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How to describe galaxy distribution in space?

in 1980,great wall 2PCF widely used  
for 2dFGRS/SDSS

•Correlation function: 2-points, 3-points 
etc (1980, Peebles) 
!

•2PCF describes how galaxies are 
biased with dark matter distribution 
!

•2PCF etc can well constrain the 
cosmological parameters

?
Two-point correlation



Galaxy alignment 
•  satellite-satellite 
•  satellite-central 
•  central-central 
•  central-LSS

Several types of galaxy alignment 

Small scales 

One halo term Two halo term 

Galaxy alignment is seen on different scales



In addition to galaxy clustering, Why do we care galaxy alignment?

On small scale (one-halo term) 
!

•Infer dark matter halo shape from galaxy alignment 
•alignment to infer galaxy formation? 
•primordial anisotropic accretion or evolution                    
(Nature vs Nurture?)

On large scales (two-halo term) 
!
•Interaction of halo shape to cosmic tidal field 
•intrinsic alignment of galaxies (crucial to weak lensing) 
•formation of cosmic web? 
•dependence on DM/DE properties? 



1,satellite-satellite: The great circle （co-rotated plane)

Satellite galaxy in the Milky Way
12 Pawlowski, Kroupa & Jerjen

Figure 6. The distribution of LG galaxies as seen from the midpoint between the MW and M31. Note that in contrast to the previous
plots, this is not plotted in Galactic coordinates l and b. Instead, the orientation of the coordinate system was chosen such that the MW
and M31 lie on the equator and the normal to the plane fitted to all 15 non-satellite galaxies points to the north pole. The positions
and orientations of the MW and M31 discs are indicated by black ellipses. The Galactic disc of the MW is seen from the south, the
Galactic south pole points to the upper right of the plot. Satellite galaxies are plotted as crosses (+ for MW, × for M31), non-satellites
are plotted as filled circles. The one-sigma distance uncertainties for the galaxies result in position uncertainties in this projection, which
are indicated by the grey lines. For most galaxies they are smaller than the symbols. Galaxies within a common plane are marked with
the same color. All MW satellites are assumed to lie in the VPOSall are plotted in blue, while the M31 satellites assigned to the GPoA
are plotted in red. Most of the non-satellite galaxies in the LG lie along one of two ’bands’, one above and one below the plot’s central
axis. The only LG galaxy not along one of the bands is the Pegasus dwarf irregular (dIrr). It is, however, very close to the plane of M31
itself. We have indicated this by marking the satellites close to the M31 disc plane, but not in the GPoA, in magenta.

rection of (l, b) = (−136◦,−28◦), corresponding to (l, b) =
(224◦,−28◦) in our notation of non-negative Galactic lon-
gitude, and a plane thickness estimate of 200 kpc without
specifying how this thickness was measured. Using a second
method which assumes that the line connecting the MW and
M31 lies within the LG plane, they repeat their plane fit,
resulting in a plane normal pointing to (l, b) = (133◦,−27◦).
As this normal direction points close to the position of M31
([l, b]M31 = [121◦,−22◦]), it can not describe a plane in-
cluding both the MW and M31. We therefore have to as-
sume that the l-component of their second normal direction
lacks a minus sign, which would agree with the statement
by Pasetto & Chiosi (2007) that the difference between their
two planes is small. If this is the case, their second plane fit
would have a normal pointing to (l, b) = (227◦,−27◦) in our
notation. Thus, their results agree well with our plane fitted
to all non-satellite galaxies in the LG.

With a RMS height of almost 300 kpc, the single plane
fitted to all non-satellite galaxies is much wider than the
satellite galaxy planes around the MW and M31. Motivated
by the GPoA, which consists of only a sub-sample of M31
satellites, we look for the possibility that there are sub-
samples of non-satellite galaxies in the LG which lie in a

thinner plane. Fig. 6 shows an Aitoff projection of the distri-
bution of all LG galaxies as seen from the midpoint between
the MW and M31 (the origin of our Cartesian coordinate
system). The angular coordinate system for this plot is cho-
sen such that the normal-vector of the plane fitted to all
15 non-satellite galaxies defines the north pole, and such
that the MW and M31 lie along the equator at longitudes
of L′ = 90◦ and L′ = 270◦, respectively. All non-satellite
galaxies are plotted as filled points in Fig. 6, the MW satel-
lite positions are indicated with plus signs and those of the
M31 satellites with crosses.

Galaxies which lie within a common plane that contains
or passes close to the midpoint between the MW and M31
will lie along a common great-circle in Fig. 6. This is, for
example, the case for the M31 satellites in the GPoA (red
symbols), because the GPoA is oriented such that it is seen
edge-on from the MW and therefore also from the midpoint
between the MW and M31. Two groupings are obvious for
the non-satellites. Mostly contained in the upper half of the
plot, the LG galaxies UGC 4879, Leo A, Leo T, Phoenix,
Tucana, Cetus, WLM, IC 1613 and Andromeda XVI (plot-
ted in yellow) lie along a common ’band’ (below, this group
will be referred to as LGP1). A second, smaller grouping can

c⃝ 2012 RAS, MNRAS 000, 1–33

A&A 523, A32 (2010)

Fig. 4. Parameters of the MW DoS: the 3-D distribution of the MW
satellite galaxies. The 11 classical satellites are shown as large (yellow)
circles, the 13 new satellites are represented by the smaller (green) dots,
whereby Pisces I and II are the two southern dots. The two open squares
near the MW are Seg 1 and 2; they are not included in the fit because
they appear to be diffuse star clusters nearby the MW, but they do lie
well in the DoS. The obscuration-region of ±10◦ from the MW disc is
given by the horizontal gray areas. In the centre, the MW disc orienta-
tion is shown by a short horizontal line, on which the position of the Sun
is given as a blue dot. The near-vertical solid line shows the best fit (seen
edge-on) to the satellite distribution at the given projection, the dashed
lines define the region ±1.5 × ∆min, ∆min being the rms-height of the
thinnest DoS (∆min = 28.9 kpc in both panels). Upper panel: an edge-on
view of the DoS. Only three of the 24 satellites are outside of the dashed
lines, giving Nin = 21, Nout = 3 and thus a ratio of R = Nin/Nout = 7.0.
Note the absence of satellites in large regions of the SDSS survey volume
(upper left and right regions of the upper panel, see also Fig. 1 in Metz
et al. 2009a, for the SDSS survey regions). Lower panel: a view rotated
by 90◦, the DoS is seen face-on. Now, only 13 satellites are close to the
best-fit line, 11 are outside, resulting in R = 1.2. Note that by symmetry
the Southern Galactic hemisphere ought to contain about the same num-
ber of satellites as the Northern hemisphere. Thus, The Stromlo Milky
Way Satellite Survey is expected to find about eight additional satellites
in the Southern hemisphere.

Fig. 5. Testing for the existence of the DoS. The behaviour of R for each
view of the MW, given by the Galactic longitude of the normal vector
for each plane-fit. R = Nin/Nout is the ratio of the number of satellites
within 1.5× ∆min (∆min = 28.9 kpc), Nin, to those further away from the
best-fit line, Nout, calculated for all 24 known satellites, as well as for
the fits to the 11 classical and the 13 new satellites separately (taking
their respective rms heights as the relevant ∆min). The disc-like distri-
bution can be clearly seen as a strong peak close to lMW = 150◦. Note
that the position of the peaks are close to each other for both subsam-
ples separately. This shows that the new satellite galaxies independently
define the same DoS as the classical satellite galaxies.

The fitting to the 11 classical satellites leads to results that
are in very good agreement, too. The best-fit position for the
11 classical satellites is lMW = 157.◦6 ± 1.◦1 and bMW = −12.◦0 ±
0.◦5, the height is found to be ∆ = 18.3± 0.6 kpc, and the closest
distance to the MW centre is DP = 8.4 ± 0.6 kpc. This is in
excellent agreement with the results of Metz et al. (2007). In
that paper, the authors reported that lMW = 157.◦3, bMW = −12.◦7,
∆min = 18.5 kpc, and DP = 8.3 kpc. This illustrates that the
results are extremely accurate despite employing a more simple
disc-finding technique.

The agreement of the fit parameters for the two subsam-
ples separately is impressive. Two populations of MW satel-
lite galaxies (classical versus ultra-faint) with different discov-
ery histories and methods define the same DoS. This shows that
the new, faint satellites fall close to the known, classical, DoS
(≡DoScl). Even without considering the classical satellite galax-
ies, the new satellites define a disc, DoSnew, that has essentially
the same parameters. This confirms the existence of a common
DoS≈DoSnew ≈DoScl.

5.4. The DoS – discussion

A pronounced DoS is therefore a physical feature of the MW
system. But what is its origin? Is the existence of both the
classical-satellite DoScl and the new-satellite DoSnew, such that
DoSnew ≈ DoScl, consistent with the CCM?

It has been suggested that the highly anisotropic spatial satel-
lite distribution maps a highly prolate DM halo of the MW that
would need to have its principal axis oriented nearly perpendic-
ularly to the MW disc (Hartwick 2000). However, there is still
much uncertainty and disagreement as to the shape and orien-
tation of the MW DM halo: Fellhauer et al. (2006) used the
bifurcation of the Sagittarius stream to constrain the shape of
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•2005:Milky Way satellites are in a 
thin disc 
!

•2007:The same is true in M31, but 
weaker 
!

•2013: Satellites in the disc are co-
rotated !

Kroupa 2005

MW and M31 are special?  
need large galaxy sample



3, Central-Central alignment6 Okumura, Jing, & Li
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Fig. 6.— Ellipticity auto-correlation functions of the central

LRGs, (top) c11(r) and (bottom) c22(r). In both panels, the data
points with the error bars are the measurements from the SDSS,
the same ones as those in the bottom panel of Figure 1. The
dashed red lines are results of the mock central LRGs with no
misalignment with their parent halos. The solid red lines are those
with the misalignment parameter of σθ = 35◦. The horizontal
axis at the top shows the corresponding angular scale when all the
galaxies are located at z = 1.

mock ellipticity catalogs are not independent each other,
their average can reduce random fluctuation from differ-
ent random seeds. Finally, our model prediction for each
misalignment parameter σθ is calculated by averaging
over 7 × 9 = 63 misaligned samples.

In comparing the observational data with the model
prediction, we first compute the model ellipticity corre-
lation function with a given parameter of σθ to be tested.
χ2 statistics are then calculated as

χ2(σθ) =
∑

i,j

∆c11(ri; σθ)C
−1
ij ∆c11(rj ; σθ), (7)

where Cij is the covariance matrix given by equation
(3), ∆c11(ri; σθ) the difference between the observed and
the model values in the ith separation bin, and i and
j runs over the number of bins. In this analysis the
number of bins is 8 and the degree of freedom is 7. Thus
the 99 realizations constructed from jackknife resampling
are large enough to derive a nonsingular matrix, as was
already stated in Section 3.1. The range of σθ in our
calculation of χ2 is 20 < σθ < 50◦ with the width of
∆σθ = 1◦. The binned values of χ2 are then cubic-spline
interpolated.
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Fig. 7.— χ2 distribution for misalignment angle parameter σθ.
The best-fit parameter is σθ = 35.4+4.0

−3.3 deg (68% C.L.) when we

use the full covariance matrix, while σθ = 35.0+4.4
−3.6 deg when we

use only the diagonal elements of the covariance. The minimum
value of χ2 is χ2

min
= 3.983 and 2.915 with 7 dof, respectively.

The horizontal dotted lines show 68%, 95%, and 99% confidence
levels.

Figure 7 shows χ2 as a function of the misalignment
parameter σθ. For comparison, both the results that all
the elements and only diagonals of the covariance ma-
trix are used are given. These two results are in very
good agreement, indicating that the non-diagonal ele-
ments of the error matrix are not important. The fits of
the observed ellipticity correlation function to the model
prediction using the full covariances give σθ = 35.4+4.0

−3.3

(68% confidence level), and χ2
min = 3.983 with 7 dof.

The model prediction of c11 with σθ = 35◦ is shown in
the top panel of Figure 6. As a cross-check, we also plot
the model of c22 with the same σθ in the bottom panel
of Figure 6, which is also in very good agreement with
the observed c22. This accordance additionally enhances
the validity of our analysis.

Recently there were two papers by Kang et al. (2007)
and Wang et al. (2008) who studied the misalignment
angle between galaxies and their host halos. Although
they used the same observed statistics of the alignment
angle between the major axis of the central galaxies
and their connecting lines to satellites(Yang et al. 2006),
they obtained the typical misalignment angle with dif-
ferent results (about 40◦ by Kang et al. (2007) and 23◦

by Wang et al. (2008) for the whole sample of blue and
red central galaxies in their papers). The difference may
come from their different methods to trace the satel-
lite spatial distribution in their modeling. Kang et al.
(2007) have used a semi-analytical model to trace satel-
lites, and Wang et al. (2008) have first tried to determine
the spatial distribution of satellites within halos. The
discrepancy might come from the fact that the triaxial
shape of satellite distribution within groups determined
by Wang et al. (2008) is much rounder than dark mat-
ter halos in simulations (Jing & Suto 2002; Kang et al.
2007). Our analysis does not need to make any assump-
tion for the satellite galaxies or the shape of halos. Be-

Jing+ 2009

Large scale alignment of massive galaxies at z ∼ 0.6 3

Fig. 1.— Left: difference between the alignment correlation function at given projected angle ξ(θp, s) and the conventional correlation
function ξ(s), obtained from the CMASS galaxy sample. Results at the small and large θp bins are plotted in grey and black symbols
separately. The hatched regions plotted in red/green/blue represent the 1σ variance between 100 random samples in which the position
angles are randomly shuffled among the galaxies, measured for the three angle bins separately. The solid and dashed lines show the results
for dark matter halos with mass above 1012h−1M⊙. The solid lines are for the halos with no misalignment, and the dashed lines are results
with the misalignment parameter of σθ = 35◦. Right: the cos(2θ)−statistic measured for the same galaxy sample and dark matter halo
catalog. Symbols and lines are the same as in the left-hand panel.

only the redshift-space separation and can be regarded
as an average of the alignment correlation function over
the full range of θp.
In Figure 1 (left panel) we plot the difference in the

alignment correlation function at small/large angles with
respect to the conventional correlation function ξ(s).
The error bars plotted in the figure and in what follows
are estimated using the bootstrap resampling technique
(Barrow et al. 1984). We have constructed 100 bootstrap
samples based on the real sample, and we estimate the
difference between ξ(θ, s) and ξ(s) for each sample. The
error at given scale is then estimated from the 1σ vari-
ance between the bootstrap samples.
As can be seen, ξ(θp, s) differ from ξ(s) at both small

and large angles, with stronger clustering at smaller an-
gles and weaker clustering at larger angles, consistent
with the picture that the major axis of the galaxies is
preferentially aligned with their spatial distribution.
It is essential to perform systematics tests on any

clustering measurements (e.g. Mandelbaum et al. 2005;
Sanchez et al. 2012). As one of such tests, we have re-
peated the same analysis as above for a set of 100 ran-
dom samples in which the position angles are shuffled
at random among the main galaxies (Sample Q). The
hatched regions plotted in red/green/blue in Figure 1
show the 1σ variance of the alignment correlation func-
tion between the random samples, measured for the three
angle bins separately. It is interesting that the alignment
signal detected in the real sample is significantly seen for
a wide range of scales, from the smallest scales probed
(∼ 5h−1Mpc) out to ∼ 70h−1Mpc according to both the
bootstrap errors of the measurements and the 1σ regions
of the random samples.
The right-hand panel of Figure 1 shows the

cos(2θ)−statistic, plotted in solid circles for the CMASS
sample and in green hatched region for the 100 randomly
shuffled samples. The statistic for the real sample shows
positive values on all scales probed, while its difference
from the random samples is significantly seen only for
scales below ∼ 70h−1Mpc, consistent with what the left-
hand panel reveals. As mentioned above, a positive value
in the cos(2θ)−statistic indicates a preference for angles
smaller than 45◦, thus implying that the major axis of
the galaxies tends to be aligned with the large-scale dis-
tribution of galaxies. The cos(2θ)−statistic of the ran-
dom samples shows a systematic positive bias at scales
above ∼ 40h−1Mpc, implying that the position angle of
the CMASS galaxies is not randomly distributed on the
sky, a cosmic variance effect due to the limited survey
area and probably also the quite irregular shape of the
survey geometry. This can be tested in future with mock
catalogs or later data releases of the BOSS survey.
For comparison the same statistics obtained for dark

matter halos of mass Mh > 1012h−1M⊙ in the MDR1
simulation are shown in Figure 1 as solid lines. Align-
ment signal is seen in both statistics and on all the
scales up to 120 h−1Mpc. Both statistics show strong
dependence on the spatial scale, which is very simi-
lar to what is seen for the CMASS galaxies. At fixed
scale, however, the alignment of the halos is system-
atically stronger than that of the galaxies. This dis-
crepancy might be partially (if not totally) due to the
misalignment between the orientation of central galaxies
and that of their host halos. A previous study done by
Okumura et al. (2009) on the alignment of luminous red
galaxies (LRGs) at 0.16 < z < 0.47 in the SDSS/DR6
suggested that the misalignment angle between a central
LRG and its host halo follows a Gaussian distribution

Li+ 2015

Galaxy(Halo) intrinsic 
alignment is crucial for 
Weak Lensing cosmology



2,satellite-central alignment

The central-satellite alignment 1297

Figure 2. Same as Fig. 1 but for different subsamples of central and satellite galaxies. In the upper panels, we show f pairs(θ ) for groups with a different

ellipticity, e, of the central galaxy, as indicated. Note that groups with a strongly elongated central galaxy (0.6 ! e < 0.8) are consistent with a perfectly

isotropic distribution of satellites. As we argue in the text, and show in Fig. 3, this owes to the fact that strongly elongated systems are mainly blue, late type

disc galaxies, which show no significant alignment. The lower panels show how f pairs(θ ) depends on the luminosities of the satellite galaxies, Ls, expressed

in units of the luminosity of their central galaxy, Lc. There is a clear indication that fainter satellites are more strongly aligned.

Figure 3. Same as Fig. 1, but for different subsamples of hosts and satellites,

selected according to their 0.1(g − r ) colour. See text for discussion.

galaxies. In particular, satellite galaxies in groups with a blue, central

galaxy are consistent with a perfectly isotropic distribution; there

is no sign of any significant alignment (⟨θ⟩ = 44.◦5 ± 0.◦5). On the

contrary, groups with a red central galaxy show a very pronounced,

major-axis alignment with ⟨θ⟩ = 41.◦5 ± 0.◦2. In addition, red satel-

lites show a significantly stronger major-axis alignment than blue

satellites.

As shown in Weinmann et al. (2006), haloes with a central red

galaxy have a significantly larger fraction of red satellites than a

halo of the same mass, but with a blue central galaxy. This so-called

‘galactic conformity’ implies that the upper and lower panels are

not independent. In Fig. 4, we therefore examine how f pairs(θ ) de-

Figure 4. Same as Fig. 3, except that here we split the sample according to

the colours of both the central and the satellite galaxies, as indicated.

pends on the colours of both the central galaxy and the satellites.

As can be seen, systems with a blue central galaxy show no sig-

nificant alignment, neither with their blue satellites nor with their

red satellites. Systems with a red central galaxy, however, show a

very pronounced alignment, which is significantly stronger for red

satellites than it is for blue satellites. Since redder colours typically

indicate older stellar populations, these results suggest that a sig-

nificant alignment between the orientation of central galaxies and

the distribution of their satellite galaxies only exists in haloes with a

relatively old stellar population. Clearly, such a correlation between

the alignment strength and the age of the stellar population must

C⃝ 2006 The Authors. Journal compilation C⃝ 2006 RAS, MNRAS 369, 1293–1302

From 2dFGRS and SDSS 
!
•satellite galaxies are aligned with the major axis of 

central galaxy 
•stronger alignment for red centrals 
•strong alignment for red satellites

Brainerd 05, Yang+06

group galaxy



Modeling the satellite-central alignment
Halo is triaxial

Alignment between satellites and centrals 1535

Figure 2. The normalized probability distribution P(θ ) for central–satellite
pairs in VIR haloes at different redshifts, as indicated. Clearly, the alignment
strength in the SAM is virtually independent of redshift.

Figure 3. The normalized probability distribution, P(θ ), for various subsamples. The upper panels show the results for blue (left-hand panel) and red (right-hand
panel) satellites, while the lower panels show the results for haloes with blue centrals (left-hand panel) and red centrals (right-hand panel). In each panel, the
open triangles show the results for the satellite galaxies in the SAM, the solid line shows the results for the dark matter particles in the SAM and the solid dots
with error bars show the observational results of Y06.

3.2 Dependence on galaxy colour

We now examine how the alignment signal depends on various
galaxy and halo properties. Fig. 3 shows the dependence of the align-
ment signal on the colours of the satellite galaxies (upper panels)
and the central galaxies (lower panels). The open triangles show the
results obtained from our SAM, while the observational results of
Y06 are shown as solid dots. Similar to the results shown in Fig. 1,
the SAM yields much stronger alignment signals than observed.
Again we defer the discussion of this difference and its implications
to Section 4. Here we simply focus on the colour dependence. First
of all, the SAM predicts that blue satellites are less strongly aligned
with the orientation of their central galaxy than red satellites, which
is in qualitative agreement with the observations. The solid lines
indicate the P(θ ) for the dark matter particles. This shows that blue
satellites have a θ distribution that is virtually identical to that of the
dark matter particles, while red satellites reveal an alignment signal
that is clearly enhanced with respect to that of the dark matter.

In order to gain insight in the origin of this enhanced align-
ment signal of red satellites, we have inspected the galaxy distri-
butions in the SAM. This shows that red satellites are more radially
concentrated than the blue satellites, in agreement with observa-
tions (e.g. Postman & Geller 1984; Girardi et al. 2003; Biviano &
Katgert 2004; Thomas & Katgert 2006). In addition, we find that
blue satellites are mostly associated with halo galaxies (the satel-
lites that still have a detectable subhalo around them). This owes to
the fact that most of them have been accreted only fairly recently.
Red satellites, on the other hand, have their star formation largely

C⃝ 2007 The Authors. Journal compilation C⃝ 2007 RAS, MNRAS 378, 1531–1542
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Kang et al. 07 using SAM

results 
!
• if central galaxy follow major axis of DM halo 

(inside virial radius): signal too strong 
!

• need some mis-alignment (inner DM halo, or 
spin) signal is OK, but no color dependence

N-body study is limited 
as its difficult to properly 
determine the shape of 
central galaxy



Modeling the satellite-central alignment

Satellite Alignment 3
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FIG. 2.— The predicted galaxy alignment and comparisons with observa-
tional results.The upper left panel is for all sample, and lower right panel for
central galaxies with different host halo mass. Other panles are for satellite
and central with red/blue colors. The average alignment angle of observed
and model galaxies are labeled in each panel.

right panel we show the predicted alignment for red/blue cen-
tral galaxies divided by Mc, where Mc = 2× 1011M⊙ (dotted
line), and Mc = 1012M⊙ (dashed line). It is found that the pre-
dicted alignment is close to the data with Mc = 2× 1011M⊙,
and the prediction is increasing with critical halo mass.

The exersie presented in the lower right panel of Fig.2 sug-
gests that the observed alignment with dependence on color of
central galaxies is mainly determined by the host halo mass.
We will later see that the halo mass dependence is rooted
in the shape correlation between central galaxy and the host
halo.

In Fig.3, we further show the dependence of alignment on
galaxy properties from the simulation. The solid lines are for
centrals and dashed lines for satellites with dependence on
metallicity, color, stellar mass and halo mass. The upper pan-
els show that the alignment of satellites depends on metallicity
and color, with stronger dependence on metallicity that metal-
rich satellites have very strong alignment. The lower panels
show that the dependence on stellar mass is very weak and
fainter satellites have slightly weaker alignment, in a broad
agreement with the finding in Y06. Note the error-bar for the
point at the bin with biggest mass is big due to small num-
ber statistics. The halo mass dependence in the lower right
panel is close to the dependence from the data that alignment
in massive halos are stronger and consistent with the depen-
dence on stellar mass for central galaxies in the left panel.

In addition to the dependence of galaxy alignment on color,
the data also have shown that the alignment angle is a strong
function of radial distance to the centrals (Brainerd 2005;
Yang et al. 2006). In the left panel of Fig.4 we show the radial
spatial distribution of satellite in the dark matter halo, with de-
pendence on color and metal. It is found that both metal rich
and red satellites are distributed predominately in the central
halo. This distribution agrees with the observational facts that
galaxy properties, such as color, metallicity or morphology
depends strongly on its environment/local density as metal re-
cycle and star formation quenching are more efficient in the
inner halo (ref?). The middle panel in Fig.4 shows the align-
ment of satellites as function as radius. The observational re-
sults of Y06 is shown as triangles. Good agreement between
the simulation and the data is found that satellites residing in
inner halo have stronger alignment with central galaxy than

FIG. 3.— The dependence of alignment strength (2D) on the properties of
simulated galaxies and dark matter halos. See the text for more details.

FIG. 4.— Left panel: The radial distribution of red and blue SGs within
dark matter halos. Middle panel: The dependence of average alignment angle
on radii toward halo center. Right panel: The distribution of mis-alignment
angles between the major axis of CGs and that of dark matter halo within
radius of 0.1, 0.3 and 1.0R200.

their counterparts residing in outer halo.
To understand the origin of satellite alignment with respect

to the central galaxy, theoretical work using N-body simula-
tion often assumed that the shape of central galaxy follows
the overall dark matter halo, and that leads to a strong align-
ment than the data (e.g., Kang et al. 2007). To decrease the
predicted signal, one has to introduce some degree of mis-
alignment between the central galaxy and that of the dark
matter halo without resort to the physical origin (Kang et al.
2007; Agustsson & Brainerd 2010). More physical solution is
proposed that if the central galaxy follows better the shape of
dark matter in the central region, the alignment will be better
reproduced (Faltenbacher et al. 2009; Wang et al. 2014), how-
ever the dependence on galaxy color is hardly reproduced in
these works.

As our SPH simulation includes the stellar component, we
can directly predict the shape of central galaxy and is able to
test the above assumption. The right panel of Fig.4 shows the
alignment angle between central galaxy and dark matter ha-
los with dependence on halo mass. The results for the angle
between the major axis of central galaxy and the overall dark
matter halo were plotted as solid line, dashed line and dot-
ted line for the whole halo (inside of R200), the intermediate
halo (inside of 0.3R200) and the inner halo (inside of 0.1R200)
respectively. Here R200 is the virial radius of spherical halo.
It is found that the shape of central galaxy traces better that
of the inner halo, and this alignment is increasing with halo
mass. The mean mis-alignment angle varies from ∼ 35 − 10

Using hydro-dynamical simulation: star formation, SN feedback  
(no AGN feedback)
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FIG. 4.— Left panel: radial distribution of red and blue, metal-rich (top 30% by order ranking), and metal poor (bottom 30% by order ranking) SGs within dark
matter halos. Middle panel: dependence of average alignment angle on radius from the halo center. Right panel: distribution of mis-alignment angles between
the major axes of CGs and those of dark halos measured within radii of 0.1, 0.3, and 1.0R200.

follow that of dark matter. On the other hand, the stellar com-
ponent of centrals is also greatly shaped by the gravitational
force of the dark matter in the inner halo. The combination
of these two effects leads to a better alignment for the metal-
rich/red satellites than their metal-poor/blue counterparts. As
to the dependence on color of centrals, this is related to the
halo mass of the centrals – bluer centrals most likely reside in
relatively lower-mass halos where the alignment between the
central stellar component and the inner halo shape becomes
weaker.

4. CONCLUSION AND DISCUSSION
In this Letter, we carry out a study of galaxy alignment us-

ing a cosmological simulation including gas cooling, star for-
mation, and supernova feedback, which enables a direct pre-
diction for the shape of CGs and the galaxy properties. We
find that the predicted alignment between the CG and the dis-
tribution of satellites agrees with the observations. Further-
more, with a simple assumption about the halo mass of blue
and red centrals, the dependence on color for both centrals
and satellites is also reproduced. We also identify that the
strongest dependence of the alignment is with metallicity of
satellites, which should be testable using future data.
The main source of galaxy alignment is the non-spherical

nature of CDM halos, as shown by many previous stud-
ies (e.g., Agustsson & Brainerd 2006a,b; Kang et al. 2007).
However, the predicted strength of the alignment is too strong
if the shape of the CG follows the overall shape of the dark
matter halo. From our study, we find that the shape of the CG
better follows the halo in the inner region, and the average
mis-alignment is about 20deg (see Figure 4), similar to the ex-
pected or inferred values in previous studies (e.g., Wang et al.
2008; Faltenbacher et al. 2009). As the most red/metal-rich
satellites stay in the inner halo, they naturally follow the
shape of the dark matter halo in that region. This leads to
a strong alignment between red satellites with centrals. Fur-
thermore, as the alignment between the CG and inner halo

increases with halo mass and red centrals predominately pop-
ulate massive halos, it explained the observed fact that red
central shows stronger alignment with satellites than blue cen-
trals. Although the prediction for the alignment of blue cen-
trals using our simulation fails because of the too blue col-
ors of the most massive central galaxies, the exercises for the
alignment dependence on halo mass have given hints that sim-
ulations with AGN feedback (e.g., Vogelsberger et al. 2013;
Tenneti et al. 2014) should be helpful to solve this problem.
The non-spherical nature of dark matter halos is one the

most prominent features of structure formation in a CDM uni-
verse, as the mass accretion and mergers predominately occur
along the cosmic web or the filament (e.g., Wang et al. 2005).
It also naturally produces the galaxy alignment on very large
scales up to ∼ 70h−1Mpc (Li et al. 2013). Accurate predic-
tions for galaxy alignment on large scales is crucial to cosmo-
logical applications, such as estimating the systematic error
used in weak lensing measurements. With the proper mod-
eling of galaxy shapes from hydrodynamical simulation, we
will be able to make predictions for galaxy alignment on large
scales in a forthcoming paper.
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Figure 2. The formation of structure according to the Zel’dovich
formalism. The sequence starts with the left most panel which
shows an ellipsoidal overdensity from two perpendicular angles.
The overdensity collapse proceeds most strongly along one axis
to form a sheet, followed by the full contraction of the second axis
to form a filament. At last, full collapse takes place resulting in a
3D virialized structure.

These feeble environments are identified the least by the
NEXUS tidal and NEXUS velshear approaches, while
NEXUS+ finds a much richer network of such structures.
It suggests that approaches based on the tidal field (Hahn
et al. 2007a; Forero-Romero et al. 2009) or velocity shear
field (Ho↵man et al. 2012) are not very sensitive to the more
tenuous structures. Similar di↵erences between methods
can be found when analysing the cosmic walls (CWJ13).

3.3 The Zel’dovich formalism and NEXUS
environments

The Zel’dovich formalism (Zel’dovich 1970) o↵ers a natural
way of describing anisotropic collapse and therefore the for-
mation of the cosmic web. It has been found to give a good
description of structure formation in the linear and mildly
non-linear stages. This suggests that the Zel’dovich formal-
ism can o↵er a reasonable description of large-scale struc-
tures, given that the cosmic web is at the transitional stage
between linear primordial and fully non-linear structures.
This raises questions about the common points as well as
the di↵erences between NEXUS and Zel’dovich predictions.

The Zel’dovich formalism o↵ers a first-order Lagrangian
approximation to the formation and evolution of cosmic
structure. In the Zel’dovich approximation, the motion of a
fluid element is determined by the primordial density fluctu-
ations, following a ballistic displacement approach. At some
time t, the Eulerian position x(t) of the fluid element is given
by

x(t) = q+D(t) r (q) , (1)

where q is the initial or Lagrangian position of the element.
The quantity D(t) denotes the linear growth factor and  is
the Lagrangian displacement potential (Peebles 1980). The
latter is the primordial linearly extrapolated gravitational
potential, up to a constant multiplication factor. Using this
prescription, we can describe how an initial mass element
⇢̄d3q gets mapped at a later time t to ⇢(x)d3x. The mass

within the mapped volume is conserved, i.e. ⇢̄d3q = ⇢(x)d3x,
which, after a few algebraic manipulations, leads to

⇢(x) =
⇢̄

[1�D �
1

(q)] [1�D �
2

(q)] [1�D �
3

(q)]
. (2)

Here ⇢(x) denotes the density at Eulerian position x and ⇢̄
symbolizes the mean cosmic density. The three �

1

> �
2

> �
3

quantities denote the eigenvalues of the deformation tensor

 ij(q) =
@2 (q)
@qi@qj

. (3)

Similarly to the NEXUS techniques, the Zel’dovich for-
malism can be used to identify the cosmic web components.
This can be easily appreciated from eq. (2), which describes
the evolution of the density at a later time in terms of the
primordial matter distribution. The formation of pancakes,
filaments and clusters is dictated by the eigenvalues of the
deformation tensor, as given in Table 2. For example, clus-
ters form in the regions with three positive eigenvalues. The
evolution of these domains is via a well defined sequence
as illustrated in Fig. 2, where we sketch the collapse of an
ellipsoidal overdensity. As time evolves, the overdensity con-
tracts along all directions, but most strongly along the di-
rection corresponding to the largest eigenvalue �

1

. The full
collapse along this axis takes place when 1 � D(t) �

1

! 0,
resulting in a sheet as shown in panel b). The contraction
follows along the second axis to form a filamentary configu-
ration and ends with the collapse along the third direction
to form a 3D virialized object. This suggests that one can
define a sequence of morphologies, each one associated with
a well defined stage of the anisotropic gravitational collapse.
As shown in Fig. 2, these morphologies evolve in time and
moreover, at any one epoch, we can find a range of interme-
diate states.

Out of all the di↵erent versions of the NEXUS tech-
nique, NEXUS tidal shares the largest number of common
points with the Zel’dovich formalism. For example, both ap-
proaches use the eigenvalues of the tidal tensor for iden-
tifying the cosmic web components. But, most crucially,
NEXUS tidal uses the tidal tensor computed at the redshift
for which we need to identify the di↵erent morphological
components. In contrast, the Zel’dovich formalism always
uses the primordial tidal tensor, neglecting non-linear ef-
fects that arise during the subsequent gravitational collapse
of matter. Such non-linear e↵ects are important when study-
ing large-scale structures, given that the cosmic web repre-
sents the transitional stage between linear structures and
fully developed non-linear objects. The eigenvalue threshold
used to characterize morphological components represents
another crucial di↵erence between the two methods. Within
the Zel’dovich approximation, the distinction between posi-
tive versus negative eigenvalues is important since they lead
to di↵erent morphological structures. But using such a cri-
terion for the present time leads to unrealistic structures
(Hahn et al. 2007a; Forero-Romero et al. 2009), which is
why NEXUS tidal uses a non-zero eigenvalue threshold that
varies with redshift, optimized for the detection of the most
prominent cosmic web components (CWJ13).

In spite of these di↵erences, there is a good correspon-
dence between the predictions of the Zel’dovich formalism
and the NEXUS detections, as seen in Fig. 3. Except small
di↵erences, we find the same large-scale structures in the
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Figure 2. The formation of structure according to the Zel’dovich
formalism. The sequence starts with the left most panel which
shows an ellipsoidal overdensity from two perpendicular angles.
The overdensity collapse proceeds most strongly along one axis
to form a sheet, followed by the full contraction of the second axis
to form a filament. At last, full collapse takes place resulting in a
3D virialized structure.

These feeble environments are identified the least by the
NEXUS tidal and NEXUS velshear approaches, while
NEXUS+ finds a much richer network of such structures.
It suggests that approaches based on the tidal field (Hahn
et al. 2007a; Forero-Romero et al. 2009) or velocity shear
field (Ho↵man et al. 2012) are not very sensitive to the more
tenuous structures. Similar di↵erences between methods
can be found when analysing the cosmic walls (CWJ13).

3.3 The Zel’dovich formalism and NEXUS
environments

The Zel’dovich formalism (Zel’dovich 1970) o↵ers a natural
way of describing anisotropic collapse and therefore the for-
mation of the cosmic web. It has been found to give a good
description of structure formation in the linear and mildly
non-linear stages. This suggests that the Zel’dovich formal-
ism can o↵er a reasonable description of large-scale struc-
tures, given that the cosmic web is at the transitional stage
between linear primordial and fully non-linear structures.
This raises questions about the common points as well as
the di↵erences between NEXUS and Zel’dovich predictions.

The Zel’dovich formalism o↵ers a first-order Lagrangian
approximation to the formation and evolution of cosmic
structure. In the Zel’dovich approximation, the motion of a
fluid element is determined by the primordial density fluctu-
ations, following a ballistic displacement approach. At some
time t, the Eulerian position x(t) of the fluid element is given
by

x(t) = q+D(t) r (q) , (1)

where q is the initial or Lagrangian position of the element.
The quantity D(t) denotes the linear growth factor and  is
the Lagrangian displacement potential (Peebles 1980). The
latter is the primordial linearly extrapolated gravitational
potential, up to a constant multiplication factor. Using this
prescription, we can describe how an initial mass element
⇢̄d3q gets mapped at a later time t to ⇢(x)d3x. The mass

within the mapped volume is conserved, i.e. ⇢̄d3q = ⇢(x)d3x,
which, after a few algebraic manipulations, leads to
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quantities denote the eigenvalues of the deformation tensor
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Similarly to the NEXUS techniques, the Zel’dovich for-
malism can be used to identify the cosmic web components.
This can be easily appreciated from eq. (2), which describes
the evolution of the density at a later time in terms of the
primordial matter distribution. The formation of pancakes,
filaments and clusters is dictated by the eigenvalues of the
deformation tensor, as given in Table 2. For example, clus-
ters form in the regions with three positive eigenvalues. The
evolution of these domains is via a well defined sequence
as illustrated in Fig. 2, where we sketch the collapse of an
ellipsoidal overdensity. As time evolves, the overdensity con-
tracts along all directions, but most strongly along the di-
rection corresponding to the largest eigenvalue �
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. The full
collapse along this axis takes place when 1 � D(t) �

1

! 0,
resulting in a sheet as shown in panel b). The contraction
follows along the second axis to form a filamentary configu-
ration and ends with the collapse along the third direction
to form a 3D virialized object. This suggests that one can
define a sequence of morphologies, each one associated with
a well defined stage of the anisotropic gravitational collapse.
As shown in Fig. 2, these morphologies evolve in time and
moreover, at any one epoch, we can find a range of interme-
diate states.

Out of all the di↵erent versions of the NEXUS tech-
nique, NEXUS tidal shares the largest number of common
points with the Zel’dovich formalism. For example, both ap-
proaches use the eigenvalues of the tidal tensor for iden-
tifying the cosmic web components. But, most crucially,
NEXUS tidal uses the tidal tensor computed at the redshift
for which we need to identify the di↵erent morphological
components. In contrast, the Zel’dovich formalism always
uses the primordial tidal tensor, neglecting non-linear ef-
fects that arise during the subsequent gravitational collapse
of matter. Such non-linear e↵ects are important when study-
ing large-scale structures, given that the cosmic web repre-
sents the transitional stage between linear structures and
fully developed non-linear objects. The eigenvalue threshold
used to characterize morphological components represents
another crucial di↵erence between the two methods. Within
the Zel’dovich approximation, the distinction between posi-
tive versus negative eigenvalues is important since they lead
to di↵erent morphological structures. But using such a cri-
terion for the present time leads to unrealistic structures
(Hahn et al. 2007a; Forero-Romero et al. 2009), which is
why NEXUS tidal uses a non-zero eigenvalue threshold that
varies with redshift, optimized for the detection of the most
prominent cosmic web components (CWJ13).

In spite of these di↵erences, there is a good correspon-
dence between the predictions of the Zel’dovich formalism
and the NEXUS detections, as seen in Fig. 3. Except small
di↵erences, we find the same large-scale structures in the
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‣ In 1st order Lagrangian perturbation 
theory, general perturbations collapse 
subsequently along 3 axes:

 

‣ “pancake” formation, 
                predict asymptotic 
morphology.

‣ In reality this is a multi-scale 
phenomenon (remember 
Press-Schechter theory).

100 h-1 Mpc
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Can we use this to quantify the web in simulations?

(Zel’dovich 1970)

(snapshot from simulation in Hahn et al. 2007a/b)
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4: Alignment with LSS:  
I. define the LSS environment

ƛ ~ eig of (∂i∂j ɸ)

Following Zeldovich, Hahn+2007. 
define the LSS environment: 
• smooth the density field 
• compute the potential 
• compute eigenvector of tidal field
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survey boundary. For each group inside the volume covering
the redshift range 0.01 ! z ! 0.12, the filling factor F is de-
fined as the fraction of the survey volume in a sphere of radius
RF centered on this group. Generally, large F means that the
group is located in the inner region of the survey volume, while
small F means that the group is near the boundary. Throughout
we adopt RF = 80 h−1 Mpc, and we have tested that our re-
sults are insensitive to changes in RF of a factor of two. We also
emphasize that we have found the alignment signals to be insen-
sitive to how we cull our sample based on F; using only groups
with F > 0.9 or all groups with F > 0 results in differences
in the average misalignment angles (see below for definition) of
<0.◦1. Hence, in what follows we use all groups with F > 0.

2.2. Characterizing the Cosmic Web

In specifying the SDSS-MTV fields, Wang et al. (2012) use
the tidal tensor field

Tij (x) = ∂2φ

∂xi∂xj

, (1)

where i and j are indices with values of 1, 2, or 3, and φ is the
peculiar gravitational potential, which can be calculated from
the distribution of dark matter halos with mass Mh above some
threshold value Mth through the Poisson equation,

∇2φ = 4 π G ρ̄ δ = 4 π G ρ̄ δh/bh . (2)

Here ρ̄ is the average density of the universe, δ(x) = ρ(x)/ρ̄−1
is the matter overdensity field, and δh(x) is the overdensity field
of dark matter halos (groups) with mass Mh " Mth, whose
average linear bias parameter is given by bh. Thus, at the location
of each group we can derive φ and Tij using the distribution of
groups with Mh " Mth (see Wang et al. 2012). Briefly, we first
transform the redshift and sky coordinates for each group into a
Cartesian coordinate system using

X = R(z) cos δ cos α

Y = R(z) cos δ sin α (3)
Z = R(z) sin δ,

where α and δ refer to the right ascension and declination,
respectively, and R(z) is the comoving distance out to redshift z.
Next, the halo overdensity field, δh, is computed on a rectangular
(X, Y,Z) grid. This field is then corrected for redshift space
distortions using the method of Wang et al. (2009a), which is
based on linear theory. Subsequently, fast Fourier transform is
used to obtain the potential field, φ, by solving the Poisson
equation (2), after which derivative operators are applied (in
Fourier space) to derive the tidal tensor.

This tidal tensor is subsequently diagonalized to obtain the
eigenvalues λ1 " λ2 " λ3 of the tidal tensor at the position of
the group, which, in analogy with Zel’dovich theory (Zeldovich
1970), can be used to classify the group’s environment in one
of four classes:

1. cluster: a point where all three eigenvalues are positive;
2. filament: a point where Tij has one negative and two

positive eigenvalues;
3. sheet: a point where Tij has two negative and one positive

eigenvalues; and
4. void: a point where all three eigenvalues are negative

Figure 1. Galaxy distributions and environmental classifications in a slice of
thickness 10 h−1 Mpc from SDSS DR7. The galaxy groups in four different
environments are classified by different colors: clusters (red), filaments (orange),
sheets (green), voids (blue). The cyan arrow indicates the direction of the
filament at the center of each group. Black dots are groups with z > 0.12
and therefore fall outside our survey volume, i.e., that have a filling factor F =
0 (see text), and are therefore not included in the analysis.
(A color version of this figure is available in the online journal.)

(see Hahn et al. 2007a, 2007b). Of the 277,139 galaxy groups
with Mh " Mth = 1012 h−1 M⊙ in our survey volume, 41,908
groups (15.1%) are located in a cluster environment, 173,820
groups (62.7%) are located in a filament, 57,169 groups
(20.6%) are located in a sheet, and 4242 group (1.5%) are
located in a void. Figure 1 shows the distribution of galaxy
groups from the SDSS DR7 in a 200 h−1 Mpc × 200 h−1 Mpc
slice of thickness 10 h−1 Mpc, in which groups in different
environment classes are indicated with different colors (see also
Wang et al. 2012).

2.3. Alignment Angles

The main goal of this study is to characterize to what extent
the orientation of galaxies is aligned with the structure of its
surrounding cosmic web (i.e., the orientation of filaments and
sheets). To that extent we consider two alignment angles: for
galaxies whose group is located in a filament environment,
we compute the angle θGF, defined as the angle between the
orientation of the galaxy, θG, and the direction of the filament,
θF. For galaxies whose group is located in a sheet environment,
we instead compute the angle θGS, defined as the angle between
θG and the normal direction of the sheet θS.

The orientation angle θG of the major axis of a galaxy,
projected on the sky, is specified by the 25 mag arsec−1

isophote in the r band. The orientation angle of a filament,
θF, at the location x of a filament group is computed as
follows. First, we identify the three-dimensional direction ∆x
of the filament with the eigenvector corresponding to the single
negative eigenvalue of the tidal tensor at x. Next, we compute
the projected direction of the filament on the sky using

θF = arctan
[

∆α cos δx

∆δ

]
, (4)

3

• number of +- eigenvalue determine: voids, sheet, filament, nodes
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I. Halo-LSS alignment from simulation
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Figure 8. Unit eigenvectors indicating the direction of the filaments are

shown in black for filament haloes in a slice of 8 h−1 Mpc in the 180 h−1 Mpc

box at z = 0. The grey symbols indicate halo positions regardless of their en-

vironment. The directional information of these vectors is used to determine

the alignment of halo spins with the LSS.

dynamical properties of the surrounding environment. Filaments

and sheets have a preferred direction given by the eigenvector cor-

responding the single positive or negative eigenvalue. The eigen-

vectors indicating the direction of the filament as determined from

the tidal tensor are shown in Fig. 8. Given these unit eigenvectors

v̂, we compute the alignment angle cos θ = Ĵ · v̂. Fig. 9 shows the

median alignment as a function of mass at redshifts z = 0, 0.49 and

1.05. At all redshifts, there is a strong tendency for sheet haloes to

have a spin vector preferentially parallel to the sheet, i.e. orthogonal

to the normal vector. At redshifts up to 0.49, where the error bars

of our measurements allow us to investigate trends with halo mass,

this alignment increases with increasing mass. For filament haloes,

there is a clear trend with halo mass: (i) haloes with masses smaller

than about 0.1M∗ have spins more likely aligned with the filament

in which they reside; (ii) haloes in the range M ≈ 0.1M∗ to 1M∗

appear to be randomly aligned with respect to the LSS and (iii) for

M ! M∗, the trend appears to reverse, and more massive haloes have

Figure 9. Median alignment angles between the halo angular momentum

vectors and the eigenvectors pointing in the direction of filaments and normal

to the sheets, respectively. Different redshifts are indicated with the three

colours. Error bars indicate the error in the median. The dotted line indicates

the expectation value for a random signal.

Figure 10. Median alignment angles between the halo major axis vectors

and the eigenvectors pointing in the direction of filaments and normal to the

sheets, respectively. Different redshifts are indicated with the three colours.

Error bars indicate the error in the median. The dotted line indicates the

expectation value for a random signal. Data are shown for the ratio of the

smoothing scale Ms/M∗ fixed.

a weak tendency to spin orthogonally to the direction of the filament

at lower redshifts.1

To further explore possible connections between the alignment

of the LSS and the intrinsic alignment of haloes in the different

environments, we search for a correlation signal between the LSS

and the axis vectors of the moment of inertia ellipsoid of the haloes.

In particular, we use the major axis vector l1 to define the alignment

angle cos θ = l̂1 · v̂, where v is again the eigenvector normal to a

sheet or parallel to a filament. The resulting median correlation is

shown in Fig. 10. We find no alignment for halo masses M < 0.1M∗;

however, in both the filaments and the sheets, the halo major axis

appears to be strongly aligned with the LSS for masses above about

a tenth of M∗. The strength of the alignment grows with increasing

mass. This is possibly to be expected, especially for the most massive

haloes, since their shape might influence the potential from which

the eigenvectors are derived. Adopting a fixed smoothing scale Ms

results merely in a shift of the relations shown in Fig. 10.

Results similar to ours concerning the alignments of shapes and

spins with the LSS, and the transition of alignment orientation at

M∗ in the filaments, are reported by Aragón-Calvo et al. (2007)

for z = 0 haloes using a definition of environment that is based on

density rather than, as in our case, on the gravitational potential,

as well as for haloes in the vicinity of clusters by Basilakos et al.

(2006) using the moment of inertia ellipsoid of superclusters and

by Ragone-Figueroa & Plionis (2007) defining environment by the

distance to the nearest cluster. It is clear from our present analysis

that such alignments are in place at redshifts of order one, and are

maintained virtually unchanged over the last eight or more billion

years of evolution of structure in the universe.

1 The tendency for haloes above M∗ to spin orthogonal to the host filament,

shown in Fig. 9 for the Ms/M∗ = const. smoothing case, is enhanced when the

Ms = const. smoothing is adopted. The smoothing scale not only determines

the environmental split of the halo population, but also affects the scale on

which the eigenvectors of the tidal field are computed. When the smoothing

is performed with Ms/M∗ = const., the filament direction is obtained on

increasingly smaller comoving scales at higher redshifts. This partially erases

the stronger correlation that is observed for the most massive haloes when

the smoothing is kept at constant comoving scale for all redshifts.
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Figure 8. Unit eigenvectors indicating the direction of the filaments are

shown in black for filament haloes in a slice of 8 h−1 Mpc in the 180 h−1 Mpc

box at z = 0. The grey symbols indicate halo positions regardless of their en-

vironment. The directional information of these vectors is used to determine

the alignment of halo spins with the LSS.

dynamical properties of the surrounding environment. Filaments

and sheets have a preferred direction given by the eigenvector cor-

responding the single positive or negative eigenvalue. The eigen-

vectors indicating the direction of the filament as determined from

the tidal tensor are shown in Fig. 8. Given these unit eigenvectors

v̂, we compute the alignment angle cos θ = Ĵ · v̂. Fig. 9 shows the

median alignment as a function of mass at redshifts z = 0, 0.49 and

1.05. At all redshifts, there is a strong tendency for sheet haloes to

have a spin vector preferentially parallel to the sheet, i.e. orthogonal

to the normal vector. At redshifts up to 0.49, where the error bars

of our measurements allow us to investigate trends with halo mass,

this alignment increases with increasing mass. For filament haloes,

there is a clear trend with halo mass: (i) haloes with masses smaller

than about 0.1M∗ have spins more likely aligned with the filament

in which they reside; (ii) haloes in the range M ≈ 0.1M∗ to 1M∗

appear to be randomly aligned with respect to the LSS and (iii) for

M ! M∗, the trend appears to reverse, and more massive haloes have

Figure 9. Median alignment angles between the halo angular momentum

vectors and the eigenvectors pointing in the direction of filaments and normal

to the sheets, respectively. Different redshifts are indicated with the three

colours. Error bars indicate the error in the median. The dotted line indicates

the expectation value for a random signal.

Figure 10. Median alignment angles between the halo major axis vectors

and the eigenvectors pointing in the direction of filaments and normal to the

sheets, respectively. Different redshifts are indicated with the three colours.

Error bars indicate the error in the median. The dotted line indicates the

expectation value for a random signal. Data are shown for the ratio of the

smoothing scale Ms/M∗ fixed.

a weak tendency to spin orthogonally to the direction of the filament

at lower redshifts.1

To further explore possible connections between the alignment

of the LSS and the intrinsic alignment of haloes in the different

environments, we search for a correlation signal between the LSS

and the axis vectors of the moment of inertia ellipsoid of the haloes.

In particular, we use the major axis vector l1 to define the alignment

angle cos θ = l̂1 · v̂, where v is again the eigenvector normal to a

sheet or parallel to a filament. The resulting median correlation is

shown in Fig. 10. We find no alignment for halo masses M < 0.1M∗;

however, in both the filaments and the sheets, the halo major axis

appears to be strongly aligned with the LSS for masses above about

a tenth of M∗. The strength of the alignment grows with increasing

mass. This is possibly to be expected, especially for the most massive

haloes, since their shape might influence the potential from which

the eigenvectors are derived. Adopting a fixed smoothing scale Ms

results merely in a shift of the relations shown in Fig. 10.

Results similar to ours concerning the alignments of shapes and

spins with the LSS, and the transition of alignment orientation at

M∗ in the filaments, are reported by Aragón-Calvo et al. (2007)

for z = 0 haloes using a definition of environment that is based on

density rather than, as in our case, on the gravitational potential,

as well as for haloes in the vicinity of clusters by Basilakos et al.

(2006) using the moment of inertia ellipsoid of superclusters and

by Ragone-Figueroa & Plionis (2007) defining environment by the

distance to the nearest cluster. It is clear from our present analysis

that such alignments are in place at redshifts of order one, and are

maintained virtually unchanged over the last eight or more billion

years of evolution of structure in the universe.

1 The tendency for haloes above M∗ to spin orthogonal to the host filament,

shown in Fig. 9 for the Ms/M∗ = const. smoothing case, is enhanced when the

Ms = const. smoothing is adopted. The smoothing scale not only determines

the environmental split of the halo population, but also affects the scale on

which the eigenvectors of the tidal field are computed. When the smoothing

is performed with Ms/M∗ = const., the filament direction is obtained on

increasingly smaller comoving scales at higher redshifts. This partially erases

the stronger correlation that is observed for the most massive haloes when

the smoothing is kept at constant comoving scale for all redshifts.
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Hahn+ 2007,Codis+12
These correlation are widely confirmed by many others  
using simulations (Aragon-Calvo+08, Codis+12, Libeskind+14，
Kang & Wang 15 …..)

M_flip~1012Msun*(1+z)-2.5
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II. Galaxy-LSS alignment from observation
The Astrophysical Journal, 779:160 (10pp), 2013 December 20 Zhang et al.

Figure 2. Normalized probability distribution of the angle θGF between the
projected orientation of the major axis of SDSS galaxies and that of the filament
in which its group resides. The horizontal dotted line corresponds to an isotropic
distribution of alignment angles, while the error bars indicate the scatter obtained
from 100 realizations in which the orientations of the galaxies have been
randomized. The average value of θGF and its error (obtained from the 100
random realizations) are indicated.

Figure 3. Same as Figure 2, but for the alignment angle θHF between the
projected orientation of a dark matter halo and that of the filament in which it
resides. These results have been obtained using the numerical N-body simulation
described in Section 2.4.

axis of dark matter halos preferentially aligns parallel to the
filament in which it resides. The average alignment angle of
⟨θHF⟩ = 43.◦30 ± 0.◦12 is smaller than for the SDSS galaxies.
In addition, from N-body simulation we select a sample of dark
matter halos, with mass distribution equivalent to the host halos
of central galaxies in the SDSS galaxy catalog. We find that the
alignment signals for the dark matter halos are stronger than
those of central galaxies in the SDSS galaxy catalog, and the
average alignment angle is ⟨θHF⟩ = 42.◦19±0.◦38. This suggests
a net misalignment between the major axes of galaxies and their
dark matter halos, in excellent agreement with a number of
previous alignment studies (e.g., Kang et al. 2007; Wang et al.
2008; Okumura et al. 2009; Agustsson & Brainerd 2010; Li
et al. 2013).

Figure 4. Same as Figure 2, but for different sub-samples (“red” and “blue“) of
central and satellite galaxies, as indicated.
(A color version of this figure is available in the online journal.)

3.1.1. Dependence on Galaxy Properties

The large number (212,046) of filament galaxies in our
sample allows us to study how the galaxy–filament alignment
signal depends on various galaxy properties. We start by using
the galaxy group catalog to split the galaxy population into
centrals (defined as the brightest group members) and satellites
(those group members that are not centrals). These are further
subdivided into “red” and “blue” according to their 0.1(g − r)
colors: galaxies with 0.1(g − r) ! 0.83 are called “red,” while
those with 0.1(g − r) < 0.83 are called “blue.” The value 0.83
roughly corresponds to the bimodal scale in the color–magnitude
relation (Weinmann et al. 2006).

Figure 4 shows the galaxy shape–filament alignment signals
for the resulting four sub-samples. Central galaxies reveal
a remarkably strong color dependence. While red centrals
show strong alignment along their filaments, with ⟨θGF⟩ =
43.◦26 ± 0.◦11, virtually identical to that of the dark matter halos
(see Figure 3), blue filament centrals are only marginally
aligned, with an average misalignment angle that is consistent
with no alignment at the 2.3σ level. Satellite galaxies, overall,
are less strongly aligned with the filaments in which their host
groups reside than centrals. In particular, the orientations of
blue satellites are consistent at the 1.2σ level with having a
random (projected) orientation with respect to their filament.
In the case of red satellites, however, the alignment signal is
⟨θGF⟩ = 44.◦14 ± 0.◦19, which is significant at the 4.5σ level.

A quantitatively similar dependence on galaxy color has been
found for the alignment between the orientation of central
galaxies and the angular distribution of their satellites (Yang
et al. 2006; Azzaro et al. 2007; Wang et al. 2008; Agustsson
& Brainerd 2010) and suggests that red centrals are more
accurately aligned with their host halo than blue centrals. We
caution, though, that, as demonstrated by Kang et al. (2007),
the interloper fraction (in the group catalog) is larger among
blue centrals than among red centrals, which may cause a
stronger dilution of the alignment signal for the blue centrals
(since satellite galaxies show a weaker alignment signal). We
will return to the interpretation of these findings in Section 4.
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Figure 2. The orientation probability distribution between the
spin axes of spiral galaxies and the filament/sheet orientation vec-
tors. The panels and lines are the same as in Fig. 1.

ies are fed with mergers that occur along the filament
within which they are embedded. A similar mechanism
has been proposed for the formation of high-mass DM
halos (Codis et al. 2012).

4.2. Spiral galaxies

Figure 2 shows the correlation for spiral galaxies. The
lines and designations are the same as in Fig. 1. Figure 2
shows that the spin axes of spiral galaxies tend to align
with filaments (upper panel), which is consistent with
previous results (Tempel et al. 2013a). The middle panel

of Fig. 2, indicates that the spin axes of spirals are pref-
erentially perpendicular to the e2-vector. The amount of
correlation is statistically the same as for the e3-vector.
The lower panel of Fig. 2 shows that there is no statisti-
cally significant correlation between the e1-vector (sheet
normal) and the spin axes of spiral galaxies. This implies
that the formation of spiral galaxies is driven by the plane
of the sheet along which most of the matter/gas falls in
to the filaments.
Figure 3 shows the correlation between the spin of spi-

ral galaxies and e2, e3 as a function of distance to the fila-
ment axis. Correlations are considerably stronger (based
on KS-test probabilities) for galaxies that are slightly fur-
ther away (in the range 0.2–0.5h�1Mpc) than those that
are closer (0–0.2h�1Mpc) to the filament axis, which are
consistent with random. This implies that the correla-
tions seen above are actually driven by those galaxies
slightly further way from the main filament axis. This is
consistent with the idea that the origin of the alignment
of angular momentum is related to the regions outside

Figure 3. The orientation probability distribution between the
spin axes of spiral galaxies and the filament/sheet axes. Left (right)
column shows the alignment signal for galaxies that are close to
(slightly away from) the filament axis. Upper/lower panels show
the correlation for e3-/e2-vector.

filaments, namely sheets, where most of the gas is falling
in from. Along filament axes more chaotic motions dom-
inate. Codis et al. (2012) also shows that the correlation
between the rotation axes of DM halos and filaments is
stronger in outer parts of filaments, supporting our find-
ings.

5. DISCUSSION AND CONCLUSIONS

We have examined the alignment of spiral/elliptical
galaxies with respect to the large-scale cosmic filamen-
tary network. The correlation signal is calculated only
for bright galaxies that are located in filaments, where
we also estimate the sheet orientation. The alignment
between galaxy spins and the axis of filaments/sheets is
characterized by the shape of the probability distribution
of cos ✓, where ✓ is the angle between the two vectors.
A significant correlation between the short axes of el-

liptical galaxies and filament axes is found (the KS-test
p-value is 7.7 · 10�9); these galaxies tend to be spin-
ning perpendicular to the filament axis. For bright spiral
galaxies on the other hand the opposite is found: they
tend to be aligned with the host filament axis. Both these
results confirm earlier findings which employed di↵erent
filament finding algorithms (Tempel et al. 2013a).
In this study, no alignment between the spin axes of

spiral galaxies in filaments and the e1-vector (sheet nor-
mal) is found.
A basic interpretation of filament formation suggests

that as a matter flows towards filaments, it wraps its up,
thus aligning the filament axis with its angular momen-
tum (as well as the vorticity of the filamentary matter,
see Libeskind et al. 2013b). Spiral galaxies which con-
dense out of filaments should thus preserve the perpen-
dicular alignment between their spin and the direction of
matter infall. If gas infall from sheets to filaments is lam-
inar, it gives the parallel alignment between the spin axes
of spiral galaxies and orientation of filaments. Assuming

Spin alignment in filaments and sheets 3

The quantity cos ✓ is obtained as a scalar product be-
tween the two unit vectors: cos ✓ = 1 implies that the
galaxy spin is parallel to ei, while cos ✓ = 0 indicates it
is perpendicular.
The probability distribution function should be com-

pared with the null-hypothesis of random mutual orien-
tation of galaxies and vectors. Due to selection e↵ects,
this is not simply a uniform distribution; neither the in-
clination angles of galaxies nor the distribution of fila-
ment axes (with respect to the line-of-sight) have ran-
dom orientations (see Tempel et al. 2013a). A Monte-
Carlo approximation is used to estimate the distribution
of | cos(✓)| for the case where there are no intrinsic corre-
lations, and to find the confidence intervals for this esti-
mate. This approach takes simultaneously into account
the biases in filament detection (redshift-space distor-
tions) and estimation of galaxy spins.
In order to do so, 10000 randomized samples are gen-

erated in which the orientations (inclination and position
angles) of galaxies are kept fixed, but galaxy locations are
randomly changed between filament points. This gives
the true random orientation angle between the galaxy
spin and filament axis. In principle, the randomized dis-
tribution depends how the filament points are chosen:
based on filament axes, location of galaxies etc. How-
ever, for the current dataset it turns out to be insensi-
tive to that. Using randomized samples the median of
the null-hypothesis of a random alignment is calculated
together with its 95% confidence limits.
The galaxy spin vector is not uniquely defined since we

do not know which side of the galaxy is closer to us. In
order to handle this both spin vectors of a given galaxy
are used. Varela et al. (2012) also tested this approach
with several Monte-Carlo simulations and showed that
the procedure recovers correctly the probability distri-
bution function.

4. RESULTS

4.1. Elliptical galaxies

Figure 1 shows the probability distribution P (| cos ✓|)
for the angle ✓ between the short axes of elliptical galax-
ies and the orientation vectors of filaments/sheets. The
probability distribution is calculated for three principal
vectors: e3, the filament axis; e1 the normal to the sheet
where the filament is located and e2 – a vector perpen-
dicular to these two. In each panel of Fig. 1 we also
show the average hcos(✓)i, the average deviation from
uniform distribution h�i (assuming a Gaussian distribu-
tion where 95% confidence limit corresponds to ±2�) and
the Kolmogorov-Smirnov (KS) test probability pKS that
the sample is drawn from a randomized distribution.
The alignment between filament axes and the short

axes of elliptical galaxies is preferentially perpendicular
as found previously (Tempel et al. 2013a). Note however,
that the filament finding algorithm is di↵erent – Tempel
et al. (2013a) used a locally defined morphological fil-
tering, while here the object point process and global
optimization is used. This shows that the result we ob-
tained are rather robust and it does not depend on the
filament finding algorithm (for fixed filament scale).
Moreover, estimating the short axes of elliptical galax-

ies is tricky since early type galaxies are triaxial ellipsoids
seen in projection. Due to the degeneracy between the
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Figure 1. The orientation probability distribution between the
short axes of elliptical galaxies and the filament/sheet axes. Up-

per panel shows the distribution for vectors parallel to filaments;
middle panel shows the distribution for vectors perpendicular to fil-
ament but parallel to the sheet; lower panel shows the distribution
for vectors perpendicular to the sheet where filament is located.
The black line and the grey filled region show the null-hypothesis
together with its 95% confidence limit. The solid red line shows
the measured alignment signal.

intrinsic oblateness of the galaxy and the inclination an-
gle, it is nearly impossible to properly estimate a spin
axis. The visible short axis of elliptical galaxies however,
is easily observed, while the inclination angle is largely
undefined. Tempel et al. (2013a) showed that the corre-
lation signal arises mostly from position angle of galaxies
and not from inclination angle. This implies that the true
alignment signal is even stronger than what we are able
to measure.
The middle and lower panel in Fig. 1 show the align-

ment signal between the short axes of elliptical galaxies
and the e2- and e1-vector, respectively. The correlation
is practically the same for these two vectors. It shows
that the short axes of elliptical galaxies are preferentially
perpendicular to filaments and the sheet orientation is
not important.
Assuming that the short axis of an elliptical galaxy is

aligned with both its spin axis and the spin of the par-
ent DM halo (however, there might be o↵set up to 30�,
see e.g. Hahn et al. 2010), our findings allow us to com-
ment on the formation mechanism of elliptical galaxies.
It is known that elliptical galaxies formed predominantly
through major mergers (e.g. Sales et al. 2012; Wilman
et al. 2013). In mergers, the rotation axis of the resulting
galaxy tends to be perpendicular to the merger direction.
Our results are consistent with a picture wherein galax-

Spin - Filament
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Observations agree well with Theory ! 
Signal is weaker (galaxy-halo misalignment)



A common scenario for mass flow in cosmic web

Codis+12, Cautun+14 

•mass flow from Voids —> Wall —
>Filament —>Nodes 

•environment of halo changes as 
Wall—>Filament-Nodes 

•the velocity field around cosmic 
web determines the spin-LSS 
correlation!

original idea from Bond+96, 
van de Weygaert 96



•in Wall, spin is parallel to wall. 
•In Filament, spin is perpendicular to filament

This scenario is basically right 
but details to be declared 

From this cosmic mass flow, we expect

But, simulations have found

In Filament, there is still a mass dependence (spin flip)

Any dependence on halo migrating time ?
(from wall to filament) 

can we see the spin flip during the history of 
a massive halo?



1) accretion along Halo 
major axis (λ1):

2) accretion along e3 of LSS 
(λ3): The least compressed 
direction

N-body simulation 
• WMAP7 cosmology, LCDM 
• box: 200Mpc/h, 1024^3 particles 
• Full merger trees are constructed for every 

halo from z=10 to z=0

Increasing tim
e 

tracing the evolution of halo mass accretion and spin



subhalos accretion along halo major axis and e3 of LSS 
dependence on host halo mass (selected at z=0)

– 13 –

Fig. 2.— The alignment of subhaloes with the halo major axis and e3 of LSS at their time of

infall (see text for detail). Different panels are for the final host halo at z = 0 with different mass.

The alignment with halo shape (black solid lines) is universal and increases with halo mass. The

alignment with e3 (red dashed lines) is stronger in massive haloes, but it is reversed for low-mass

haloes where it is perpendicular to e3.

black: along halo major axis 
red: along e3 of LSS

Kang & Wang, 2015 ApJ

– 15 –

Fig. 4.— The cumulative fraction of accreted mass in subhaloes with given alignment angle. Left

panel is for alignment with e3, and right for alignment with halo major axis. Higher fraction of

mass is accreted along e3 in massive haloes, and it becomes almost isotropic in low-mass haloes.

Fig. 5.— The alignment of subhaloes with host halo major axis (left panel) and the e3 direction of

LSS. Different from previous figures, here no constraints are posed on the final host halo mass, and

the accretion angles are binned depending on the accretion events with different host halo mass

and redshift. Seen is that accretion is always along the halo major axis (left panel). The alignment

with e3 is not universal and it is perpendicular to e3 for low-mass haloes, and the flip mass is lower

at high redshift (right panel).

we find: 
Accretion along halo major axis: universal 
Accretion along e3 of LSS: not universal  
!
!
Libeskind+14, Universal along e3 of LSS 
(their mass bin is too wide)

halo mass dependence



The evolution of spin-LSS  and mass accretion 

– 2 –

Fig. 3.— Right: the average cosine of angle ✓3 between halo spin and e3 direction as a function of

halo mass and redshift. Left: same as the right panel, but halo mass is normalized by M?.

Fig. 4.— The evolution of average cos✓3, ✓3 is the angle between halo spin and the e3 direction.

The value 0.5 represents the random distribution of spin to e3. Mass increase from M1 to M5,
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M� for M4, M5 represents halo mass > 10

13
M�. Smooth length is 2Mpc at z = 0 and it

evolves by redshift: 2Mpc/(1+z).

– 3 –

Fig. 5.— The fraction f as a function of redshift. f is the fraction of mean mass of subhaloes be

accreted along the filament over mean mass of subhaloes be accreted perpendicular to filament.

f = 1 means host haloes accrete subhaloes randomly. f > 1 represents host haloes accrete subhaloes

along the filament direction. Same as Fig. 4, from M1 to M5 represents di↵erents halo mass bin.

In the lower right panel we find that low-mass haloes accrete subhaloes perpendicular to filament

all the time, but for massive haloes, they eat subhaloes perpendicular to filament at high redshift,

then at low redshifit, subhaloes be accreted to these massive haloes along filament. This result

agrees with our last work and this may explain the spin flips during time in Fig. 4.

spin-e3 correlation mass accretion-e3 correlation

There are evolution effects, at earlier times 
•mass accretion is perpendicular to Filament 
•Spin is parallel to Filament

Wang & Kang, 2016 in prep

black line: low-mass halo, red lines: massive halo



An useful parameter for anisotropic collapse

The velocity shear tensor 2493

The distribution of eigenvalues for those regions of space that
contain haloes (black, blue and red curves in Fig. 2) shows a number
of interesting attributes as well. Despite all being drawn from the
same parent distribution (green curves), they are qualitatively very
different. First, we note that none of the eigenvalue distributions
(when binned by mass) resemble the parent distribution in terms of
width or median. The low-mass bin (black curve) peaks at a similar
value to the parent distribution, probably owing to the fact that this
mass bin spans the largest fraction of grid cells. Yet, the peak of each
distribution is clearly mass dependent. The more massive the set of
haloes being examined, the greater the median of the distribution.
Intuitively, this is because the most massive haloes reside in regions
of strong gravitational collapse that is, regions with larger values
of λ.

3.1 The fractional anisotropy: the distribution of shear
sphericity

The semi-infinite range of eigenvalues (described above) makes it
difficult to characterize the uniformity of the collapse or expansion
in the way that, for example, the inertia tensor may be characterized
by its triaxiality. In their seminal work on Gaussian random fields,
Bardeen et al. (1986) defined the ‘eccentricity’ e of a density field
(not a shear) as

e = λ1 − λ3

2|δ|
, (5)

where in the linear regime the dimensionless overdensity is defined
as the trace of the shear, i.e. equation (3). This measure of eccen-
tricity has been used by a number of authors (e.g. Lee & Lee 2008)
when examining velocity shears. That said, the original Bardeen
et al. definition was invoked in a system with three positive eigen-
values (such as the inertia tensor) and not in the situation where the
eigenvalues are bound by (− ∞, ∞) as in the shear tensor.

The usage of the Bardeen et al. eccentricity is therefore highly
problematic in our situation. In cases where λ1 ∼ −λ3, small values
of λ2 can cause the denominator of equation (5) to tend to 0 making
e highly unstable. Also, the fact that e is semi-infinite makes it more
difficult to compare vastly different eccentricities.

In order to overcome these difficulties, the amount of anisotropy
in the shear tensor can be characterized using the fractional
anisotropy, FA,

FA = 1√
3

√
(λ1 − λ3)2 + (λ2 − λ3)2 + (λ1 − λ2)2

λ2
1 + λ2

2 + λ2
3

, (6)

which measures the fraction of the magnitude of the shear that
is due to the anisotropy of the eigenvalues (Basser 1995).2 Note
that 1/

√
3 is introduced to normalize the fraction to unity. This

definition is employed to characterize the uniformity of the collapse
or expansion.

The FA measures the kinematical ‘morphology’ of the velocity
shear. It is superior to the eccentricity since it is forced to be between
zero and unity. FA = 0 implies isotropic expansion or collapse
in all three directions. In filaments and sheet volumes, FA = 1

2 The concept of the Fractional Anisotropy was developed in the field of Nu-
clear Magnetic Resonance by Basser (1995) as a tool in brain imaging. The
diffusivity of water molecules through cerebral tissue, one of the quantities
measured by an NMR scan, constitutes an identical process to the velocity
shear. Thus both the cosmic velocity shear tensor and the diffusion tensor in
brain scans can be quantified by the Fractional Anisotropy.

Figure 3. The fractional anisotropy FA is a measure of shear anisotropy.
Since each halo can be assigned a web type based on the local velocity shear
calculated at its location, we divide our halo sample into four web classes,
plotting the probability density distribution of FA for haloes resident in knots
(black), filaments (green), sheets (blue) and voids (red). Each distribution
is normalized by the number of objects in it. FA = 0 indicates uniform
expansion or collapse. Since the peaks and widths of these distributions
depend on web type, we infer that each web type behaves differently: knot
collapse is not simply void expansion played in reverse.

indicates that collapse along ê1 is of roughly the same strength as
expansion along ê3, while in knots and voids, FA = 1 indicates large
anisotropies in the expansion or contraction.

In Fig. 3 we show the distribution of the local velocity shear
FA. Since each web type represents a different number of positive
eigenvalues, we plot them separately. A number of important points
can be gleaned from this figure.

(i) The collapse in knot environments is relatively isotropic; that
is, the value of FA measured in knots tends to be low. The strength of
the velocity shear in knot environments thus displays a remarkable
regularity.

(ii) The distribution of FA in filaments and sheets is wide – the
shear that defines these web types takes on a myriad of kinematical
morphologies. Whereas filaments peak at lower values of FA, sheets
peak at higher values.

(iii) Void regions have high values of FA indicating highly
anisotropic expansion.

We thus conclude from Fig. 3 that the cosmic web reflects a re-
markable variety of shear anisotropies. Voids, for example, are often
not kinematically isotropic objects. Knots display significantly more
uniformity than voids, and also span a wide range of sphericities.
Filaments and sheets, on the other hand, while displaying some sim-
ilarities are still coloured by a variety of corpulence: some filaments
are fat, some are thin, some sheets are thick, some are narrow.

The FA is shown graphically in Fig. 4. Since voids dominate the
volume, the figure emphasizes the rich diversity in the kinematic
‘morphology’ of voids. Although it appears that much of the void
volume is represented by regions of high FA (white areas in Fig. 4),
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Large FA: highly anisotropy 
Lower FA: collapse happen 
on all directionsƛ ~ eig of (∂i∂j ɸ)
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Fig. 6.— Right: the cos✓3 as a function of FA for all haloes, here smooth length is 4,8,16 times of

Rvir in each mass bin. Left: the FA as a function of halo mass; filament and cluster environment;

redshift with smooth length 4Rvir.

Fig. 7.— Same as Fig. 6, but show two di↵erent mass haloes to see the mass dependence.
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Fig. 6.— Right: the cos✓3 as a function of FA for all haloes, here smooth length is 4,8,16 times of
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redshift with smooth length 4Rvir.

Fig. 7.— Same as Fig. 6, but show two di↵erent mass haloes to see the mass dependence.

Wang & Kang, 2016 in prep Nodes: spin is normal to e3 
Filament: mass dependence



Dependence on time of formation and entering in Filament
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Fig. 8.— Left: the formation time of halo as a function of halo mass. low-mass halo form earlier

than high-mass halo. Right: spin-lss correlation as a function of halo formation time.

Fig. 9.— The redshift Zenterfilament as a function of halo mass, which Zenterfilament is the redshift

of halo environment change from sheet to filament and halo mass is the mass at z = 0.
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of halo environment change from sheet to filament and halo mass is the mass at z = 0.

Spin-LSS: dependence on Z_formation and Z_filament 
•Later formed halo is more perpendicular to filament 
•Massive haloes: entering filament first, and then formed later 
(spin is build by mass accretion along filament) 

•Low-mass halo: forms early, but entering filament later (spin is 
build when they were in wall)

Wang & Kang, 2016 in prep



• satellite-central alignment can be 
ascribed to primordial anisotropy at 
accretion or the triaxial nature of DM 
halo 

• central galaxy is better aligned with 
inner halo shape, and alignment 
increases with halo mass 
!

• subhalo accretion along halo major 
axis is universal, being strong in 
massive haloes

• Halo spin-LSS is not universal 
(subhalo accretion along LSS is 
not universal)                                                       

!
•  Low-mass halo forms early, but 

enter filament later (spin is formed 
in wall, so parallel to filament) 

!
• High-mass halo enter filament 

early, but form later (spin is formed 
in filament by mass accretion 
along it)

Summary 

•Galaxies are distributed anisotropically on different scales

On small scales On large scales

Thank you !


