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Figure 1: Two spatial domains embedded into consecutive, three–dimensional Eulerian space
sections Σt, parametrized by the absolute Newtonian time t, are shown.

1 Newtonian Gravity

1.1 Galilei–Newton spacetime and the Eulerian picture

The stage on which we shall first study the motion of a continuum is the Galilei–Newton space-
time (Fig. 1), which itself is viewed as a continuum, foliated into Euclidian 3–spaces that are
indexed by values of the Newtonian absolute time t > 0. Within the space sections, observ-
ables are represented by continuous fields as functions of (non–rotating and usually Cartesian)
Eulerian coordinates x and time t.

As a basic observable we introduce the particle number density n(x, t) for which we require
that the total number N of fluid elements within a spatial domain Dt be conserved:

N :=

∫
Dt

n(x, t) d3x = const. (1a)

Assigning to each ‘particle’ an elementary mass m, we can instead consider the restmass density
field �(x, t) = mn(x, t) and the conservation of the total restmass:

M :=

∫
Dt

�(x, t) d3x = const. (1b)

A simple kinematically complete description for the evolution of a system of fluid elements
is provided by the restmass density field �(x, t) and a vector field for the mean velocities of the
fluid elements v(x, t). The general solution of evolution equations for these fields should be
uniquely determined by giving the initial data �0(x, t0) and v0(x, t0). Such a description we call
Eulerian picture.

1.2 Lagrangian picture: trajectories in space and mass conservation

We localize a collection of fluid elements in space by the Eulerian position vector field f:

x = f(X, t) ; f(X, t0) =: X . (2)

1



1.2 Lagrangian picture: trajectories in space and mass conservation 1 NEWTONIAN GRAVITY

Σ ft1

ft2
Figure 2: A trajectory in Eu-
lerian space is shown that con-
nects two time–consecutive fluid el-
ements. The volume elements are
deformed during the motion of the
fluid. Eulerian position vectors ft lo-
cate them.

In the Lagrangian picture of continuum mechanics the Eulerian positions at time t0 are held
fixed along trajectories of the fluid elements. The Lagrangian coordinates1 Xi just index the fluid
elements, while the components of the position field fi locate the fluid element with Lagrangian
coordinates X in Eulerian space (Figs. 2 and 3).

The position field f defines a time–dependent diffeomorphism in the Galilei–Newton space-
time:

Φt : X �→ x = f(X, t) . (3)

At fixed time t = t′, the flow Φt′ can be viewed as a coordinate transformation from Lagrangian
to Eulerian coordinates:

R
3 → R

3

X �→ x = f(X; t′) , (4a)

with the Jacobian2

Jik(X, t′) :=
∂fi
∂Xk

. (4b)

The volume elements of the continuum transform according to

d3x = Jd3X ; J(X, t′) := det(Jik) . (4c)

Consider now the total temporal change of the position field defining the mean velocity field of
fluid elements v:

vi(X, t) :=
d

dt
fi(X, t) =

∂

∂t

∣∣∣
X
fi(X, t) +

∂fi
∂Xk

dXk

dt
=

∂

∂t

∣∣∣
X
fi(X, t) . (5)

We have used the fact that the Lagrangian coordinates are, by their very definition, conserved
in time. It is also said that the position field, providing the trajectories f labelled by X, defines
the integral curves of the vector field v (Fig. 3).

1We shall maintain the notion Lagrangian coordinates, although it is known that their introduction is due to Euler,
and Lagrange himself obviously preferred Eulerian coordinates.

2Hereafter, latin indices run through 1, 2, 3; we distinguish, as a guide for the eye, Lagrangian indices, e.g., in
derivatives, ∂/∂Xk from Eulerian ∂/∂xj . Summation over repeated indices is understood.
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1.2 Lagrangian picture: trajectories in space and mass conservation 1 NEWTONIAN GRAVITY
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Figure 3: Two volume elements at initial time t0 are indexed by their Lagrangian coordinates
X1 and X2. The trajectory field (represented by two flow lines) defines a diffeomorphism Φt in
the Galilei–Newton spacetime.

Accordingly, we define the mean acceleration field of the fluid b by the total time–derivative
of the mean velocity field:

bi(X, t) :=
d

dt
vi(X, t) =

∂

∂t

∣∣∣
X

vi(X, t) +
∂ vi
∂Xk

dXk

dt
=

∂

∂t

∣∣∣
X

vi(X, t) . (6)

For comparison we look at the mean velocity field as a function of Eulerian coordinates v(x, t).
Its total time–derivative

d

dt
vi(x, t) =

∂

∂t

∣∣∣
x
vi(x, t) +

∂vi
∂xj

dxj
dt

=
∂

∂t

∣∣∣
x
vi(x, t) + vj

∂vi
∂xj

(7)

features a second term, the so–called convective time–derivative, which takes into account that in
the Eulerian picture the fluid elements move with respect to the Eulerian space. The convective
time–derivative of v is the directional derivative of v along v. (In other words, the spatial
variation of v is projected onto v.) In summary, we define the total time–derivative with respect
to a trajectory field (a collection of integral curves to v) as the Lagrangian time–derivative:

d

dt
:=

∂

∂t

∣∣∣
X
=

∂

∂t

∣∣∣
x
+ v ·∇ , (8)

with the nabla operator ∇ := ∂/∂xj .

1.3 Remark: independent variables

In the Eulerian picture x and t are the independent variables, and ∂/∂t|x commutes
with ∂/∂xj and d3x, while in the Lagrangian picture X and t are the independent
variables, and d/dt = ∂/∂t|X commutes with ∂/∂Xk and d3X .

As an example we consider the conservation of the total restmass within a spatial domain Dt:

0 =
d

dt
M =

d

dt

∫
Dt

�(x, t) d3x =

∫
Dt0

d

dt
(�(X, t)J(X, t)) d3X . (9a)

3



1.2 Lagrangian picture: trajectories in space and mass conservation 1 NEWTONIAN GRAVITY

Since this equation holds for any Lagrangian domain Dt0 , we conclude that

d

dt
(�J) = 0 ⇒ �J = C(X) . (9b)

For initial data J(X, t0) = det(δik) = 1 and �(X, t0) =: �0(X) we obtain a general integral for
the density field:

�(X, t) = �0(X) J−1(X, t) . (9c)

1.4 Exercise: continuity equation

Give a local proof of the fact that the integral (9c) solves the Eulerian continuity
equation

∂

∂t
�+∇ · (�v) =

d

dt
�+ �∇ · v = 0 . (10)

Solution: Employ the notation in terms of functional determinants and prove the
identity d/dt J = J∇ · v. First, we write:

J = det

(
∂fi
∂Xk

)
=

∂(f1, f2, f3)

∂(X1, X2, X3)
. (11)

For the total (Lagrangian) time–derivative (denoted by an overdot) we then obtain:

d

dt
J =

∂(ḟ1, f2, f3)

∂(X1, X2, X3)
+

∂(f1, ḟ2, f3)

∂(X1, X2, X3)
+

∂(f1, f2, ḟ3)

∂(X1, X2, X3)
,

and, using v = ḟ , det(J−1
ik ) = J−1, and the multiplication rule for determinants:

d
dtJ

J
=

∂(v1, f2, f3)

∂(x1, x2, x3)
+

∂(f1, v2, f3)

∂(x1, x2, x3)
+

∂(f1, f2, v3)

∂(x1, x2, x3)
= ∇ · v . (12)

With this identity, the time–derivative of (9c) yields the continuity equation.

1.5 Remark: dependent variables

In the Eulerian picture �(x, t) and v(x, t) are the dependent variables (fields),
whereas in the Lagrangian picture f(X, t) is the only dependent field variable. For
given f(X, t) the evolution of the continuum is determined, and the Eulerian fields
can be calculated from it provided the transformation from Lagrangian to Eulerian
coordinates can be inverted (Φt is a diffeomorphism), i.e.,

�[x, t] = �0(X = h(x, t))J−1(X = h(x, t), t) ; v[x, t] = ḟ (X = h(x, t), t) , (13)

where h denotes the inverse transformation f−1. (Rectangular brackets indicate
that the functional dependence on the coordinates changes, but not the value of
the field.)
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1.6 The Euler–Newton system 1 NEWTONIAN GRAVITY

1.6 The Euler–Newton system

In the sequel we think of the acceleration as solely caused by the gravitational field strength as
the dominating force in a cosmological and astrophysical context,

b =: g(x, t) . (14)

Eq. (14) forms the content of Einstein’s equivalence principle that asserts the equality of inertial
mass m and gravitational mass mG in the Newtonian force balance condition:

F = m b = mG g = FG ; mG ≡ m . (15)

The Newtonian gravitational force field is assumed velocity–independent and derived from a
potential. With (14) the evolution equations (6) and (10) for the mean velocity field and the
density field supplemented by the Newtonian field equations form a closed system of coupled,
nonlinear partial differential equations, the Euler–Newton system:

d

dt
� + �∇ · v = 0 ;

d

dt
v = g ; (16a)

∇× g = 0 ; ∇ · g = Λ− 4πG� . (16b)

Instead of this system of eight equations for the seven variables �, vi, gi we can write down a
closed system of five equations for the five variables �, vi,Φ, the Euler–Poisson system:

d

dt
� + �∇ · v = 0 ;

d

dt
v = −∇Φ ; ∆Φ = 4πG�− Λ . (17)

The above systems involve boundary value problems that have to be well–posed and solved for all
times. Note that the initial value problem for both systems has to be posed in terms of evolution
equations, in our case four equations for four independent variables, which are � and the three
components of v. The field–strength g or the gravitational potential Φ, respectively, are only
subjected to constraints.

We end this section with an example of a simple exact class of solutions to the Euler–Poisson
system (1.6). These solutions lie at the basis of the standard model of cosmology. As Fig. 4 shows,
already this simple equation admits a wide variety of possible expansion laws. It is a striking
historical fact that the choice fell on models that correspond to singular solutions reflected in
the notion Big Bang.

1.7 Excursion: homogeneous–isotropic solutions

For a homogeneous–isotropic trajectory field fH = a(t)X the evolution equation
for the scale–factor a(t) obeys Friedmann’s differential equation:

H2 − 8πG

3
�H − Λ

3
+

k

a2
= 0 , (18)

with the Hubble function H := ȧ/a, and the constant of integration k.

5



1.6 The Euler–Newton system 1 NEWTONIAN GRAVITY
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Figure 4: The time–evolution of the scale–factor a(t) is shown, exemplifying the wealth of possible
homogeneous–isotropic cosmological models. Standing out are: the Eddington model, which evolves out
of the static Einstein cosmos and approaches asymptotically the exponential expansion of the de Sitter
model. The Lemâıtre models start out from a singularity (hence, the notion Big Bang), either having
an inflection point (gradually entering the exponential expansion phase), or oscillating back into a Big
Crunch. The simplest model within this class (not drawn) is the Einstein–de Sitter model that has no
cosmological constant and euclidian space sections. Models with positive constant curvature and no
cosmological constant also oscillate back into a Big Crunch, while models with no cosmological constant
and negative constant curvature cross the static line and expand forever (not drawn). There are also
catenary models that contract to a minimum and expand thereafter.

We can obtain this equation as follows. The assumption of a homogeneous mat-
ter distribution � = �H(t) implies, by the continuity equation, that the (irro-
tational) velocity field is a linear function of x, (vH)i = Hij(t)xj . In gen-
eral, a velocity model linear in x can be derived from the homogeneous defor-
mation (fH)i = aij(t)Xj . The assumption of isotropy reduces the tensor func-
tion aij(t) = a(t)δij , so that the velocity and acceleration fields may be written
as vH = Hx, gH = (ä/a)x, while the density is given by the general integral,
�H = �H(t0)a

−3. Inserting this ansatz into the Euler–Newton system results in

3
ä

a
+ 4πG�H − Λ = 0 , (19)

which is the time–derivative of Friedmann’s differential equation. (To integrate
(19) we multiply it by ȧa and, using the integral �H = �H(t0)a

−3, we cast it into
the form:

3

(
ȧ2

2

)·
− 4πG�H(t0)

(
1

a

)·
− Λ

(
a2

2

)·
= 0 ,

which can be readily integrated.

Note that Friedmann’s differential equation has been first derived in the framework
of general relativity. It has, however, the same form in the Newtonian framework.
(The integration constant in Newton’s theory is related to the constant curvature
R of the hypersurface by k/a2 = c2R/6; Friedmann’s equation can be directly
obtained from the Hamiltonian constraint, which we shall encounter later.
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1.8 Kinematics of Newtonian models 1 NEWTONIAN GRAVITY

1.8 Kinematics of Newtonian models

We start with Euler’s equation and write it down in index notation,

∂

∂t
vi + vkvi,k = gi . (20a)

Performing the spatial Eulerian derivative of this equation we obtain:

d

dt
vi,j = −vi,kvk,j + gi,j , (20b)

which is an evolution equation for the velocity gradient vi,j along the flow lines f . It is
convenient for the discussion of fluid motion to split the velocity gradient into its symmetric
part, v(i,j) = 1/2 (vi,j + vj,i) =: θij (the expansion tensor), its anti–symmetric part v[i,j] =
1/2 (vi,j − vj,i) =: ωij (the vorticity tensor), and to separate the symmetric part into a trace–free
part (the shear tensor σij) and the trace (the rate of expansion) θ := vi,i:

vi,j = v(i,j) + v[i,j] =: θij + ωij =:
1

3
θδij + σij + ωij . (21)

1.9 Exercise: Lagrangian evolution equations for kinematical variables

Insert the kinematical decomposition of the velocity gradient (21) into Eq. (20b)
to obtain Lagrangian evolution equations for the kinematical variables.

Solution: We obtain:
d

dt
θ = −1

3
θ2 + 2(ω2 − σ2) + gi,i ; (22a)

d

dt
ωij = −2

3
θωij − σikωkj − ωikσkj + g[i,j] ; (22b)

d

dt
σij = −2

3
θσij − σikσkj − ωikωkj +

2

3
(σ2 − ω2)δij + g(i,j) − 1

3
gk,kδij , (22c)

where σ2 := 1/2 σijσij and ω2 := 1/2ωijωij denote the rate of shear and the rate
of vorticity.

We can read the above equations in the sense that they reconstruct the acceleration gradient
gi,j in terms of kinematical variables. More precisely, its trace, its anti–symmetric part, and its
trace–free symmetric part. The latter is known as the Newtonian tidal tensor:

Eij := gi,j − 1

3
gk,kδij . (23)

We may now establish a system of equations for the variables �, θ, ωij and σij by using the

7



2 EFFECTIVE NEWTONIAN DYNAMICS

Euler–Newton system (16). We arrive at7:

d

dt
� = −�θ ; (24a)

d

dt
θ = −1

3
θ2 + 2(ω2 − σ2) + Λ− 4πG� ; (24b)

d

dt
ωi = −2

3
θωi + σijωj ; (24c)

d

dt
σij = −2

3
θσij − σikσkj − ωikωkj +

2

3
(σ2 − ω2)δij + Eij . (24d)

This system only constrains the trace and the anti–symmetric part of (gi,j), but not the tidal
tensor Eij . Note here that Newton’s theory of gravity is a vector theory of the gravitational field; a
vector field is, up to harmonic functions, determined by the sources of its curl and its divergence.
Hence, the trace–less symmetric part of the field strength gradient needs to be determined only
in a tensor theory of gravity.

2 Integral Properties and Effective Dynamics in Newtonian Gravity

We are now going to study the effective (spatially averaged) dynamics of observables without
the assumption that the system within Dt is isolated from the environment. We shall, however,
exploit an advantage of the Lagrangian description and define, as before, the spatial domain to
be restmass–preserving, so that the collection of fluid elements is confined within Dt during the
evolution, and consequently, there is no matter in– or outflow through the boundary ∂Dt. The
domain changes its shape while sweeping out a tube in the Galilei–Newton spacetime, as shown
in Fig. 1.

2.1 Averaging and evolving observables: the commutation rule

The key–operation to which we subject integral properties of the self–gravitating continuum con-
tained within Dt is spatial averaging of local tensor fields A(x, t) as measured by their Euclidian
volume integral,

〈A〉Dt :=
1

VDt

∫
Dt

A d3x . (25)

We then consider their total change in time, e.g., for the domain’s volume, VDt =
∫
Dt

d3x , we
obtain:

d

dt

∫
Dt

d3x =
d

dt

∫
D0

J d3X =

∫
D0

dJ

dt
d3X =

∫
Dt

1

J

dJ

dt
d3x =

∫
Dt

θ d3x .

Hence, the total rate of change of the domain’s volume is the averaged rate of expansion:

〈θ〉Dt =
1

VDt

dVDt

dt
. (26)

7We have expressed the vorticity tensor in terms of the vector ω = 1/2∇ × v by means of the formula ωij =
−εijkωk.
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2.3 Raychaudhuri’s equation 2 EFFECTIVE NEWTONIAN DYNAMICS

This quantity is a typical observable within Dt. We are interested in the total change of such
quantities in time, e.g., we want to calculate:

d

dt
〈θ〉Dt =

d

dt

(
1

VDt

)∫
Dt

θ d3x+
1

VDt

d

dt

∫
Dt

θ d3x

= −〈θ〉2Dt
+

1

VDt

∫
Dt

(
d

dt
θ + θ2) d3x , hence ,

d

dt
〈θ〉Dt − 〈 d

dt
θ〉Dt = 〈θ2〉Dt − 〈θ〉2Dt

= 〈(θ − 〈θ〉Dt)
2〉Dt . (27)

This equation can be interpreted by saying that the operations of spatially averaging the local
field θ and the total evolution in time do not commute, their difference being given by the
averaged fluctuation of the local field with respect to its spatial average. We can easily prove a
more general statement, establishing the commutation rule.

2.2 Exercise: commutation rule

Show that, for any tensor field A(x, t), the following commutation rule holds:

d

dt
〈A〉Dt − 〈 d

dt
A〉Dt = 〈Aθ〉Dt − 〈A〉Dt〈θ〉Dt . (28)

Solution: The proof follows easily by employing the transformation to the La-
grangian domain as done for the expansion rate.

The commutation rule is a purely kinematical relation. We have not employed any dynamical
theory so far. If we consider as dynamical equations the hierarchy of hydrodynamical equations,
e.g., the Euler–Newton system, we can average the evolution equations for the variables �, θ, etc.
Let us confine our study to the two fields � and θ. Setting A = � in the commutation rule we get:

d

dt
〈�〉Dt − 〈 d

dt
�〉Dt = 〈�θ〉Dt − 〈�〉Dt〈θ〉Dt , (29a)

which we can also write as follows:

d

dt
〈�〉Dt + 〈θ〉Dt〈�〉Dt = 〈 d

dt
�+ θ�〉Dt . (29b)

If the local continuity equation holds, the right–hand–side of Eq. (29b) vanishes and we obtain
the result that also the averaged density obeys a continuity equation.

2.3 Raychaudhuri’s equation

Setting A = θ we already obtained Eq. (27), which needs a dynamical specification of the
temporal change of the local expansion rate. To calculate this we employ the Euler equation,
which we write explicitly as follows:

∂

∂t
vi + vkvi,k = gi . (30)

9



2.4 Effective cosmological equations and backreaction 2 EFFECTIVE NEWTONIAN DYNAMICS

Performing the spatial derivative as we did before, we arrive at

d

dt
vi,j + vi,kvk,j = gi,j . (31)

Forming the trace of this equation and employing the field equation gi,i = Λ− 4πG�, we obtain
Raychaudhuri’s equation for the time–evolution of θ:

d

dt
θ = Λ− 4πG�+ 2II − θ2 . (32)

(We have used the second scalar invariant of the velocity gradient, see Subsect. 2.5.)
Inserting the local dynamical equation (32) into the commutation rule we obtain the evolution
equation for the averaged expansion rate:

d

dt
〈θ〉Dt = Λ− 4πG〈�〉Dt + 2〈II〉Dt − 〈θ〉2Dt

. (33)

It is remarkable that also the spatial averages (expressed in terms of scalar invariants of the ve-
locity gradient) obey Rauchaudhuri’s equation, although we have pointed out the non–commuta-
tivity of averaging and evolution. This property is a consequence of the special nonlinearity
(quadratic in θ) featured by Raychaudhuri’s equation.
Note that the averaged continuity equation together with the averaged Raychaudhuri equation
do not provide a closed system of equations. A further equation is needed for the evolution of
〈II〉Dt , which invokes another hierarchy of ordinary differential equations that has to be closed.

We are now going to discuss an application of the foregoing formalism.

2.4 Effective cosmological equations and backreaction

Let us introduce, as a measure of the effective expansion of a spatial domain, the scale–factor

aDt := V
1/3
Dt

. (34)

Eq. (71a) then furnishes an evolution equation for this scale–factor:

3
äDt

aDt

+ 4πG〈�〉Dt − Λ = QDt , (35a)

where the source term
QDt := 2〈II〉Dt −

2

3
〈I〉2Dt

(35b)

is named backreaction, since it measures the departure from the standard Friedmann model
described by Eq. (19) due to the influence of inhomogeneities.

Upon integrating the expansion law Eq. (35a), we obtain:

3
ȧ2Dt

a2Dt

+ 3
kDt

a2Dt

− 8πG〈�〉Dt − Λ =
1

a2Dt

∫ t

t0

dt′ QDt′
d

dt′
a2Dt′ (t

′) , (35c)

where kDt enters as a domain–dependent integration constant. The effective Hubble–parameter

HDt :=
ȧDt

aDt

(35d)

10



2.6 Global properties of Newtonian models 2 EFFECTIVE NEWTONIAN DYNAMICS

is determined by the (now domain–dependent) components known in the standard model of
cosmology, and additionally the backreaction term, integrated over the whole history of the
evolving inhomogeneities.

We are now making explicit that the backreaction term consists of surface terms describing
fluxes through the domain’s boundary. For this end we quote a useful result related to principal
scalar invariants.

2.5 Remark: Divergence property of principal scalar invariants

We note the following properties of the principal scalar invariants (here written for
the invariants of the mean velocity gradient):

I = ∇ · v ; II = ∇ ·ΥII ; III = ∇ ·ΥIII , with

ΥII := 1
2 (v∇ · v − v ·∇v) ;

ΥIII := 1
3

(
1
2∇ · (v∇ · v − v ·∇v)v − (v∇ · v − v ·∇v) ·∇v

)
. (36)

For completeness we give their relation in terms of kinematical variables:

I = θ ; II = ω2−σ2+
1

3
θ2 ; III =

1

27
θ3−1

3
θ(σ2−11

3
ω2)+

1

3
σijσjkσki−1

3
σijωiωj ,

(37)
where we have introduced the components of the vorticity vector, (ω)i = ωi =
− 1

2εijkωjk. (Note: the velocity gradient has, in general, six independent scalar
invariants: θ, σ, ω, τ := 1

6σijσjkσki, σijωiωj , and σijσjkωiωk.)

Using the latter expressions, QDt may be written in terms of the kinematical scalars, the
expansion rate θ, the rate of shear σ, and the rate of vorticity ω, featuring three positive–definite
fluctuation terms:

QDt =
2

3

(〈θ2〉Dt − 〈θ〉2Dt

)
+ 2〈ω2〉Dt − 2〈σ2〉Dt . (38)

The first two of the divergence formulas (36) show that QDt can be written as a sum of flux
integrals (using Gauss’ theorem):

QDt =
2

VDt

∫
∂Dt

ΥII · dA − 2

3V 2
Dt

(∫
∂Dt

v · dA
)2

. (39)

We conclude that, for an isolated system, QDt would vanish and the domain would expand like
a homogeneous distribution of matter. However, especially for small spatial domains, this is
unrealistic.

2.6 Global properties of Newtonian models

There are alternative cases in which these boundary terms vanish. First, one would think of pe-
riodic boundary conditions imposed on the mean velocity: for periodic fields we can think of the
domain as being a box whose opposite faces are identified. The domain would be topologically
equivalent to a 3−torus having no boundary and, hence, surface integrals over the boundary
would vanish. The problem here is that, for vanishing QDt, the evolution on the domain would

11



2.6 Global properties of Newtonian models 2 EFFECTIVE NEWTONIAN DYNAMICS

Figure 5: Current simulations of structure formation in the Universe are based on a simple architecture: a
box is introduced that follows the expansion of the standard model of cosmology. Structures are described
to be periodic on the scale of the box that implies that the average over the matter distribution in the
box always vanishes. As a consequence the global evolution of the universe model is not influenced by
the structure formation process by construction. The Universe is seen as a replica of identical boxes,
justified by the argument that the box should be large enough to describe typical properties of the matter
distribution in a statistical sense. The cosmological principle demands that every observer would see the
same statistical properties of the matter distribution, which allows extrapolation of the properties seen in
a single box. The simulations are Newtonian, i.e. the geometry is Eudlidean in space and remains so.

be described by a Hubble flow, i.e., the velocity would be a linear function of x and cannot be
periodic. We can, however, extract a Hubble flow by introducing a peculiar–velocity u as follows:

v =: vH + u ; vH = H(t)x , (40a)

where we have split off a standard Hubble flow field vH corresponding to a homogeneous–
isotropic matter distribution. Now, we can impose periodic boundary conditions on the mean
peculiar–velocity field. We now calculate the backreaction for this separation ansatz. We first
obtain8:

I(vi,j) = 3H(t) + I(ui,j) ;

II(vi,j) = 3H2(t) + 2H(t)I(ui,j) + II(ui,j) , (40b)

so that the backreaction term becomes:

QDt = 2〈II(ui,j)〉Dt −
2

3
〈I(ui,j)〉2Dt

. (40c)

We see that QDt does not contain any term due to the Hubble expansion, but is solely determined
by the inhomogeneities encoded in the deviations u from the Hubble field.

Using these results, we may assume that a global Hubble flow exists on some large scale on
which periodic boundary conditions can be imposed on u; the Universe is then composed of
replica of a periodic box (see Fig. 5), the regional scale–factor describing the global evolution,

8Principal scalar invariants refer to the tensor field that follows in brackets.
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Figure 6: Newton’s theorem of the Iron Spheres
allows that a spherical domain that remains
spherical in its time–evolution contains radially
symmetric inhomogeneities. The radius of the
sphere aR follows the scale–factor of a homoge-
neous density distribution with the same total
mass contained in the inhomogeneous distribu-
tion.

aDt(t) ≡ a(t), and the global value of backreaction vanishes. On every smaller scale, however, the
fluctuations in the fields within and outside the domain influence the dynamics, and boundary
terms may be important.

A comment about the non–locality of the gravitational evolution of observables calculated
within the domain Dt is in order: suppose we have a solution for the evolution of observables
integrated over an arbitrary domain. Although, for given initial data within the domain, the
evolution of averaged observables is then determined, the influence on the domain from outer
regions is included in the solution, since initial data have to be constructed non–locally by also
taking into account matter outside the domain (Poisson’s equation has to be solved on the global
scale).

Another case in which QDt = 0 is related to an old theorem proved by Newton (see Fig. 6):
let us consider spherical domains. If the dynamics of the fluid preserves the spherical shape of
the domain, which is the case for spherically symmetric dynamical fields, then a test particle
on the boundary of the sphere would be attracted by the matter inside as if that matter were
concentrated in a mass point at the center of the sphere. In other words, one finds that the
radius of the sphere obeys Friedmann’s differential equation with the parameters (the total
restmass etc.) of the spherical region. Here, we do not give Newton’s proof of his theorem of
the iron spheres, but instead show his result within the framework of the generalized Friedmann
equations in the following Exercise.

2.7 Exercise: Newton’s iron spheres

Show that, for spherically symmetric mean velocity field, the backreaction term QBt

vanishes on a spherical domain Bt with radius r = r(R, t).

13
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Solution: The mean velocity field inside Bt is only depending on the radial distance
r to the origin and is always parallel to the radial unit vector er: v = S(r)er
(therefore, we exclude rotational velocity fields). The averaged first principal scalar
invariant may be obtained using Gauss’ theorem:

〈I〉Bt =
3

4πr3

∫
∂Bt

S(r)er · dA = 3
S(r(R, t))

r(R, t)
. (41a)

A similar calculation, using the representation of the second principal scalar invari-
ant as a full divergence, leads to:

〈II〉Bt = 3
S2(r(R, t))

r2(R, t)
=

1

3
〈I〉2Bt

, (41b)

so that the backreaction term vanishes, and aR(t), cf. Fig. ??, obeys Friedmann’s
differential equation (18) for the parameters of the spherical mass distribution.

For completeness, note that a calculation of the averaged third scalar invariant
results in the following relation:

〈III〉Bt =
1

27
〈I〉3Bt

. (41c)

2.8 Morphological and statistical interpretation

The expansion law discussed above is built on the rate of change of a simple morphological
quantity, the volume content of a domain. Although functionally it depends on other morpho-
logical characteristics of a domain, it does not explicitly provide information on their evolution.
An evolution equation for the backreaction term QDt is missing.

We shall, in this subsection, provide a morphological interpretation of QDt that is possible
in the Newtonian framework (the following considerations substantially rely on the Euclidian
geometry of space). This will improve our understanding of what QDt actually measures, if
geometry is not considered as a dynamical variable. The dynamical coupling of QDt to the
geometry of space sections in the relativistic case will change this picture.

Let us focus our attention on the boundary of the spatial domain Dt. A priori, the location
of this boundary in a non–evolving background space enjoys some freedom which we may con-
strain by saying that the boundary coincides with a velocity front of the fluid (hereby restricting
attention to irrotational flows). This way we employ the Legendrian point of view of velocity
fronts that is dual to the Lagrangian one of fluid trajectories. Let S(x, y, z, t) = s(t) define a
velocity front at Newtonian time t, v = ∇S.

Defining the unit normal vector n on the front, n = ±∇S/|∇S| (the sign depends on whether
the domain is expanding or collapsing), the average expansion rate can be written as a flux
integral using Gauss’ theorem,

〈Θ〉D =
1

VDt

∫
Dt

∇ · v d3x =
1

VDt

∫
∂Dt

v · dS , (42)

with the Euclidian volume element d3x, and the surface element dσ, dS = n dσ. We obtain the
intuitive result that the average expansion rate is related to another morphological quantity of
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the domain, the total area of the enclosing surface:

〈Θ〉D = ± 1

VDt

∫
∂Dt

|∇S| dσ . (43)

We now use the fact that the principal scalar invariants of the velocity gradient vi,j =: S,ij

can be transformed into complete divergences of vector fields (see Subsect. 2.5). (With our
assumptions ω in those expressions vanishes identically.)
In obtaining these expressions, the flatness of space is used essentially. Inserting the velocity
potential and performing the spatial average, we obtain:

〈II〉D =
1

VDt

∫
Dt

II d3x =

∫
∂Dt

H |∇S|2dσ ; (44)

〈III〉D =
1

VDt

∫
Dt

III d3x = ±
∫
∂Dt

G |∇S|3dσ , (45)

where H is the local mean curvature and G the local Gaussian curvature at every point on the
2−surface bounding the domain (see Subsect. 2.9). |∇S| = ds

dt equals 1, if the instrinsic arc–
length s of the trajectories of fluid elements is used instead of the extrinsic Newtonian time t.
The averaged invariants comprise, together with the volume, a complete set of morphological
characteristics known as the Minkowski Functionals Wα of a body:

W0(s) :=

∫
Dt

d3x = VDt ; W1(s) :=
1

3

∫
∂Dt

dσ ;

W2(s) :=
1

3

∫
∂Dt

H dσ ; W3(s) :=
1

3

∫
∂Dt

G dσ =
4π

3
χ . (46)

The Euler–characteristic χ determines the topology of the domain and is assumed to be an
integral of motion (χ = 1), if the domain remains simply–connected.

Thus, we have gained a morphological interpretation of the backreaction term: it can be
entirely expressed through three of the four Minkowski Functionals:

QDt(s) = 6

(W2

W0
− W2

1

W2
0

)
. (47)

The Wα ; α = 0, 1, 2, 3 have been introduced into cosmology in order to statistically assess
morphological properties of cosmic structure.

For a ball with radius R we have for the Minkowski Functionals:

WBR
0 (s) :=

4π

3
R3 ; WBR

1 (s) :=
4π

3
R2 ; WBR

2 (s) :=
4π

3
R ; WBR

3 (s) :=
4π

3
. (48)

Inserting these expressions into the backreaction term, Eq. (47), shows that QBR
Dt

(s) = 0,
and we have proved Newton‘s ‘Iron Sphere Theorem’, i.e. the fact that a spherically–symmetric
configuration features the expansion properties of a homogeneous–isotropic model. Moreover,
we can understand now that the backreaction term encodes the deviations of the domain‘s
morphology from that of a ball, a fact that we shall illustrate now with the help of Steiner‘s
formula of integral geometry.

Let dσ0 be the surface element on the unit sphere, then (according to the Gaussian map)
dσ = R1R2dσ

0 is the surface element of a 2−surface with radii of curvature R1 and R2. Moving
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the surface a distance ε along its normal we get for the surface element of the parallel velocity
front:

dσε = (R1 + ε)(R2 + ε)dσ0 =
R1R2 + ε(R1 +R2) + ε2

R1R2
dσ = (1 + ε2H + ε2G)dσ , (49)

where

H =
1

2

(
1

R1
+

1

R2

)
; G =

1

R1R2
, (50)

are the mean curvature and Gaussian curvature of the front as before.
Integrating Eq. (49) over the whole front we arrive at a relation between the total surface

area ADt of the front and ADtε
of its parallel front. The gain in volume may then be expressed

by an integral of the resulting relation with respect to ε (which is known as Steiner‘s formula
defining the Minkowski Functionals of a (convex) body in three spatial dimensions):

VDtε
= VDt +

∫ ε

0
dε′ADtε′ = VDt + εADt + ε2

∫
∂Dt

H dσ +
1

3
ε3
∫
∂Dt

G dσ . (51)

An important lesson that can be learned here is that the backreaction term QDt obviously en-
codes all orders of the N–point correlation functions, since the Minkowski Funktionals have this
property; it is not merely a two–point term as the form of QDt as an averaged variance would
suggest. In other words, a complete measurement of fluctuations must take into account that the
domain is Lagrangian and the shape of the domain is an essential expression of the full N–point
statistics of the matter enclosed within Dt. Kinematically, Steiner’s formula shows that the vol-
ume scale factor aDt , being defined through the volume, also depends on other morphological
properties of Dt in the course of evolution. In a comoving relativistic setting, the domain Dt is
frozen into the metric of spatial sections, so that we also understand that an evolving geometry
in general relativity takes the role of this shape–dependence in the Newtonian framework.

2.9 Excursion: curvature invariants of surfaces

Let S(x, y, z; t) = s(t) define velocity fronts at Newtonian time t as in the main
text. In what follows we consider a fixed instant of time and we shall derive explicit
expressions for the mean and Gaussian curvatures of the front, which in differential
geometry text books are usually given for surfaces in the form z = χ(x, y).
At points P = (x0, y0, z0), where the representation of the front in terms of χ
is nonsingular, ∇S �= 0, we have for the mean curvature H and the Gaussian
curvature G (here, indexed letters denote partial derivatives with respect to the
coordinates):

2H :=
(1 + χ2

x)χyy − 2χxχyχxy + (1 + χ2
y)χxx

(1 + χ2
x + χ2

y)
3/2

; (52)

G :=
χxxχyy − χ2

xy

(1 + χ2
x + χ2

y)
2

. (53)

Using the implicit definition S(x, y, χ(x, y)) = s of the velocity front, we calculate
the derivatives of χ:
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χx = −Sx

Sz
, χy = −Sy

Sz
,

χxx = −Sxx

Sz
+ 2SxSxz

S2
z

− S2
xSzz

S3
z

,

χxy = χyx = −Sxy

Sz
+

SxSyz

S2
z

+
SySxz

S2
z

− SxSySzz

S3
z

,

χyy = −Syy

Sz
+ 2

SySyz

S2
z

− S2
ySzz

S3
z

, (54)

and obtain for the curvature invariants of the front:

2H = 1
|∇S|3

[
2SxSySxy + 2SxSzSxz + 2SySzSyz − Sxx(S

2
y + S2

z )

−Syy(S
2
x + S2

z )− Szz(S
2
x + S2

y)
]

; (55)

G = 1
|∇S|4

[
S2
x(SyySzz − S2

yz) + S2
y(SxxSzz − S2

xz) + S2
z (SxxSyy − S2

xy)

−2SxSy(SxySzz − SxzSyz)− 2SxSz(SxzSyy − SxySyz)

−2SySz(SyzSxx − SxySxz)
]
. (56)
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Figure 7: Two simply–connected spatial domains are drawn in the Einstein–Riemann spacetime. Start-
ing with everywhere Euclidian space sections and spherical domains, the evolution on the left displays
a homogeneous–isotropic distribution on a flat space section that leaves the geometry (conformally) Eu-
clidian and the domain spherical. The scale factor a(t) (the geodesic radius of the sphere depicted as a
dashed line) obeys Friedmann’s differential equation (18) for k = 0, since such an evolution corresponds
to the cosmological models of Friedmann, Eddington and Lemâıtre, introduced previously. On the right,
both the geometry of the space section (represented by the 3–metric gij) and the morphology of the
domain change in the course of evolution. The picture is tentatively drawn in such a way that the direc-
tion of ‘time’ is orthogonal to the (three–dimensional) hypersurfaces of constant time, and the domain’s
radius (the dashed line) follows geodesics within the 3–geometry. We shall encounter this situation when
the fluid continuum is identified with the space continuum, and fluid elements are all at rest in the so
constructed spacetime.

3 Einstein Gravity

In general relativity we may consider a very close analogy to the Newtonian picture of the pre-
vious sections: we may introduce spatial (local) coordinates that are attached to each fluid
element, so that this latter is at rest in this coordinate system; with this choice of coordinates
we guarantee that the evolved fluid elements are again at rest in the same coordinate system at
the evolved time. The realization of this picture, as shown in Fig. 7, is a set of four local coor-
dinates (X, t) (taken to be a local patch of Minkowski spacetime, made up of a local Lagrangian
coordinate system X that stays attached to the fluid elements in the course of evolution, and the
eigentime of fluid elements, i.e. the normalized length of the fluid element’s worldline10 that
connects two fluid elements (identified by the same coordinate label). Putting this length to an
equal value for all the fluid elements defines a foliation of a spacetime that entirely consists of a
four–dimensional tube of the simply–connected fluid domains; in other words, the fluid’s evo-
lution itself defines the foliation of our spacetime. Upon quantifying the geometry of this tube
by Riemannian geometry we may speak about an Einstein–Riemann spacetime. In the framework
of general relativity the so construed intrinsic coordinate system of the spacetime foliation is
called comoving synchronous coordinate system. Viewing the fluid evolution in this way, we can

10The term trajectory was used previously; here we use worldline to express the corresponding notion in the
relativistic setting.
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also say that fluid elements are free–falling in their own gravitational field, tracing geodesics in
spacetime.

We are now going to have a look at Einstein’s equations. The following Excursion presents
the 3+1 form of Einstein’s equations, written for the special matter model irrotational dust. Note
that the irrotationality is a restriction required for our construction of spacetime (the expansion
tensor is defined as a temporal change of the metric, and has therefore to be symmetric.

3.1 Excursion: Einstein’s equations for irrotational dust in 3 + 1 form

Einstein’s equations read:

Rµν − 1

2
gµν R +

Λ

c2
gµν =

8πG

c4
Tµν , (57a)

with the 4–metric gµν , the 4–Ricci tensor Rµν , describing the intrinsic curvature
of spacetime, the cosmological constant Λ, and the energy–momentum tensor for a
pressure–less continuum (dust),

T dust
µν := � uµ uν , (57b)

where the 4–velocity uµ is normalized,

uµ uµ = −c2 . (57c)

Substituting the trace of Einstein’s equations, R = Rα
α = −8πGT/c4 + 4Λ/c2; T =

Tα
α = −c2�, again into Einstein’s equations yields the compact relation between

the intrinsic curvature tensor and the energy density source c2�:

c2 Rµν =
8πG�

c2

(
uµ uν +

c2

2
gµν

)
+ Λ gµν . (57d)

In the spacetime setting that we thus far developed the 4–metric and 4–velocity
have a simple form:

gµν = diag(−c2 , gij) ; uµ = (−c2, 0, 0, 0) , uµ = (1, 0, 0, 0) , (58a)

i.e., the 4–velocity is chosen to be normal to the hypersurfaces of constant time with
3–metric gij; the four–dimensional line–element in local coordinates simplifies to:

ds2 = −c2 dt2 + gij dX
i dXj . (58b)

Given this particular split into space and time (that is only possible for irrotational
dust), we can compute the components of the symmetric 4–Ricci tensor:

R00 = 4πG�− Λ ; R0i = 0 ; c2 Rij = 4πG� gij + Λ gij . (59)
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The above components of the 4–Ricci tensor can be expressed geometrically
through the three–dimensional quantitites extrinsic curvature Kij and instrinsic cur-
vature Rij of the hypersurfaces at constant t as follows:

R00 = K̇−Kij Kij ; R0i = K|i−Kk
i||k ; c2 Rij = c2 Rij−K̇ij−2KikK

k
j+KKij ,

(60)
where a vertical slash denotes partial spatial derivative with respect to X i, and a
double vertical slash covariant spatial differentiation with respect to the 3−metric.
Thus, we end up with the following set of equations (supplemented by the conti-
nuity equation and the defining equation for the extrinsic curvature:

�̇ = K� ; (61a)
ġij = −2Kij ; (61b)

−K̇ +Kij Kij = Λ− 4πG� ; (61c)
K|i −Kk

i||k = 0 ; (61d)

−K̇ij +KKij − 2KikK
k
j = −c2 Rij + ( 4πG�+ Λ ) gij . (61e)

The third equation is Raychaudhuri’s equation, the fourth set of equations are called
momentum constraints. Forming the trace of the last equation and inserting it into
Raychaudhuri’s equation, we obtain Hamilton’s constraint:

c2 R+K2 −Ki
j K

j
i = 16πG�+ 2Λ . (62)

Since the 3–Ricci tensor is determined by the 3–metric and its spatial derivatives,
the system of equations (61) is closed. A common representation of this system
is provided by considering six second–order evolution equations for the metric (ob-
tained by inserting the second equation into the last one), and four constraint equa-
tions consisting of the three equations of the momentum constraints and Hamilton’s
constraint. For convenience and for the purpose of comparing with variables that
correspond to the Newtonian theory, we write down the above system with upper
and lower indices and replace the extrinsic curvature Kij by the expansion tensor
−Θij; also note: ġij = −2Kij, but ġij = +2Kij, and K̇i

j − 2Ki
kK

k
j = gmiK̇mj:

�̇ = −θ� ; (63a)
ġij = 2 gikΘ

k
j ; (63b)

Θ[ij] = 0 ; (63c)

θ̇ = −Θi
j Θ

j
i + Λ− 4πG� ; (63d)

Θ̇i
j = −c2Ri

j − θΘi
j + ( 4πG�+ Λ ) δij . (63e)

θ|i −Θk
i||k = 0 ; (63f)

c2 R+ θ2 −Θi
j Θ

j
i = 16πG�+ 2Λ . (63g)

As an example we have a look at the relativistic homogeneous–isotropic models of cosmology.
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3.2 Exercise: relativistic form of Friedmann’s differential equation

Show that Hamilton’s constraint, Eq. (62), furnishes the relativistic form of Fried-
mann’s differential equation (18) in the case of a homogeneous–isotropic matter
distribution.

Solution: Indeed, putting � = �H(t) and expressing the second scalar invariant of
the extrinsic curvature through kinematical invariants (recall that vorticity has to
vanish in the present setting), II := 1/2(K2−Ki

j K
j
i) = 1/3θ2−σ2, then for σ = 0

we have:
c2 RH +

2

3
θ2H = 16πG�H + 2Λ , (64)

which is Friedmann’s differential equation (18) by defining θH = 3H(t) =
3ȧ(t)/a(t), and employing the expression for a constant curvature space c2RH =
6k/a(t)2.
Note that a homogeneous–isotropic deformation ηa = a(t)ηa(t0) implies that the
spatial metric is conformal to a time–independent constant curvature metric Gij :
gij = δab η

a
iη

b
j = a2(t)Gij with Gij = δab η

a
i(t0)η

b
j(t0).

We are now going to spatially average the scalar parts of Einstein’s equations.

4 Integral Properties and Effective Dynamics in Einstein Gravity

Finding solutions to Einstein’s equations for generic initial conditions requires approximations
or numerical integration. In relativistic cosmology we would be happy to know some global
properties for generic initial data, e.g. the evolution of the cosmological parameters governing
solutions of Einstein’s equations on average. We are now going to develop a formalism that
integrates the scalar parts of Einstein’s equations and so provides a framework to discuss scalar
average characteristics of an inhomogeneous cosmology. This provides an example that shows,
how we can easily work with Einstein’s equations based on our Newtonian knowledge.

4.1 Averaging the scalar parts of Einstein’s equations

For the purpose of averaging we shall consider a compact and simply–connected domain con-
tained within spatial hypersurfaces that are specified below. This domain will be followed along
the flow lines of the fluid elements; thus we require that the total restmass of the fluid within
the domain be conserved. We shall denote this domain by Dg or, for notational ease23, D.

We define the averaging operation in terms of Riemannian volume integration, restricting
attention to scalar functions Ψ(Xi, t),

〈Ψ(Xi, t)〉D :=
1

VD

∫
D
Ψ(Xi, t)

√
gd3X , (65)

23Compared with the previous Newtonian investigation, this domain corresponds to a Lagrangian domain; it is
now implicitly time–dependent due to the evolution of the 3–metric. We may say that the domain is ‘frozen’ into the
metric.
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with the Riemannian volume element dµg :=
√
gd3X, g := det(gij), and the volume of an

arbitrary compact domain, VD(t) :=
∫
D
√
gd3X; Xi are coordinates in a t = const. hypersurface

(with 3−metric gij) that are comoving with fluid elements of dust (i.e. they are constant along
spacetime geodesics here; note that we henceforth set c = 1):

ds2 = −dt2 + gijdX
idXj . (66)

It is evident from the above setting that we predefine a simple time–orthogonal foliation, which
restricts the matter to an irrotational dust continuum. (The formalism below can be carried over
to more general settings.)

As in the Newtonian case we define an effective scale factor by the volume of a simply–
connected domain D in a t–hypersurface, here normalized by the volume of the initial domain
Di,

aDt :=

(
VD
VDi

)1/3

. (67)

For a restmass preserving domain D, volume averaging of a scalar function Ψ does not commute
with its time–evolution (you can easily proof this along the lines of the Newtonian proof by
setting J =

√
g and noting the identity J̇ = θJ):

〈Ψ〉̇D − 〈Ψ̇〉D = 〈Ψθ〉D − 〈Ψ〉D〈θ〉D = 〈Ψδθ〉D = 〈θδΨ〉D = 〈δΨδθ〉D , (68)

where θ denotes the local expansion rate (as minus the trace of the extrinsic curvature of the
hypersurfaces t = const.). We have rewritten the right–hand–side of the first equality in terms of
the deviations of the local fields from their spatial averages, δΨ := Ψ−〈Ψ〉D and δθ := θ−〈θ〉D.

The key–statement of the commutation rule (68) is that the operations spatial averaging and
time evolution do not commute. In cosmology we may think of initial conditions at the epoch
of last scattering, when the fluctuations imprinted on the Cosmic Microwave Background are
considered to be averaged–out on a restframe of a standard Friedmann–Lemâıtre–Robertson–
Walker (FLRW) cosmology. In this picture the evolution of the Universe is described by first
averaging–out (or ignoring) inhomogeneities and then evolving the average distribution by a
homogeneous (in the above case homogeneous–isotropic) universe model. A realistic model
would first evolve the inhomogeneous fields and, at the present epoch, the resulting fields would
have to be evaluated by spatial averaging to obtain the final values of, e.g., the averaged density
field. In particular, this comment applies to all cosmological parameters.

4.2 Effective relativistic cosmologies

First, note that for the averaged expansion rate 〈θ〉D we have as before:

〈θ〉D =
V̇D
VD

=: 3HD . (69)

The latter equality demonstrates that this quantity may be regarded as an effective Hubble func-
tion.

We are now interested to find an evolution equation for the averaged expansion of a general
inhomogeneous model. For this purpose we can exploit the commutation rule (68) by setting
Ψ ≡ θ. For the spatially averaged expansion, Eq. (69) we first obtain:

〈θ〉̇D − 〈θ̇〉D = 〈θ2〉D − 〈θ〉2D = 〈(δθ)2〉D . (70)
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Inserting Raychaudhuri’s evolution equation, θ̇ = Λ − 4πG� − 1
3θ

2 − 2σ2 (with the rate of shear
σ2 = 1

2σijσ
ij), into (70) and using the effective scale–factor aD we obtain:

3
äD
aD

+ 4πG
MD
Via

3
D

− Λ = QD . (71a)

The first integral of the above equation is directly given by averaging the Hamiltonian constraint:(
ȧD
aD

)2

− 8πG

3

MD
Via

3
D

+
〈R〉D
6

− Λ

3
= −QD

6
, (71b)

where the total restmass MD, the averaged spatial Ricci scalar 〈R〉D and the kinematical back-
reaction term QD are domain–dependent and, except the mass, time–dependent functions. The
backreaction source term is given by

QD := 2〈II〉D − 2

3
〈I〉2D =

2

3
〈(θ − 〈θ〉D)2〉D − 2〈σ2〉D ; (71c)

here, I = Θi
i and II = 1

2 [ (Θ
i
i)
2−Θi

jΘ
j
i ] denote the principal scalar invariants of the expansion

tensor, defined as minus the extrinsic curvature tensor Kij := Θij . In the second equality above
it was split into kinematical invariants through the decomposition Θij = 1

3gijθ + σij , with the
rate of expansion θ = Θi

i, and the shear tensor σij . (Note that vorticity is absent in the present
model, unlike the situation in the corresponding Newtonian model.)

The time–derivative of the averaged Hamiltonian constraint (71b) agrees with the averaged
Raychaudhuri equation (71a) by virtue of the following integrability condition:

∂tQD + 6
ȧD
aD

QD + ∂t 〈R〉D + 2
ȧD
aD

〈R〉D = 0 , (72a)

which we may write in the more compact form:

1

a6D
∂t
(QDa6D

)
+

1

a2D
∂t
( 〈R〉Da2D

)
= 0 . (72b)

Formally integrating this condition yields:

kDi

a2D
− 1

3a2D

∫ t

ti

dt′ QD
d

dt′
a2D(t

′) =
1

6
( 〈R〉D +QD ) , (72c)

i.e., besides the total material mass MD we have a further integral of motion given by the
domain–dependent integration constant kDi

.
Eq. (72b), having no Newtonian analogue, shows that the averaged intrinsic curvature and

the averaged extrinsic curvature (encoded in the backreaction term) are dynamically coupled.
Stating this genuinly relativistic property, we also note the surprising fact that, inserting (72c)
into (71b) results in an equation that is formally equivalent to its Newtonian counterpart,
Eq. (35c):

ȧ2D + kDi

a2D
− 8πG 〈�〉D

3
− Λ

3
=

1

3a2D

∫ t

ti

dt′ QD
d

dt′
a2D(t

′) . (73)

The effective scale–factor obeys the same equation as in Newtonian theory similar to the situa-
tion known for the homogeneous–isotropic case. Note that these effective equations also cover
anisotropic inhomogeneous cosmologies.
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4.3 The production of information in the Universe

The above considerations on effective expansion properties can be essentially traced back to
the non–commutativity of averaging and time–evolution, lying at the root of backreaction. The
same reasoning underlies the following entropy argument. Applying the commutation rule (68)
to the density field, Ψ = �,

〈∂t�〉D − ∂t 〈�〉D =
∂t S{�|| 〈�〉D}

VD
, (74)

we derive, as a source of non–commutativity, the (for positive–definite density) positive–definite
Lyapunov functional (known as Kullback–Leibler functional in information theory):

S{�|| 〈�〉D} : =

∫
D
� ln

�

〈�〉D
Jd3X ; J ≡ √

g . (75)

This measure vanishes for Friedmannian cosmologies (‘zero structure’). It attains some positive
time–dependent value otherwise. The source in (74) shows that relative entropy production
and volume evolution are competing: commutativity can be reached, if the volume expansion is
faster than the production of information contained within the same volume.

Generally, information entropy is produced, i.e. ∂t S > 0 with

∂t S{�|| 〈�〉D}
VD

= −〈δ�Θ〉D = −〈�δΘ〉D = −〈δ�δΘ〉D , (76)

(and with the deviations of the local fields from their average values, e.g. δ� := � − 〈�〉D), if
the domain D contains more expanding underdense and contracting overdense regions than the
opposite states contracting underdense and expanding overdense regions. The former states are
clearly favoured in the course of evolution, as can be seen in simulations of large–scale structure.

There are essentially three lessons relevant to the origin of backreaction that can be learned
here. First, structure formation (or ‘information’ contained in structures) installs a positive–
definite functional as a potential to increase the deviations from commutativity; it can therefore
not be statistically ‘averaged away’ (the same remark applies to the averaged variance of the
expansion rate discussed before). Second, gravitational instability acts in the form of a negative
feedback that enhances structure (or ‘information’), i.e. it favours contracting clusters and ex-
panding voids. This tendency is opposite to the thermodynamical interpretation within a closed
system where such a relative entropy would decrease and the system would tend to thermo-
dynamical equilibrium. This is a result of the long–ranged nature of gravitation: the system
contained within D must be treated as an open system. Third, backreaction is a genuinely non–
equilibrium phenomenon, thus, opening this subject also to the language of non–equilibrium
thermodynamics, general questions of gravitational entropy, and observational measures using
distances to equilibrium. ‘Near–equilibrium’ can only be maintained (not established) by a si-
multaneous strong volume expansion of the system.

In particular, we conclude that the standard model may be a good description for the av-
eraged variables only when information entropy production is over–compensated by volume
expansion (measured in terms of a corresponding adimensional quantity). This latter property
is realized by linear perturbations at a FLRW background. Thus, the question is whether this
remains true in the nonlinear regime, where information production is strongly promoted by
structure formation and expected to be more efficient. Particular exact nonlinear solutions of
general relativity show that the average model indeed deviates from the FLRW model.
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4.4 Effective Friedmannian framework

We may also recast the general averaged equations by appealing to the Friedmannian frame-
work. This amounts to re–interpret geometrical terms, that arise through averaging, as effective
sources within a Friedmannian setting.

In the present case the averaged equations may be written as standard zero–curvature Fried-
mann equations for an effective perfect fluid energy momentum tensor with new effective sources:

�Deff = 〈�〉D − 1

16πG
QD − 1

16πG
〈R〉D ;

pDeff = − 1

16πG
QD +

1

48πG
〈R〉D . (77)

3

(
ȧD
aD

)2

− 8πG�Deff − Λ = 0 ;

3
äD
aD

+ 4πG(�Deff + 3pDeff )− Λ = 0 ;

�̇Deff + 3
ȧD
aD

(
�Deff + pDeff

)
= 0 . (78)

We notice that QD, if interpreted as a source, introduces a component with ‘stiff equation of
state’, pDQ = �DQ, suggesting a correspondence with a free scalar field (discussed in the next sub-
section), while the averaged scalar curvature introduces a component with ‘curvature equation
of state’ pDR = −1/3�DR . Although we are dealing with dust matter, we appreciate a ‘geometrical
pressure’ in the effective energy–momentum tensor.

4.5 Relation to scalar field theories

In the above–introduced framework we distinguish the averaged matter source on the one hand,
and averaged sources due to geometrical inhomogeneities stemming from extrinsic and intrinsic
curvature (kinematical backreaction terms) on the other. As shown above, the averaged equa-
tions can be written as standard Friedmann equations that are sourced by both. Thus, we have
the choice to consider the averaged model as a (scale–dependent) ‘standard model’ with matter
source evolving in a mean field of backreaction terms. This form of the equations is closest to
the standard model of cosmology. It is a ‘morphed’ Friedmann cosmology, sourced by matter
and ‘morphed’ by a (minimally coupled) scalar field, the morphon field1. We write (recall that
we have no matter pressure source here):

�Deff =: 〈�〉D + �DΦ ; pDeff =: pDΦ , (79)

with
�DΦ = ε

1

2
Φ̇2
D + UD ; pDΦ = ε

1

2
Φ̇2
D − UD , (80)

where ε = +1 for a standard scalar field (with positive kinetic energy), and ε = −1 for a
phantom scalar field (with negative kinetic energy)2. Thus, in view of Eq. (77), we obtain the

1This name is motivated by our previous morphological interpretation of the backreaction term.
2We have chosen the letter U for the potential to avoid confusion with the volume functional; if ε is negative, a

‘ghost’ can formally arise on the level of an effective scalar field, although the underlying theory does not contain
one.
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following correspondence:

− 1

8πG
QD = εΦ̇2

D − UD ; − 1

8πG
〈R〉D = 3UD . (81)

Inserting (81) into the integrability condition (72b) then implies that ΦD, for Φ̇D �= 0, obeys the
(scale–dependent) Klein–Gordon equation3:

Φ̈D + 3HDΦ̇D + ε
∂

∂ΦD
U(ΦD, 〈�〉D) = 0 . (82)

The above correspondence allows us to interpret the kinematical backreaction effects in terms of
properties of scalar field cosmologies, notably quintessence or phantom–quintessence scenarii
that are here routed back to models of inhomogeneities. Dark Energy emerges as unbalanced
kinetic and potential energies due to structural inhomogeneities4.

4.6 Examples of inhomogeneous cosmologies

In this subsection we give some examples of inhomogeneous relativistic cosmologies that qual-
itatively allow to trace the problems of Dark Energy, Dark Matter but also Inflation back to
inhomogeneous geometrical spatial properties.

4.6.1 Cosmic equation of state and Dark Energy equation of state

We can characterize a solution of the averaged equations by a cosmic equation of state pDeff =
β(�Deff , aD) with wD

eff := pDeff/�
D
eff . Now, we may separately discuss (i.e. without matter source)

the morphon equation of state that plays the role of the Dark Energy equation of state,

wD
Φ :=

QD − 1/3〈R〉D
QD + 〈R〉D . (83)

The above expression has the advantage that one can immediately infer the case of a constant
Dark Energy equation of state, so–called quiessence models, that here correspond to scaling solu-
tions of the morphon field with a constant fraction of kinetic to potential energies:

2ED
kin

ED
pot

=
εΦ̇2

DVD
−UDVD

= −1− 3QD
〈R〉D

= 2
wD
Φ + 1

wD
Φ − 1

, (84)

where the case QD = 0 (no kinematical backreaction), or wD
Φ = −1/3 (i.e. �DΦ + 3pDΦ = 0)

corresponds to the ‘virial condition’

2ED
kin + ED

pot = 0 , (85)

3Note that the potential is not restricted to depend only on ΦD explicitly. An explicit dependence on the averaged
density and on other variables of the system (that can, however, be expressed in terms of these two variables) is
generic.

4More precisely, kinematical backreaction appears as excess of kinetic energy density over the ‘virial balance’,
QD = 0, while the averaged scalar curvature of space sections is directly proportional to the potential energy
density; e.g. a void (a ‘classical vacuum’) with on average negative scalar curvature (a positive potential) can be
attributed to a negative potential energy of a morphon field (‘classical vacuum energy’).
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obeyed by the scale–dependent Friedmannian model5. As has been already remarked, a non–
vanishing backreaction is associated with violation of ‘equilibrium’. Again it is worth empha-
sizing that the above–defined equations of state are scale–dependent. With the help of these
dimensionless parameters an inhomogeneous, anisotropic and scale–dependent state can be ef-
fectively characterized.

4.6.2 Backreaction as a constant curvature or a cosmological constant

Kinematical backreaction terms can model a constant–curvature term as is already evident from
the integrability condition (72b). Also, a cosmological constant need not be included into the
cosmological equations, since QD can play this role and can even provide a constant exactly. The
exact condition reads:

2

a2D

∫ t

ti

dt′ QD
d

dt′
a2D(t

′) ≡ QD , (86)

which implies QD = QD(ti) = const. as the only possible solution. Such a ‘cosmological con-
stant’ installs, however, via Eq. (72c), a non–vanishing averaged scalar curvature (even for
kDi

= 0):

〈R〉D =
6kDi

a2D
− 3QD(ti) . (87)

4.6.3 The Universe in an out–of–equilibrium state: a fluctuating Einstein cosmos

Following Einstein’s thought to construct a globally static model, we may require the effective
scale–factor aΣ on a simply–connected 3–manifold Σ without boundary to be constant on some
time–interval, hence ȧΣ = äΣ = 0 and the averaged equations assume the form:

QΣ = 4πG
MΣ

Via
3
Σ

− Λ ; 〈R〉Σ = 12πG
MΣ

Via
3
Σ

+ 3Λ , (88)

with the global kinematical backreaction QΣ, the globally averaged scalar 3–Ricci curvature
〈R〉Σ, and the total restmass MΣ contained in Σ.

Let us now consider the case of a vanishing cosmological constant: Λ = 0. The averaged
scalar curvature is, for a non–empty Universe, always positive, and the balance conditions (88)
replace Einstein’s balance conditions that determined the cosmological constant in the standard
homogeneous Einstein cosmos. A globally static inhomogeneous cosmos without a cosmological
constant is conceivable and characterized by the cosmic equation of state:

〈R〉Σ = 3QΣ = const. ⇒ pΣeff = �Σeff = 0 . (89)

Eq. (89) is a simple example of a strong coupling between curvature and fluctuations. Note that,
in this cosmos, the effective Schwarzschild radius is larger than the radius of the Universe,

aΣ =
1√

4πG 〈�〉Σ
=

1

π
2GMΣ =

1

π
aSchwarzschild , (90)

5In the case of vanishing kinematical backreaction, the scalar field is present for our definition of the correspon-
dence and it models a constant–curvature term 〈R〉D = 6kDi/a

2
D. Alternatively, we could associate a morphon with

the deviations WD from the constant–curvature model only.
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hence confirms the cosmological relevance of curvature on the global scale Σ. The term ‘out–
of–equilibrium’ refers to our measure of relative information entropy: in the above example
volume expansion cannot compete with information production because the volume is static,
while information is produced.

Such examples of global restrictions imposed on the averaged equations do not refer to a
specific inhomogeneous metric, but should be thought of in the spirit of the virial theorem that
also specifies integral properties but without a guarantee for the existence of inhomogeneous
solutions that would satisfy this condition. (It can be shown that a possible stabilization mecha-
nism of the stationarity condition by backreaction is possible, as opposed to the global instability
of the classical Einstein cosmos.)

4.6.4 A globally stationary inhomogeneous cosmos

Suppose that the Universe indeed is hovering around a non–accelerating state on the largest
scales. A wider class of models that balances the fluctuations and the averaged sources can be
constructed by introducing globally stationary effective cosmologies: the vanishing of the second
time–derivative of the scale–factor would only imply ȧΣ = const. =: C, i.e., aΣ = aS +C(t− ti),
where the integration constant aS is generically non–zero, e.g. the model may emerge from
a globally static cosmos, aS := 1, or from a ‘Big–Bang’, if aS is set to zero. In this respect
this cosmos does not appear very different from the standard model, since it evolves at an
effective Hubble rate HΣ ∝ 1/t. (There are, however, substantial differences in the evolution of
cosmological parameters.)

The averaged equations deliver a dynamical coupling relation between QΣ and 〈R〉Σ as a
special case of the integrability condition (72b)6:

−∂tQΣ +
1

3
∂t 〈R〉Σ =

4C3

a3Σ
. (91)

The cosmic equation of state of the Λ−free stationary cosmos and its solutions read:

pΣeff = −1

3
�Σeff ; QΣ =

QΣ(ti)

a3Σ
; (92)

〈R〉Σ =
3QΣ(ti)

a3Σ
− 3QΣ(ti)− 〈R〉Σ (ti)

a2Σ
. (93)

The total kinematical backreaction QΣVΣ = 4πGMΣ is a conserved quantity in this case.
The stationary state tends to the static state only in the sense that, e.g. in the case of an

expanding cosmos, the rate of expansion slows down, but the steady increase of the scale factor
allows for a global change of the sign of the averaged scalar curvature. As Eq. (93) shows,
an initially positive averaged scalar curvature would decrease, and eventually would become
negative as a result of backreaction. This may not necessarily be regarded as a signature of a
global topology change, as a corresponding sign change in a Friedmannian model would suggest.

The above two examples of globally non–accelerating universe models evidently violate the
cosmological principle, while they would imply a straightforward explanation of Dark Energy
on regional (Hubble) scales: in the latter example the averaged scalar curvature has acquired a

6The constant C is determined, for the normalization aΣ(ti) = 1, by:
6C2 = 6Λ + 3QΣ(ti)− 〈R〉Σ (ti).
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piece ∝ a−3
Σ that, astonishingly, had a large impact on the backreaction parameter, changing its

decay rate from ∝ a−6
Σ to ∝ a−3

Σ , i.e. the same decay rate as that of the averaged density. This is
certainly enough to produce sufficient ‘Dark Energy’ on some regional patch due to the presence
of strong fluctuations7. However, solutions that respect the cosmological principle and, at the
same time, satisfy observational constraints can also be constructed. Scaling solutions that we
shall discuss now, have been exploited for such a more conservative approach.

4.6.5 The solution space explored by scaling solutions

A systematic classification of scaling solutions of the averaged equations can be given. Like
the averaged dust matter density 〈�〉D that evolves, for a restmass preserving domain D, as
〈�〉D = 〈�〉Di

a−3
D , we can look at the case where also the backreaction term and the averaged

scalar curvature obey scaling laws,

QD = QDi
anD ; 〈R〉D = RDi

apD , (94)

where QDi
and RDi

denote the initial values of QD and 〈R〉D, respectively. The integrability
condition (72b) then immediately provides as a first scaling solution:

QD = QDi
a−6
D ; 〈R〉D = RDi

a−2
D . (95)

This is the only solution with n �= p. In the case n = p, we can define a coupling parameter rD
(that can be chosen differently for a chosen domain of averaging8) such that QDi

∝ RDi
; the

solution reads:

QD = r 〈R〉D = r RDi
anD ; n = −2

(1 + 3r)

(1 + r)
; r = −(n+ 2)

(n+ 6)
, (96)

(with r �= −1 and n �= −6). The mean field description of backreaction defines a scalar field
evolving in a positive potential, if RDi

< 0 (and in a negative potential if RDi
> 0), and a real

scalar field, if εRDi
(r+1/3) < 0. In other words, if RDi

< 0 we have a priori a phantom field for
r < −1/3 and a standard scalar field for r > −1/3; if RDi

> 0, we have a standard scalar field
for r < −1/3 and a phantom field for r > −1/3.

For the scaling solutions the explicit form of the self–interaction potential of the scalar field
can be reconstructed:

U(ΦD, 〈�〉Di
) =

2(1 + r)

3

(
(1 + r)

ΩDi
R

ΩDi
m

) 3
n+3

〈�〉Di
sinh

2n
n+3

(
(n+ 3)√−εn

√
2πGΦD

)
, (97)

where 〈�〉Di
is the initial averaged restmass density of dust matter, introducing a natural scale

into the scalar field dynamics. This potential is well–known in the context of phenomenological
quintessence models for Dark Energy. The scaling solutions correspond to specific scalar field
models with a constant fraction of kinetic and potential energies of the scalar field, i.e. with
Eq. (84),

ED
kin +

(1 + 3r)

2ε
ED

pot = 0 . (98)

We previously discussed the case r = 0 (‘zero backreaction’) for which this condition agrees with
the standard scalar virial theorem.

7A conservative estimate, based on currently discussed numbers for the cosmological parameters, shows that such
a cosmos provides room for at least 50 Hubble volumes.

8For notational ease we henceforth drop the index D and simply write r.
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4.6.6 Inhomogeneous Inflation

In the same spirit we may prescribe a potential to mimic not only Dark Energy, but also scalar
Dark Matter or Inflation. We shall give below a typical example for an inflationary potential.
Backreaction thus creates inflation out of curvature inhomogeneities of the Einstein vacuum, if
we do not include energy sources. It can be shown that the specific example below leads to a
smoothening out of inhomogeneities after inflation and, thus, provides a natural mechanism of
what is needed to exit inflation.

One of the simplest examples, which has been extensively studied in the context of so–called
chaotic inflation, is a potential of the Ginzburg–Landau form:

UGL
D = U0

(
Φ2
D − Φ2

0

)2
/Φ4

0 . (99)

This quartic potential can also be related to a fundamental Higgs field. However, even if such a
scalar field is fundamental, there is the possibility that no Higgs particle is involved – as in our
case.
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Shear + max Curv.

Homog. + Curv.
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Figure 8: The Ginzburg–Landau potential in arbitrary units and the possible initial conditions as well
as their physical meaning. All conditions possess some curvature WDi

< 0. The arrows schematically
indicate the amplitude of the morphon’s initial speed Φ̇Di

. In the order of the points (from left to right):
the first two points dominated by shear fluctuations (red, green) are obtained for QDi

< 0 ⇔ Φ̇2
Di

>

2(H2
Di

+ kDi
); the next points dominated by expansion fluctuations (pink, blue) for Φ̇2

Di
< 2(H2

Di
+ kDi

),
where the de Sitter–Λ equivalent case has a stiff morphon Φ̇Di

= 0; the homogeneous case (last point,
orange) is obtained for Φ̇2

Di
= 2(H2

Di
+ kDi

). (For details see: T. Buchert, N. Obadia, Class. Quant. Grav.
28, 162002 (2011). e–print: arXiv:1010.4512.)

Once the minimum Φ0 is fixed, the evolution of the morphon, given the integrability condi-
tion, is practically independent of the initial conditions. In Fig. 8 we show how all acceptable
initial conditions are reinterpreted in terms of the curvature, and expansion/shear fluctuations.
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