notably due to lensing become relevant,
see Refs. [14,15].
For measurements of the Hubble parameter, low redshift

SNe are used in order to minimize the dependence of the
result on cosmological parameters. As a consequence,
Eqs. (5) and (8) are good approximations for the aim of
this Letter.
Hereafter, we use the cosmological parameters from

Planck [4], the linear transfer function given in Ref. [21]
taking baryons into account, and kUV ¼ 0.1 hMpc−1, see
Ref. [15] for details. Increasing the cutoff does not change
our result due to two effects: the kernel k2PψðkÞ of the
peculiar velocity contribution decreases at large k, and
small-scale fluctuations are incoherent (see below) and
their contribution to the variance decays like 1=N, where N
is the number of supernovae.
As an illustration for the effects of cosmic structure on

the observed flux from a SN, we plot in Fig. 1 the average
hd−2L iðzÞ and its variance (as defined in Ref. [20]) using
Eqs. (4)–(6) and (8). Figure 1 clearly shows how at low
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quantities and the cosmological standard model with
stochastic inhomogeneities, we study the effect of cosmic
structures on the local determination ofH0, i.e., taking light
propagation effects fully into account. Other relativistic
approaches were recently proposed in Refs. [12,13]. In
Ref. [12], a “Swiss cheese” model was used in modeling
the local Universe; in Ref. [13], a “Hubble bubble” model
was used and the perturbation of the expansion rate, which
is not directly measurable, was considered.
We shall find that the mean value of the Hubble

parameter is modified at the subpercent level, while the
contribution from clustering to the error budget is larger,
typically 2% to 3%, hence, as large as observational errors
quoted in the literature [1]. As we shall see, the small
modification of the mean of the Hubble parameter can be
reduced by a factor of 3 by using the flux instead of the
distance modulus. On the other hand, the cosmic variance
induced by inhomogeneities on H0 is independent of the
observable used. Finally, we find that even for an infinite
number of SN Ia within 0.01 < z < 0.1 with identical
redshift distribution compared to a finite sample consid-
ered, clustering induces a minimal error of about 2% for a
local determination of H0.
Following Refs. [14,15], we use cosmological perturba-

tion theory up to second order with an almost scale-
invariant initial power spectrum to determine the mean
perturbation of the bolometric flux (and of the distance
modulus) from a standard candle and its variance.
Let us first consider the fluctuation of the mean on a

sphere at fixed observed redshift z. We denote the light-
cone average [16] over a surface at fixed redshift by h! ! !i
and a statistical average by ! ! !. Using the results of
Refs. [17,18] (see, also, Ref. [19]), the fluctuation of the
flux Φ ∝ d−2L , away from its background value in the
Friedmann-Lemaître universe [denoted by ðdFLL Þ−2] is
given by

d−2L ¼ ðdFLL Þ−2½1þ Φ1=Φ0 þ Φ2=Φ0'; ð3Þ

where we expand Φ ¼ Φ0 þ Φ1 þ Φ2 up to second order in
perturbation theory. The ensemble average of hΦ1=Φ0i
vanishes at first order but not at second order and must be
added to another second order contribution from Φ2=Φ0;
we obtain (see, e.g., Ref. [20])

hd−2L iðzÞ ¼ ðdFLL Þ−2½1þ fΦðzÞ'; ð4Þ

where for z ≪ 1,

fΦðzÞ≃ −
!

1

HðzÞΔη
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hð~vs · ~nÞ2i: ð5Þ

Here, ~n denotes the direction to a given SN and ~vs its
peculiar velocity, η is conformal time,Δη ¼ η0 − ηðzÞ is the
difference between the present time and the time at redshift

z, and H is the conformal Hubble parameter. In Ref. [15],
the full contribution is given in terms of 39 Fourier integrals
over the dimensionless power spectrum of the Bardeen
potential today, Pψ ðkÞ ¼ ðk3=2π2ÞjΨkðη0Þj2 with different
kernels. We have removed the observer velocity since
observations are usually quoted in the CMB frame corre-
sponding to ~v0 ¼ 0. A nonvanishing observer velocity
would nearly double the effect in Eq. (5). The dominant
peculiar velocity contribution at low redshift gives
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gðηÞ is the growth factor, and the source and the observer
times are indicated with the suffixes s and 0.
The brightness of supernovae is typically expressed in

terms of the distance modulus μ. Because of the nonlinear
function relating μ and Φ, one obtains different second
order contributions,
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where at z ≪ 1, we also find

hðΦ1=Φ0Þ2i≃ −4fΦ: ð8Þ

The approximate equalities in Eqs. (5) and (8) are valid
for z ≪ 1, where the first order squared contribution of the
peculiar velocity terms dominates over the other second
order contributions. For z ∼ 0.3 and larger, additional
contributions notably due to lensing become relevant,
see Refs. [14,15].
For measurements of the Hubble parameter, low redshift

SNe are used in order to minimize the dependence of the
result on cosmological parameters. As a consequence,
Eqs. (5) and (8) are good approximations for the aim of
this Letter.
Hereafter, we use the cosmological parameters from

Planck [4], the linear transfer function given in Ref. [21]
taking baryons into account, and kUV ¼ 0.1 hMpc−1, see
Ref. [15] for details. Increasing the cutoff does not change
our result due to two effects: the kernel k2PψðkÞ of the
peculiar velocity contribution decreases at large k, and
small-scale fluctuations are incoherent (see below) and
their contribution to the variance decays like 1=N, where N
is the number of supernovae.
As an illustration for the effects of cosmic structure on

the observed flux from a SN, we plot in Fig. 1 the average
hd−2L iðzÞ and its variance (as defined in Ref. [20]) using
Eqs. (4)–(6) and (8). Figure 1 clearly shows how at low
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Bias in H0 from 2nd order pertn theory

• Backreaction causes systematic bias in H measurement

• very large effects on DM??

• interesting bias in flux density, distance etc at low-z

• But isn’t this just the residual “homogeneous Malmquist bias” in 
“inverse + type II” method?



Malmquist bias?

• Objects in a region of estimated distance space will have a 
distance that is biased

• because of (large) uncertainty in distance

• But “Schechter’s method” largely avoids that

• don't measure velocity as a function of distance

• do it the other way round

• small scatter in distance for objects same redshift

• but not completely free from bias

• analysed by Lynden-Bell ’92 and Willick & Strauss ‘97 



DLB ‘92



Willick et al 1997 (astro-ph vs ApJ)

• KH15: The “3” here comes from the standard formula for HMB.

• The right answer is 1.5

• as found by the relativistic backreaction folks!

2.2.2. Further discussion of the VELMOD likelihood

The physical meaning of the VELMOD likelihood expressions is clarified by considering them in a suitable
limit. If we take σv to be “small,” in a sense to be made precise below, the integrals in Eqs. (11) and (12) may
be approximated using standard techniques. If in addition we neglect sample selection (S = 1) and density
variations (n(r) = constant), and assume that the redshift-distance relation is single-valued, we find for the
forward relation:

P (m|η, cz) ≃
1√

2πσe
exp

{

−
1

2σ2
e

(
m −

[
M(η) + 5 log w +

10

ln 10
∆2

v

])2
}

, (15)

where w is the solution to the equation cz = w + u(w), i.e., it is the distance inferred from the redshift and
peculiar velocity model; ∆v ≡ σv/[w(1 + u′)], where u′ = (∂u/∂r)r=w , is the effective logarithmic velocity
dispersion; and

σe ≡
[

σ2
TF +

(
5

ln 10

)2

∆2
v

]1/2

(16)

is the effective TF scatter, including the contribution due to σv. An analogous result holds for the inverse
relation. The criterion ∆2

v ≪ 1, which quantifies the statement that σv is “small,” must be satisfied to derive
Eq. (15).

Eq. (15) shows that the probability distribution P (m|η, cz) preserves the Gaussian character of the real-
space TF probability distribution P (m|η, r) in this limit. However, the expected value of m is shifted from the
“näıve” value M(η) + 5 log w by an amount ∼ 4.3∆2

v . This shift is in fact nothing more than the homogeneous
Malmquist bias due to small-scale velocity noise; it differs in detail from the usual Malmquist expression (i.e.,
that which affects a Method I analysis) because it arises from the Gaussian (rather than log-normal) probability
distribution, Eq. (9). Furthermore, the effective scatter σe is larger than σTF, because the velocity dispersion
introduces additional distance error and thus magnitude scatter. The effects associated with velocity noise
diminish with distance (∆v ∝ r−1), however; the velocity Malmquist effect vanishes in the limit of large
distances, in contrast with the distance-independent Malmquist effect for Method I, and the effective scatter
approaches the TF scatter. At large enough distance the VELMOD likelihood approaches a simple Gaussian TF
distribution with expected apparent magnitude M(η) + 5 log w, and VELMOD reduces to standard Method II.

Indeed, Eq. (15) enables us to define the regime in which VELMOD represents a significant modification of
Method II. The distance rII at which the velocity noise effects become unimportant is determined by rII ≫
σv/∆TF(1 + u′), where ∆TF = ln 10σTF/5 is the fractional distance error due to the TF scatter (∆TF ≃ 0.2
for the samples used here). For σv = 125 km s−1, the value we find for the real data (§ 4.5), this shows that in
the unperturbed Hubble flow, where u′ = 0, velocity noise effects become unimportant beyond ∼ 1500 km s−1.
However, at about this distance, in many directions, the Local Supercluster significantly retards the Hubble flow,
u′ ≃ −0.5, so that the effective σv is about twice its nominal value. Thus, VELMOD in fact differs substantially
from Method II to roughly twice the Virgo distance. This fact guided our decision to apply VELMOD only out
to 3000 km s−1 (cf. § 4).

Eq. (15) also demonstrates that maximizing likelihood (minimizing Lforw) is not equivalent to χ2 minimiza-
tion, even under the adopted assumptions of constant density and negligible selection effects, because of the
factor σ−1

e in front of the exponential factor. This factor couples the velocity model (i.e., the values of w and
u′(w)) to the velocity noise. In particular, maximizing the VELMOD likelihood is not equivalent to minimizing
TF scatter (cf. § 4.5), except in the limit that σv is set to zero.

The assumptions required for deriving Eq. (15) remind us that there are two other factors which distinguish
VELMOD from standard Method II. First, for realistic samples one cannot assume that S = 1. The presence of the
selection function in Eqs. (6) and (7) is essential for evaluating true likelihoods, and we have fully incorporated
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redshift-distance diagram means that there is still appreciable probability that the galaxy is associated with the near crossing
at cz D 900 km s~1. In the redshift-distance diagram goes nearly Ñat for almost 600 km s~1 ; a redshift that comesFigure 1c,
close to that Ñat zone has a probability distribution that is quite extended. Finally, shows a galaxy whose redshiftFigure 1d
crosses the redshift-distance diagram in a region in which it is quite linear, and the probability distribution has a single,
narrow peak without extensive tails.

12 Selection e†ects are not speciÐc to VELMOD per se, however. They can and should be modeled in any Method IIÈlike analysis. In particular, they do
not vanish in the limit.*
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being compiled. We also should consider extending this work to other distance indicators ; surface brightness Ñuctuation
galaxies et al. with their accurate sampling of the nearby velocity Ðeld, are natural candidates for the VELMOD(Tonry 1997),
analysis. On the modeling side, this work has left us with several conundrums, the most puzzling of which is why the linear
IRAS model does so well with a smoothing scale of 300 km s~1. More work is needed with N-body simulations to understand
this. Finally, we will not have a coherent picture of the relationship between the velocity and density Ðelds until we can
understand the di†erent values of obtained by VELMOD and POTIRAS.b
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APPENDIX A

IRAS VELOCITY-DENSITY RECONSTRUCTION

The redshifts of galaxies in the IRAS sample are a†ected by the same peculiar velocities that we are attempting to measure
in the Mark III data set. If we measure redshifts cz in the rest frame of the Local Group, then

cz\ r ] rü Æ [¿(r) [ ¿(0)] , (A1)

where is the peculiar velocity of the Local Group and is the peculiar velocity at position r. Indeed, because the galaxy¿(0) ¿(r)
density Ðeld shows coherence, the galaxy density Ðeld measured in redshift space di†ers systematically from that in reald

g
(s)

space, as was Ðrst described in detail by cf. and for reviews). The linear perturbationd
g
(r), Kaiser (1987 ; SW Strauss 1996

theory assuming gravitational instability enables us to correct for the e†ects of these velocities. We use here the iteration
technique described by et al. and et al. as updated by et al. The density and velocityYahil (1991) Strauss (1992c), Sigad (1997).
Ðelds are calculated within a sphere of radius 12,800 km s~1 ; the density Ñuctuation Ðeld is assumed to be zero beyond this
radius. Here we very brieÑy reiterate the improvements described in the Sigad et al. paper and emphasize certain di†erences
from the approach there.

In regions in which the IRAS velocity Ðeld model predicts a nonmonotonic relation between redshift and distance along a
given line of sight, it becomes ambiguous as to how to assign a distance to a galaxy given its redshift Our approach is(Fig. 1).
similar to that used throughout this paper : we use our assumed density and velocity Ðelds to calculate a probability
distribution of a galaxy along a given line of sight.

Along a given line of sight, we ask for the joint probability distribution of observing a galaxy along a given line of sight, with
redshift cz, Ñux density f, and (unknown) distance r :

P(cz, f, r)\ P(cz o r)P( f o r)P(r) (A2)

(cf. The Ðrst term is given by our velocity Ðeld model along the line of sight and thus is given by For theeq. [5]). equation (9).
iteration code, we set km s~1, independent of position, similar to the best-Ðt value we Ðnd when we Ðtted for fromp

v
\ 150 p

vthe velocity Ðeld data.
The second term is given by the luminosity function of galaxies :

P( f o r) \ '(L \ 4nr2lf ) dL
df

P r2'(L ) , (A3)

where the derivative is needed because the probability density is deÐned in terms of f, not Finally, the third term inL .21
is given by the galaxy density distribution along the line of sightequation (A2) (eq. [8]).

As described in et al. the calculations of the velocity and density Ðelds are done on a Cartesian grid. OurSigad (1997),
approach therefore is to assign each galaxy to the grid via cloud-in-cell (weighting by the selection function, of course), where
(unlike et al. we distribute each galaxy along the line of sight according to the distribution function of expectedSigad 1997)
distance In order to calculate the selection function for an object, we of course need to have a deÐnite position for(eq. [A2]).
it ; for this purpose, we assign it the expectation value of its distance, following et al.Sigad (1997) :

SrT \
/ rP(cz, f, r)dr
/ P(cz, f, r)dr

. (A4)

et al. discuss the use of various Ðltering techniques to suppress the shot noise in the derived density andSigad (1997)
velocity Ðelds. While they argue for the use of a power-preserving Ðlter for the comparison of the IRAS and POTENT density
Ðelds, we have found through extensive experimentation with mock catalogs that for the VELMOD analysis, a Wiener Ðlter
gives the best comparison between the density Ðeld and the peculiar velocity data.

21 Eq. (144) of mistakenly left o† this last term.SW

10 = 2*5
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ABSTRACT

Recent calculations using non-linear relativistic cosmological perturbation theory show
biases in the mean luminosity distance and distance modulus at low redshift. We show
that these effects may be understood very simply as a non-relativistic, and purely kine-
matic, Malmquist-like bias, and we describe how the effect changes if one averages over
sources that are limited by apparent magnitude. This effect is essentially identical to
the distance bias from small-scale random velocities that has previously been con-
sidered by astronomers, though we find that the standard formula overestimates the
homogeneous bias by a factor 2.
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1 INTRODUCTION

It is well known that the local rate of expansion H0 is sig-
nificantly perturbed, at linear order, by peculiar velocities
associated with the growth of density perturbations. The im-
pact of this on cosmological parameter estimation is quan-
tified theoretically by calculating the covariance of the 1st
order velocity field which is given in terms of the power spec-
trum of density fluctuations (Hui & Greene 2006; Cooray &
Caldwell 2006; Davis et al. 2011; Kaiser & Hudson 2014).

The subject of this paper, in contrast, is the systematic
bias in distances, and therefore H0, caused by velocities, and
which is a second order effect. This has been studied using
2nd order relativistic cosmological perturbation theory in a
number of recent papers (Vanderveld, Flanagan & Wasser-
man, 2007; Li & Schwarz 2008; Clarkson, Ananda & Larena
2009; Umeh, Larena & Clarkson 2011; Gasperini et al. 2011;
Wiegand & Schwarz 2012; Fanizza et al. 2013; Ben-Dayan
et al. 2012a, 2012b, 2013a, 2013b, 2014).

These papers all compute the deviation of quantities
such as the mean luminosity distance and distance modulus
(log distance), averaged over a surface of constant redshift,
from that which would apply in a homogeneous universe.
Second order perturbation theory is being used in order
to explore the regime of non-linear gravitational dynamics.
Most of these papers describe the effect as backreaction from
the formation of structure, though the term may be being
used in a relatively broad sense compared to the narrow
definition as the effect of non-commutativity of spatial av-
eraging and time evolution deriving from the non-linearity
of Einstein’s equations.

Quantitative predictions in the context of conventional
structure formation models are provided in e.g. figure 6 of

Ben-Dayan et al. 2013b which shows that the bias falls off
inversely as the square of the redshift; that the fractional
perturbation to the mean distance δd ≡ ⟨δdL⟩/dL is positive,
and that the perturbation to the mean flux density Φ is
negative with δΦ ≡ ⟨δΦ⟩/Φ ≃ −0.5δd. Further, according to
Ben-Dayan et al. 2014 (hereafter BDMS14), for low redshift
z ≪ 1 the mean flux density perturbation is given in terms of
⟨v2⟩, the total variance of the first order line-of-sight peculiar
velocity, by δΦ = −⟨v2⟩/c2z2, and they give the bias in the
distance modulus µ = 5 log dL = (5/ ln 10) ln dL as ⟨δµ⟩ =
(7.5/ ln 10)⟨v2⟩/c2z2.

There are two surprising features of these results if
they are assumed to be caused by inhomogeneity affecting
the evolution of the averaged universe. First, a cosmologi-
cal effect would be expected to grow with increasing red-
shift rather than decrease. Second, one would expect per-
turbations to distance, distance modulus and flux density
to be related by ⟨δµ⟩ = (5/ ln 10)⟨δdL⟩/dL and ⟨δΦ⟩/Φ =
−2⟨δdL⟩/dL, just as for an individual ‘standard candle’. The
relations between these quantities obtained from perturba-
tion theory are quite different, and suggest that the cause of
these effects are fluctuations. In that case, the usual relations
for a standard candle would not apply, simply because of the
non-commutativity of averaging and non-linear transforma-
tions; the mean of the square of a fluctuating quantity, for
example, is of course not the same as the square of the mean.
The effect of fluctuations and the non-linearity of the rela-
tionships between dL, µ and Φ was discussed by BDMS14
who noted that the bias in H0 depends on the observable
used, and by Ben-Dayan et al. 2013a, who argued for using
the flux density Φ in H0 measurements, claiming this to be
the least sensitive to fluctuations.

Statistical biases in distance estimation, often asso-
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used in a relatively broad sense compared to the narrow
definition as the effect of non-commutativity of spatial av-
eraging and time evolution deriving from the non-linearity
of Einstein’s equations.

Quantitative predictions in the context of conventional
structure formation models are provided in e.g. figure 6 of

Ben-Dayan et al. 2013b which shows that the bias falls off
inversely as the square of the redshift; that the fractional
perturbation to the mean distance δd ≡ ⟨δdL⟩/dL is positive,
and that the perturbation to the mean flux density Φ is
negative with δΦ ≡ ⟨δΦ⟩/Φ ≃ −0.5δd. Further, according to
Ben-Dayan et al. 2014 (hereafter BDMS14), for low redshift
z ≪ 1 the mean flux density perturbation is given in terms of
⟨v2⟩, the total variance of the first order line-of-sight peculiar
velocity, by δΦ = −⟨v2⟩/c2z2, and they give the bias in the
distance modulus µ = 5 log dL = (5/ ln 10) ln dL as ⟨δµ⟩ =
(7.5/ ln 10)⟨v2⟩/c2z2.

There are two surprising features of these results if
they are assumed to be caused by inhomogeneity affecting
the evolution of the averaged universe. First, a cosmologi-
cal effect would be expected to grow with increasing red-
shift rather than decrease. Second, one would expect per-
turbations to distance, distance modulus and flux density
to be related by ⟨δµ⟩ = (5/ ln 10)⟨δdL⟩/dL and ⟨δΦ⟩/Φ =
−2⟨δdL⟩/dL, just as for an individual ‘standard candle’. The
relations between these quantities obtained from perturba-
tion theory are quite different, and suggest that the cause of
these effects are fluctuations. In that case, the usual relations
for a standard candle would not apply, simply because of the
non-commutativity of averaging and non-linear transforma-
tions; the mean of the square of a fluctuating quantity, for
example, is of course not the same as the square of the mean.
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used, and by Ben-Dayan et al. 2013a, who argued for using
the flux density Φ in H0 measurements, claiming this to be
the least sensitive to fluctuations.

Statistical biases in distance estimation, often asso-
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Figure 1. Dotted lines are lines of longitude and latitude on the
surface of constant redshift. On this surface, peculiar velocities
are equally likely to be positive as negative. The cone illustrates
how a section of this sphere maps to real space for the case of
a negative peculiar velocity. The section is pushed out radially
away from the observer – who resides at the centre of the sphere
– and consequently is expanded in area. Similarly, for a positive
peculiar velocity the section would be compressed. The result of
this is that the average of the distance, when weighted by real-
space area, is positive. This is the cause of the bias found in the
relativistic perturbation theory analyses. More relevant to real ob-
servations is the bias in distance averaged over the sources that
lie in a shell of given redshift. We consider this in §2.2. There
we find that there are some relatively minor differences that arise
from the clustering of sources and from the Jacobian involved in
transforming volumes from redshift to real space, but the main
difference is that the generalisations of (8) have different numeri-
cal pre-factors when the sources are subject to selection based on
flux density.

significant contribution to the velocity variance from quite
large scales; certainly extending to tens if not hundreds of
Mpc, so except for observations at much greater distance
– where the effects rapidly become uninterestingly small –
one should not use these formulae with the total velocity
variance computed in the usual way from the matter power
spectrum rather one should use equations 4, 6 & 7 that incor-
porate the terms involving the velocity correlation function
⟨vv′⟩.

It is also important to realise that we have defined the
peculiar velocity here such that the velocity of the observer
vanishes. Thus the variances and co-variances in these equa-
tions are of velocities relative to the observer, which in prac-
tice is usually taken to mean relative to the velocity of the
local group (LG), since it is the LG peculiar velocity, unlike
the motion of the earth or the sun, that is thought to best
reflect the gravitational acceleration from large scale struc-
tures. This eliminates the effect of perturbations on scales
much greater than the survey depth which would otherwise

give unphysical effects if the total velocity variance were
used.

This is somewhat at odds with BDMS14, and deserves
some clarification. Their equations 5,6 give a bias that de-
pends on the total velocity dispersion, including a contribu-
tion that comes from modes which are larger than the survey
scale spanned by the target objects (in their case H0 calibra-
tors). This is the dispersion of one component of the velocity
of a galaxy relative to the ‘cosmic-frame’, as is thought to
be well approximated by the frame in which the CMB has
zero dipole (since any intrinsic dipole is usually thought to
be very small). In their discussion of this BDMS14 say that
they remove the motion of the observer since the observa-
tions are usually quoted in the CMB frame, corresponding
to v0 = 0, and that a non-vanishing observer velocity would
nearly double the effect. This doubling seems to us to be
misleading. The observer velocity is not zero in the CMB
frame – the LG is moving at about 600 km/s in that frame
– but the CMB frame is not of much relevance here as the re-
sults should be independent of any frame that the observers
choose to refer the observations to. Our formulae, including
the correlation function ⟨vv′⟩, refer to ensemble averages
and, if one had no idea how the LG motion originated, then
these should be in the LG frame. Working in the LG frame
would indeed increase the co-variance from perturbations
on scales smaller than the survey scale, though the effect of
motions on larger scales would still be suppressed.

But there is a difference between the variance of the
motions of different source regions and our motion, which
has a variance in an ensemble sense, but we only sample
one realisation of the ensemble (though it is a realisation
of all three components of the velocity, not just one). The
exact impact of the LG’s motion depends on the depth of
the gravitational sources that are responsible for its motion:
if these sources are deeper then the H0 secondary calibra-
tors themselves, then the H0 calibrators and the LG motion
share the same bulk velocity and so, by operating in the LG
frame, these super-survey modes disappear, as noted above.
If on the other hand, the source of the LG’s motion is very
local to the LG itself (for example, a very nearby attractor
such as Virgo), then, when operating in the LG frame, the
LG motion induces a coherent dipole pattern (see Kaiser &
Hudson 2014 and references therein). This coherent dipole
is different in character to the less-coherent distortion due
to the motions of the H0 calibrators.

In practice, however, the LG’s motion arises from grav-
itational sources over a wide range of distances, so the
true situation is more complicated than the two scenarios
sketched above. Fortunately, by mapping out the distribu-
tion of nearby galaxies with an all-sky redshift survey and
predicting peculiar velocities via linear perturbation theory,
we now have a good idea of the gravitational sources respon-
sible for much of the LG’s motion (e.g. Erdogdu et al. 2006;
Lavaux & Hudson 2011, Carrick et al 2014). Consequently,
because in practice these surveyed volumes contain within
them the secondary calibrators with which one is attempt-
ing to measure the local H0, the bias in the local value of
H0 could be reduced by working in the frame of the red-
shift survey itself. In other words, the solution is to use the
predicted peculiar velicities to correct for the redshifts of
the calibrators (Neill et al. 2007, Riess et al. 2011), leaving
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Conclusions
• There have been a number of recent papers computing perturbations to 

the cosmological distance and claiming either

• new probes of structure (Doppler- or anti-lensing) that rely on 
previously ignored relativistic effects 

• subtle relativistic effects (backreaction) that bias cosmological 
parameters

• The “lensing” effects are mostly well known and studied pec. vel. effect  

• but to the extent that they go beyond the lowest order effect are 
wrong

• The bias in local measurement of H is just kinematic Malmquist bias

• though astronomers got this wrong
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ABSTRACT

We analyze the effect that peculiar velocities have on the cosmological inferences we make using luminosity
distance indicators, such as Type Ia supernovae. In particular we study the corrections required to account for
(1) our own motion, (2) correlations in galaxy motions, and (3) a possible local under- or overdensity. For all
of these effects we present a case study showing the impact on the cosmology derived by the Sloan Digital Sky
Survey-II Supernova Survey (SDSS-II SN Survey). Correcting supernova (SN) redshifts for the cosmic microwave
background (CMB) dipole slightly overcorrects nearby SNe that share some of our local motion. We show that
while neglecting the CMB dipole would cause a shift in the derived equation of state of ∆w ∼ 0.04 (at fixed Ωm), the
additional local-motion correction is currently negligible (∆w ! 0.01). We then demonstrate a covariance-matrix
approach to statistically account for correlated peculiar velocities. This down-weights nearby SNe and effectively
acts as a graduated version of the usual sharp low-redshift cut. Neglecting coherent velocities in the current sample
causes a systematic shift of ∆w ∼ 0.02. This will therefore have to be considered carefully when future surveys
aim for percent-level accuracy and we recommend our statistical approach to down-weighting peculiar velocities
as a more robust option than a sharp low-redshift cut.

Key words: cosmology: observations – supernovae: general
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1. INTRODUCTION

Concordance cosmology (ΛCDM) is a successful model of
our universe, fitting observations of Type Ia supernovae (Riess
et al. 1998; Perlmutter et al. 1999; Astier et al. 2006; Wood-
Vasey et al. 2007; Riess et al. 2004, 2007; Kowalski et al.
2008; Hicken et al. 2009; Kessler et al. 2009; Freedman et al.
2009), the cosmic microwave background (CMB; Page
et al. 2003; Tegmark et al. 2006; Spergel et al. 2007; Komatsu
et al. 2009, 2011), baryon acoustic oscillations (BAOs;
Eisenstein et al. 2005; Percival et al. 2007, 2010; Blake et al.
2011b, 2011d), and growth of structure (Blake et al. 2011a,
2011c), among others. However, it relies on the existence of
dark components of the universe—dark energy and dark mat-
ter—whose nature remains mysterious. This has given rise to
questions about the validity of our theory of gravity itself. There-
fore enormous observational effort is continuing to better char-
acterize the dark sector by measuring the expansion history of
the universe and the growth of structure within it.

Type Ia supernovae remain a lynch-pin in this effort, and
more surveys are underway, or planned, to gather ever more
high quality data to try to reduce the uncertainties on our
cosmological parameters down below the 1% level and search
for possible variations in the equation of state of dark energy. To
achieve this accuracy we will have to address small systematic
effects that had previously been negligible. In this paper we
consider systematic errors that could arise from neglecting the
peculiar velocities and gravitational redshifts induced by large-
scale structure.

The customary diagnostic in supernova (SN) cosmology
is the Hubble diagram, a measurement of luminosity as a
function of redshift. When using Type Ia supernovae to measure
this magnitude–redshift relation, the redshift used should be
entirely due to the expansion of the universe. In practice this is
never the case, as large-scale structure in the universe induces
peculiar motions so that the measured redshift contains some
contribution from peculiar velocities. To date, the majority
of the effort in calibrating Type Ia supernova measurements
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that the redshift of the SN is entirely due to the expansion of the
universe. To first order this is straightforward, since we know our
own velocity to high precision from measurements of the CMB
dipole. Correcting for the CMB dipole is standard practice in all
SN cosmology analyses (e.g., Astier et al. 2006; Wood-Vasey
et al. 2007; Riess et al. 2007; Kowalski et al. 2008; Kessler
et al. 2009). However, no correction is typically made for our
motion relative to nearby galaxies, for which the CMB dipole is
a poor approximation. Here, we investigate the impact of both
effects.

We are moving at vpec
⊙ = 371 km s−1 with respect to the CMB

(Kogut et al. 1993; Bennett et al. 2003). This is small compared
to the Hubble flow for all but the nearest objects, dropping to less
than ∼1% beyond a redshift of 0.1. Our motion thus contributes
a maximum redshift change of σz = 0.00124 to sources that
are directly aligned with the dipole. This is much less than
the equivalent uncertainty in our magnitude measurement (see
Figure 1); it is only its coherence among SNe that can make it
significant.

The general relationship between redshift and peculiar ve-
locity is

1 + zpec =

√
1 + vpec/c

1 − vpec/c
, (4)

which simplifies to zpec = vpec/c in the non-relativistic limit.20

The redshift correction required to account for our velocity with
respect to the CMB, v⊙, is

z
pec
⊙ = −v

pec
⊙ /c = vpec

⊙ · (−n)/c, (5)

where n is the unit vector from the Sun to the SN. (The negative
sign ensures that if we are moving in the direction of the SN the
resulting correction is a blueshift.)

The observed heliocentric redshift, z, is then related to the
cosmological redshift, z̄, by21

(1 + z) = (1 + z̄)
(
1 + z

pec
⊙

)
. (6)

Note that the NED velocity calculator (NASA/IPAC Extragalac-
tic Database 2008) uses the approximation,

z ≈ z̄ + z
pec
⊙ . (7)

This gives a fractional error22 of precisely z
pec
⊙ , which is

negligible for most circumstances.
The dipole not only shifts the redshift but also changes the

apparent magnitude of the source due to the Doppler shift of
the photon energy and relativistic beaming. The CMB dipole

20 Note that the special relativistic velocity–redshift relation in Equation (4) is
only appropriate for peculiar velocities. It is not appropriate for recession
velocities (the velocity that appears in Hubble’s law), for which special
relativistic corrections should never be applied (Davis & Lineweaver 2004;
Lineweaver & Davis 2005).
21 This assumes the observer has already corrected both for the motion of the
Earth around the Sun, which contributes up to 30 km s−1 depending on the
time of observation and for atmospheric refraction, which contributes up to
90 km s−1 (the index of refraction of air is 1.0003, so ∆z = 0.0003 and
c∆z = 90 km s−1). Usually this is done as a standard step in wavelength
calibration.
22 Rearranging Equation (6) and Equation (7) gives z̄NED−z̄

z̄ = z
pec
⊙ .

therefore also has an effect on the luminosity distance calculated
from the magnitude of an SN (Sasaki 1987; Pyne & Birkinshaw
1996; Bonvin et al. 2006a; Cooray & Caldwell 2006; Hui &
Greene 2006). This arises because the luminosity distance is
related to the comoving distance, χ , by (recalling that overbars
refer to observations made from the CMB rest frame)

d̄L(z̄) = (1 + z̄)R0Sk(χ ). (8)

However, what we actually observe is (recalling that z is the
observed redshift and considering for the moment only our own
motion)

dL(z) = (1 + z)R0Sk(χ ), (9)

= (1 + z̄)
(
1 + z

pec
⊙

)
R0Sk(χ ), (10)

= d̄L(z̄)
(
1 + z

pec
⊙

)
. (11)

So both the redshift and the luminosity distance need to be
corrected for the effect of the dipole.23

Alternatively, one can choose to correct for both in one fell
swoop by correcting the observed luminosity distance at redshift
z to the luminosity distance that would have been observed
at redshift z in the absence of peculiar velocities. This is the
approach taken by the commonly used program simple_cosfitter
(Conley et al. 2006).24 Hui & Greene (2006) give the formula for
d̄L(z), which can be used to correct only the dL values without
correcting z. Considering only our own motion, Equation (15)
of Hui & Greene (2006) can be rearranged to give

dL(z) = d̄L(z)
[

1 +
ae

a′
eR0Tk(χ )

v0.n
]

, (12)

where a′
e ≡ dae/dτ represents the derivative of the scale

factor with respect to conformal time, evaluated at the time
of emission,25 and here we have kept the curvature dependence
explicit, with Tk(χ ) ≡ tan(χ ),χ , and tanh(χ ) in closed, flat,
and open universes, respectively.

When there are two peculiar velocities to correct, such as
when accounting for the SN’s motion26 with respect to the CMB

23 You may be concerned that in going from Equations (9) to (10) we have
neglected the factor of z in the calculation of χ = (c/R0)

∫ z̄
0 dz̄/H (z̄).

However, this cosmological redshifting is independent of the motion of the
emitter or observer, and therefore does not need correcting for peculiar
velocities. As long as we correct the redshift of the supernova to the CMB
frame our theoretical model comparison will be correct.
24 http://qold.astro.utoronto.ca/conley/simple_cosfitter/html/
25 We give conformal time dimensions of time, so dτ = dt/a and the
conformal time derivative is related to the proper time derivative (denoted by
an overdot) according to

a′ = da

dt

dt

dτ
= ȧa. (13)

26 The additional redshift due to the SN’s motion is

z
pec
SN = v

pec
SN /c = vpec

SN · n/c, (14)

where again n is the unit vector from the Sun to the SN and vpec
SN is measured

with respect to the CMB.

4


