Galaxy alignment and the physical origin

Kang Xi (PMO, China)

In collaboration with
Wang Peng (PhD Student),
Lin Weipeng, Yang Xiaohu, Dong X, Wang Y (SHAO)

How to describe galaxy distribution in space?

in 1980,great wall

- Correlation function: 2-points, 3-points etc (1980, Peebles)
- 2PCF describes how galaxies are biased with dark matter distribution
-2PCF etc can well constrain the cosmological parameters

Two-point correlation

2PCF widely used for 2dFGRS/SDSS

Galaxy alignment is seen on different scales

Galaxy alignment

- satellite-satellite
- satellite-central
- central-central
- central-LSS

Several types of galaxy alignment

In addition to galaxy clustering, Why do we care galaxy alignment?

On small scale (one-halo term)

- Infer dark matter halo shape from galaxy alignment -alignment to infer galaxy formation?
- primordial anisotropic accretion or evolution (Nature vs Nurture?)

On large scales (two-halo term)

- Interaction of halo shape to cosmic tidal field
- intrinsic alignment of galaxies (crucial to weak lensing)
-formation of cosmic web?
-dependence on DM/DE properties?

1,satellite-satellite: The great circle (co-rotated plane)

Satellite galaxy in the Milky Way

-2005:Milky Way satellites are in a thin disc
-2007:The same is true in M31, but weaker
-2013: Satellites in the disc are corotated!

MW and M31 are special? need large galaxy sample

3, Central-Central alignment

Galaxy(Halo) intrinsic alignment is crucial for Weak Lensing cosmology

2,satellite-central alignment

Brainerd 05, Yang+06

From 2dFGRS and SDSS

- satellite galaxies are aligned with the major axis of central galaxy
- stronger alignment for red centrals
- strong alignment for red satellites

Modeling the satellite-central alignment

Halo is triaxial

Kang et al. 07 using SAM

results

- if central galaxy follow major axis of DM halo (inside virial radius): signal too strong
- need some mis-alignment (inner DM halo, or spin) signal is OK, but no color dependence

N-body study is limited as its difficult to properly determine the shape of central galaxy

Modeling the satellite-central alignment

Using hydro-dynamical simulation: star formation, SN feedback (no AGN feedback)

alignment: dependence on color
alignment with radius

Dong X, Kang X et al. 2014

Result

*There is mis-alignment between shape of central galaxy and DM halo *Their misalignment is a function of halo mass (color dependence of central) \star misalignment is a function of radial distance (red satellites in inner halo,blues at outer region)

4: Alignment with LSS:

I. define the LSS environment

Following Zeldovich, Hahn+2007. define the LSS environment:

- smooth the density field
- compute the potential
- compute eigenvector of tidal field

$$
T_{i j}(\boldsymbol{x})=\frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}}
$$

Zel'dovich approximation for formation of cosmic web

$$
\begin{gathered}
\mathbf{x}(t)=\mathbf{q}+D(t) \nabla \psi(\mathbf{q}): \\
\rho(\mathbf{x})=\frac{\bar{\rho}}{\left[1-D \lambda_{1}(\mathbf{q})\right]\left[1-D \lambda_{2}(\mathbf{q})\right]\left[1-D \lambda_{3}(\mathbf{q})\right]}
\end{gathered}
$$

$$
\lambda \sim \operatorname{eig} \text { of }\left(\partial_{i} \partial_{j} \phi\right)
$$

Sheet—>Filament—>Node

Hahn, Porciani, Carollo, Dekel (2007a), MNRAS 375, 489

- number of +- eigenvalue determine: voids, sheet, filament, nodes

I. Halo-LSS alignment from simulation

Halo major axis-LSS

Hahn+ 2007,Codis+12 M_flip~1012M Msun ${ }^{*}(1+z)^{-2.5}$
These correlation are widely confirmed by many others using simulations (Aragon-Calvo+08, Codis+12, Libeskind+14, Kang \& Wang 15)

Space configuration of Halo shape \& Spin

Why there is a mass dependence?

II. Galaxy-LSS alignment from observation

Galaxy Major axis-Filament

Spin - Filament

Tempel \& Libeskind 2014

Observations agree well with Theory!
Signal is weaker (galaxy-halo misalignment)

A common scenario for mass flow in cosmic web

- mass flow from Voids $->$ Wall >Filament —>Nodes
-environment of halo changes as Wall—>Filament-Nodes
- the velocity field around cosmic web determines the spin-LSS correlation!

Codis+12, Cautun+14 original idea from Bond+96, van de Weygaert 96

This scenario is basically right

 but details to be declaredFrom this cosmic mass flow, we expect

- in Wall, spin is parallel to wall.
- In Filament, spin is perpendicular to filament

But, simulations have found
In Filament, there is still a mass dependence (spin flip)

Any dependence on halo migrating time? (from wall to filament)
can we see the spin flip during the history of a massive halo?

tracing the evolution of halo mass accretion and spin

N -body simulation

- WMAP7 cosmology, LCDM
- box: 200Mpc/h, 1024^3 particles
- Full merger trees are constructed for every halo from $z=10$ to $z=0$

subhalos accretion along halo major axis and e3 of LSS dependence on host halo mass (selected at $z=0$)
black: along halo major axis red: along e3 of LSS
halo mass dependence

we find:
Accretion along halo major axis: universal Accretion along e3 of LSS: not universal

Kang \& Wang, 2015 ApJ

Libeskind+14, Universal along e3 of LSS (their mass bin is too wide)

The evolution of spin-LSS and mass accretion
spin-e3 correlation
mass accretion-e3 correlation black line: low-mass halo, red lines: massive halo

There are evolution effects, at earlier times - mass accretion is perpendicular to Filament - Spin is parallel to Filament

Wang \& Kang, 2016 in prep

An useful parameter for anisotropic collapse

FA $=\frac{1}{\sqrt{3}} \sqrt{\frac{\left(\lambda_{1}-\lambda_{3}\right)^{2}+\left(\lambda_{2}-\lambda_{3}\right)^{2}+\left(\lambda_{1}-\lambda_{2}\right)^{2}}{\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}}}$,
$\lambda \sim$ eig of $\left(\partial_{i} \partial_{j} \phi\right)$

Wang \& Kang, 2016 in prep

Large FA: highly anisotropy Lower FA: collapse happen on all directions

Nodes: spin is normal to e3
Filament: mass dependence

Dependence on time of formation and entering in Filament

Spin-LSS: dependence on Z_formation and Z_filament -Later formed halo is more perpendicular to filament - Massive haloes: entering filament first, and then formed later (spin is build by mass accretion along filament)
-Low-mass halo: forms early, but entering filament later (spin is build when they were in wall)

Wang \& Kang, 2016 in prep

Summary

- Galaxies are distributed anisotropically on different scales

On small scales

- satellite-central alignment can be ascribed to primordial anisotropy at accretion or the triaxial nature of DM halo
- central galaxy is better aligned with inner halo shape, and alignment increases with halo mass
- subhalo accretion along halo major axis is universal, being strong in massive haloes

On large scales

- Halo spin-LSS is not universal (subhalo accretion along LSS is not universal)
- Low-mass halo forms early, but enter filament later (spin is formed in wall, so parallel to filament)
- High-mass halo enter filament early, but form later (spin is formed in filament by mass accretion along it)

Thank you !

