The local velocity field according to 6dFGSv

Christina Magoulas (UCT) and the 6dFGSv team

LSS & Galaxy Flows: July 2016

Background Image: C. Fluke

50

6dFGSv: outline

- 6dFGSv: distances and peculiar velocities defining the 6dFGSv sample and the individual peculiar velocity distributions.
- 6dFGSv: the most recent results cosmological constraints from the velocity power spectrum (Johnson et al. 2014) and MV bulk flow (Scrimgeour et al. 2016).
- 6dFGSv: cosmographic results
 3D map of the velocity field out to 160 Mpc/h, as traced by 6dFGSv
- Maximum Likelihood forward fitting of the bulk flow and β Bayesian analysis of the 6dFGSv dataset as a whole

The 6dF peculiar velocity survey (6dFGSv)

- 6dFGS: combined redshift (z-) and *peculiar velocity (v-)* survey of the entire Southern Sky on the UK Schmidt Telescope; large uniformly sampled volume
- 6dFGSv: 9000 peculiar velocities using FP distances out to cz<16000 km s⁻¹
- Largest *homogeneous* velocity survey to date

Peculiar Velocity Distributions

 For each galaxy we determine individual probability distributions in log (distance ratio) units where errors are *Gaussian*, taking advantage of (forward) fitting in "data" space

Gaussian distribution in log(distance) space where $x = log_{10}(D_z/D_H)$

skewed in velocity, v_p, distribution (errors are close to *log-normal*)

Johnson et al. MNRAS (2014)

6dFGSv distance and velocity data From Springob et al. MNRAS (2014)

redshifts (cz), log distance ratios (Δd), and probability distribution variables (ε_d, α) available online:

http://vizier.cfa.harvard.edu/viz-bin/ VizieR?-source=J/MNRAS/445/2677

6dFGS name (1)	R.A. (deg.) (2)	Dec. (deg.) (3)	cz_{gal} (km s ⁻¹) (4)	cz_{group} (km s ⁻¹) (5)	Group number (6)	$\langle \Delta d \rangle$ (dex) (7)	$\epsilon_{\rm d}$ (dex) (8)	α (9)
g0000144-765225	0.05985	- 76.8736	15941	- 1	-1	+0.1039	0.1296	-0.0200
g0000222-013746	0.09225	-1.6295	11123	-1	-1	+0.0870	0.0954	-0.0066
g0000235-065610	0.09780	-6.9362	10920	- 1	- 1	+0.0282	0.1073	-0.0116
g0000251-260240	0.10455	-26.0445	14926	- 1	- 1	+0.0871	0.1065	-0.0111

Springob et al. MNRAS (2014)

6dFGSv: survey papers

• Springob et al. 2014:

The 6dF Galaxy Survey: peculiar velocity field and cosmography.

• Johnson et al. 2014:

The 6dF Galaxy Survey: cosmological constraints from the velocity power spectrum.

- Scrimgeour et al. 2016: The 6dF Galaxy Survey: bulk flows on 50-70 h⁻¹ Mpc scales.
- Magoulas et al. (THIS TALK):

The 6dF Galaxy Survey: bulk flows and β from fitting the peculiar velocity field

• Johnson et al. 2014:

Constraining the growth rate of structure using a *velocity* power spectrum analysis of 6dFGSv and SNe data

Johnson et al. MNRAS (2014)

Johnson et al. MNRAS (2014)

- Redshift zero measurement of the growth rate that is independent of galaxy bias and accurate to ~15%
- sensitive to largest scales; consistent with fiducial Planck cosmology

See also Howlett talk tomorrow

• Scrimgeour et al. 2016:

using a minimum variance method to measure the 6dFGSv bulk flow in Gaussian spheres of R_I =50 and 70 h⁻¹ Mpc

 At R_I=50 h⁻¹ Mpc: |U| = 248±58 km s⁻¹ (I,b) = (318°±20°, 40°±13°)

• At
$$R_I = 70 h^{-1} Mpc$$
:
 $|U| = 243 \pm 58 \text{ km s}^{-1}$
 $(I,b) = (318^\circ \pm 30^\circ, 39^\circ \pm 13^\circ)$

 Largest discrepancy in z-direction when compared to MLE method (reflects difference in weighting schemes)

Scrimgeour et al. MNRAS (2016)

- Scrimgeour (2016) bulk flow in agreement with recent measurements: Turnbull et al. (2012), Feindt et al. (2013), Hong et al. (2014)
- Somewhat higher bulk flow than ΛCDM prediction on these scales, implying a high value of σ_8 , but consistent with Planck results within 2σ

Peculiar Velocity Fitting Method

• We have two choices:

[1] Forward-fitting (Magoulas et al. in prep.)

Fitting model to the data and compare in "data space".

Do a Bayesian analysis of the observational data set as a whole (in r-s-i space), without computing individual peculiar velocities.

[2] **Reverse-fitting** (Springob et al. 2014)

Fitting data to the model and compare in "model space".

Compute a Bayesian posterior probability distribution for the distance/ peculiar velocity of each galaxy, rather than a single velocity.

Smoothed 3D 6dFGSv velocity field

Springob et al. (2014)

3D Visualisation by S2PLOT

Cosmicflows-2 > 3: slice in the Supergalactic equatorial plane

Distance ratio along LOS within 30° of local structure compared with models of 2MRS and PSCz

- Systematically
 positive peculiar
 velocities in vicinity
 of Shapley (as well
 as Norma and Vela
 Supercluster)
- Offset by more
 negative than
 expected peculiar
 velocities in the
 direction of Pisces Cetus Supercluster,
 (~130° away)

Springob et al. (2014)

The 6dFGSv bulk flow is 395±64 km s⁻¹ in the direction (I,b)
 = (318°±20°, 40°±13°) using ML forward modeling approach

6dFGSv flow as a function of scale

800

600

400

 $v_{\rm tot}|~[{
m km~s}^{-1}]$

ICMB

COMPOSITE

Magoulas et al. (in prep)

6dFGSv

CMSS11

DKS11

150

1000

P13

- Different surveys have different window functions; hard to compare with each other or predictions.
- Selection function reduces the effective volume of the survey

Scrimgeour et al. MNRAS (2016)

Velocity model reconstruction

Reconstruction of the density and velocity field (following the linear theory method of Carrick et al. 2015) within 200 h⁻¹ Mpc; based on the all-sky 2M++ redshift catalogue (mostly 6dF in the South)

200150 12 100 10 508 SGY [km s⁻¹] SGY (h⁻¹ Mpc) 0 6 -50 4 -100-150-200-150-100-50 150 200 -2000 50 100 SGX $(h^{-1}Mpc)$

Carrick et al. 2015

2M++ density field

2M++ velocity field

Carrick et al. 2015, Magoulas et al. in prep.

• Velocity field determined by the linear redshift-space distortion parameter, $\beta(=\Omega_m^{0.55}/b)$.

Beta and external dipole results

Model	v_n	$\langle M_{eta} angle \ [-]$	$\langle \beta \rangle$ [-]	$\langle u_x angle \ [{ m km~s^{-1}}]$	$\langle u_y angle \ [{ m km~s^{-1}}]$	$\langle u_z angle \ [{ m km~s^{-1}}]$	$ v_{tot} $ [km s ⁻¹]	\mathop{SGL}_{\circ}	$_{\circ}^{SGB}$
$\begin{array}{c} (1) \ \beta \\ (2) \ \beta, \ \boldsymbol{u}_{ext} \end{array}$	2MRS 2MRS	$0.79{\pm}0.19 \\ 0.63{\pm}0.14$	$_{0.32\pm0.08}^{0.32\pm0.08}$	- -258±69	- 173±47	- -29±50	- 324±45	- 145±13	- -5±9
$\begin{array}{c} (1) \ \beta \\ (2) \ \beta, \ \boldsymbol{u}_{ext} \end{array}$	PSCz PSCz	$1.15{\pm}0.23$ $0.68{\pm}0.19$	$0.58{\pm}0.12 \\ 0.34{\pm}0.10$	- -282±66	- 92±53	- -10±48	- 308±53	- 161±13	- -1±9
$\begin{array}{c} (1) \ \beta \\ (2) \ \beta, \ \boldsymbol{u}_{ext} \end{array}$	$2\mathrm{M}++$ $2\mathrm{M}++$	$0.31{\pm}0.13$ $0.41{\pm}0.11$	$0.13 {\pm} 0.06 \\ 0.18 {\pm} 0.05$	- -393±71	- 83±48	- -100±52	- 420±65	$-$ 167 \pm 9	- -13±7
(3) \boldsymbol{u}_{tot}	-	-	-	-362 ± 74	107 ± 51	-81 ± 52	$395{\pm}64$	162 ± 10	-12 ± 7

- The beta parameter is consistent with recent results when 6dFGSv is compared to 2MRS (β_{fid} =0.4) and PSCz (β_{fid} =0.5), but low when compared to 2M++ (β_{fid} =0.43)
- We measure *large* external bulk flows (assuming matter follows the galaxy distribution of the model reconstruction) but largest with comparison to 2M++ 420 ± 65 km/s with a very low $\beta=0.18\pm0.05$;
 - amplitude is not too much smaller than total flow! $(u_{tot}=395\pm64)$.

v-v chi-squared fitting

- Simple linear regression (χ²) to individual log₁₀(D_z/D_H) ratios as an independent check to 2M++ (doesn't account for sample selection, distance weighting, zero-point calibration)
- From this method, best-fit of β = 0.13 is consistently close to the value fitted by the full ML forward modeling (cf. β = 0.14±0.06) and suggests usual fitting method is robust.
- Hence there still exists a large discrepancy between the observed 6dFGSv and predicted 2M++ velocities.

Summary

- 6dFGSv provides the largest homogenous sample of galaxy peculiar velocities to date.
- We model the velocity field and 3D FP Gaussian simultaneously using a Bayesian analysis of the dataset as whole. Using 6dFGSv, we map the velocity field in the nearby universe and compare to the density field derived from redshift surveys.
- This leads to new measurements on the redshift distortion parameter with some discrepancies: β =0.32±0.08 (2MRS), β =0.58±0.12 (PSCz) and β =0.13±0.06 (2M++)
- We recover a total bulk flow for 6dFGSv within ~160 Mpc/h of 395±64 km/s towards (I,b) = (318°±20°, 40°±13°) meaning the 6dFGSv volume has a substantial coherent motion towards Shapley.

6dFGSv velocity field in 30 Mpc/h spheres around local overdensities

Springob et al. (2014)

3D Visualisation by S2PLOT

morphology outliers

- Log distance ratio versus morphological type separated by morphological subsamples (top; early types in red, intermediate types in green, late types in blue) and full sample (bottom).
- The median bins (with rms error bars) indicate that a cut of T > 3 removes the most discrepant outliers,

6dFGSv flow as a function of scale

 There is still disagreement between surveys at similar scales (Watkins 2009; Nusser & Davis 2011) and with standard model predictions (Colin 2011, Watkins 2009)