Alignment of interacting haloes in the Horizon Run 4 simulation

L'Huillier, Park \& Kim MNRAS submitted

Benjamin L'HUILLIER (KIAS \rightarrow KASI)
with Changbom Park, Juhan Kim (KIAS)

XII ${ }^{\text {th }}$ Rencontres du Vietnam, ICSE, Quy Nhon

Model-independent measurement of H_{0}

L'Huillier \& Shafieloo, arXiv:1606.06832

- $H(z), d_{\mathrm{A}}(z)$ from BAO (BOSS, Cuesta et al 2016)
- $h(z)=1 / \mathcal{D}^{\prime}(z), \mathcal{D}(z):$
model-independently
reconstructed from supernovae (JLA, Betoule et al 2014)

Outline

(1) Motivations
(2) Simulation and Method

3 Alignment of the major axes of interacting pairs
4. Summary and perspectives

Motivations

- Galaxies form within the cosmic web: properties must be related to their environment
- The study of the alignment of the spins and shapes of haloes can shed light on galaxy formation within their environments
- Alignment as a probe of the large-scale structures
- Intrinsic alignment: source of systematics for weak lensing analysis
- From simulations: spins aligned with the intermediate axis of the tidal tensor Wang et al (2011)
- mass dependence: low-mass (massive) haloes have their spin parallel (orthogonal) to filaments Hahn et al (2007),
- Haloes in sheets have their spin in the plane

The Horizon Run 4 simulation

Horizon Run 4 (J. Kim et al 2015, JKAS)

- N-body: $L=3.15 h^{-1} \mathrm{Gpc}, N=6300^{3}\left(\bar{d}=0.5 h^{-1} \mathrm{Mpc}\right)$, WMAP5 cosmology
- 8000 CPU cores, 2000 timesteps, 50 days at KISTI (Korea).

Catalogues

- Haloes detected with OPFOF, and subhaloes with PSB
- Minimum subhalo mass (20 particles): $1.8 \times 10^{11} h^{-1} M_{\odot}$
- Target $\left(M_{T}>5 \times 10^{11} h^{-1} M_{\odot}\right)$ and neighbour $\left(M_{N}>2 \times 10^{11} h^{-1} M_{\odot}\right)$ catalogues
- Hereafter, "haloes" refer to PSB subhaloes (\leftrightarrow galaxies)

Interactions

- A target T is interacting if
- it is located with the virial radius of its neighbour N
- $M_{N}>0.4 M_{T}$
- At $z=0: N_{\text {Target }}=225406978 ; N_{\text {interactions }}=14267922$

Large-scale density

B. L'Huillier, C. Park and J. Kim 2015, MNRAS 451, 527

To quantify the environment: ρ_{20} : density over 20 neighbours

$$
\rho_{20}=\sum_{i=1}^{20} M_{i} W\left(r_{i}, h\right)
$$

where r_{i} is the distance to the $i^{\text {th }}$ neighbour, M_{i} its mass, W the SPH spline kernel, and h the smoothing length.
Normalisation by $\bar{\rho}=\sum_{N} M_{i}$:

$$
1+\delta=\rho_{20} / \bar{\rho}
$$

Method

B. L'Huillier, C. Park \& J. Kim MNRAS submitted

To detect an alignment signal of an angle $\theta=(\mathbf{u}, \mathbf{v})$, following Yang et al 2006, we used the normalised pair count:

- Count the number of pairs $N(\theta)$ with angle θ
- for $N_{\text {rand }} \simeq 200$, calculate $\left\langle N^{\mathrm{R}}(\theta)\right\rangle$ and σ_{θ} the mean and std deviation of random permutations of \mathbf{u}.
- We look at $f(\theta)=N(\theta) /\left\langle N^{\mathrm{R}}(\theta)\right\rangle$
- If $f \equiv 1$: No alignment (random)
- If $f(\cos \theta \simeq \pm 1) \gg 1$: Alignment (parallel/anti parallel)
- If $f(\cos \theta \simeq 0) \gg 1$: Anti-alignment (orthogonal)
- the strength of the signal (error bars) is given by $\sigma_{\theta} /\left\langle N^{R}(\theta)\right\rangle$.

Shapes

$\gamma=\left(\mathbf{a}_{\mathbf{T}}, \mathbf{r}\right)$: angle between major axis (target) and direction neighbour $\varepsilon=\left(\mathbf{a}_{N}, \mathbf{r}\right)$: angle major between the major axis of the neighbour and the direction of the target

$$
\gamma=\left(\mathbf{a}_{\mathrm{T}}, \mathbf{r}\right) ; q_{\mathrm{T}}<0.8
$$

Dependence on mass and environment

$$
z=0
$$

Mass

Alignment increase with mass; little density dependence
Major axis aligned with the direction of the neighbour

$$
\gamma=\left(\mathbf{a}_{\mathrm{T}}, \mathbf{r}\right) ; q_{\mathrm{T}}<0.8
$$

Alignment stronger at low- δ and low-z; little mass dependence
Major axis aligned with the direction of the neighbour

$$
\gamma=\left(\mathbf{a}_{\mathbf{T}}, \mathbf{r}\right) ; \varepsilon=\left(\mathbf{a}_{\mathrm{N}}, \mathbf{r}\right) ;
$$

Alignment of prolate pairs

- Neighbours are drawn at their angular position γ proportionaly to $P(\gamma)$.
- Neighbours located in the direction of the major axis
- Neighbours point toward the Target

$$
\gamma=\left(\mathbf{a}_{\mathbf{T}}, \mathbf{r}\right) ; \varepsilon=\left(\mathbf{a}_{\mathrm{N}}, \mathbf{r}\right) ;
$$

Alignment of prolate pairs

- Neighbours are drawn at their angular position γ proportionaly to $P(\gamma)$.
- Neighbours located in the direction of the major axis
- Neighbours point toward the Target

Spins

$\alpha=\left(\mathbf{J}_{\mathrm{T}}, \mathbf{r}\right)$: angle between spin target and direction neighbour $\phi=\left(\mathbf{J}_{\mathrm{T}}, \mathbf{J}_{\mathrm{N}}\right)$: angle between target and neighbour neighbour spins

At high-z: anti-parallel or no alignment
At low-z: aligned

Summary and perspective

- The unprecedented statistics of HR4 enable us to study the alignment as a function of the environment
- The angular position neighbour is aligned with the major axis of the target
- Alignment increases with mass, independent of large-scale density
- Alignment signal stronger at low redshift
- Flip in the spin alignemtn at $z \simeq 2$
- Compare with observations: need for hydro simulations

Summary and perspective

- The unprecedented statistics of HR4 enable us to study the alignment as a function of the environment
- The angular position neighbour is aligned with the major axis of the target
- Alignment increases with mass, independent of large-scale density
- Alignment signal stronger at low redshift
- Flip in the spin alignemtn at $z \simeq 2$
- Compare with observations: need for hydro simulations

Cảm ơn!

