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Context

.





Combining the 9 Planck channels into a map of the Cosmic background

Getting rid of all (?) foregrounds: the noble art of component separation.

Or is it just CMB cleaning ?

Credit: ESA, FRB



The oldest image in the world, by Planck

Color scale : ± 300 µK

But some parts of it are more recent: inpainting. . .



COBE 1992, WMAP 2001, Planck 2013

Gains in resolution also made possible by an increased frequency coverage,
making foreground cleaning at shorter wavelengths more manageable.



And now for something biomedical. ECG: Electro-Cardiography

8 EEG electrodes located on the thorax and abdomen of a pregnant woman.

Looking for linear decompositions: Data = Mixing matrix ⇥ Sources.

Can we extract the heartbeat of the (soon to be) baby ?

Data Credits: Daisy database



Principal component analysis
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• Orthogonal mixture, uncorrelated components 1
T

P
t yi(t)yj(t) = 0 for i 6= j

• Decorrelation is weak (always posible), orthogonality is implausible.

. . . the baby signal is more visible but not separated yet.



Independent component analysis

=
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• Linear decomposition into “the most independent sources”

• Blind: only independence is at work but it must go beyond decorrelation.

• Independence is statistically very strong but often physically plausible.

• Weak assumptions �! wide applicability.
. . . and the fetal signal is clearly visible (it is the fifth extracted source, at about twice the
beat rate).

Actually, this works because the signals are non Gaussian, even sparse.
Would it work for CMB ? How to do it accurately?



Four CMB anisotropy maps delivered to the Planck Legacy Archive (2013)

NILC SEVEM SMICA C-R

`SNR=1 = 1790 `SNR=1 = 1790 `SNR=1 = 1790 `SNR=1 = 1550

Wavelet space Wawelet-like Harmonic space Pixel space

non-parametric non-parametric semi-parametric parametric

• Various assumptions about the foregrounds.

• Various filtering schemes (space-dependent, multipole-dependent, or both).



Some requirements for producing a CMB map

• The method should be accurate and high SNR (obviously).

• The method should be linear in the data:

1. It is critical not to introduce non Gaussianity

2. Propagation of simulated individual inputs should be straightforward

• The result should be easily described (e.g. map=beam*sky+noise) with a well
defined transfer function (beam control).

• The method should be fast enough for thousands of Monte-Carlo runs.

• The method should be able to support wide dynamical ranges, over the sky, over
angular frequencies, across channel frequencies.



Wide dynamics over the sky

Left: The W-MAP K band. Natural color scale [-200, 130000] µK.
Middle: Same map with an equalized color scale.
Right: Same map with a color scale adapted to CMB: [-300, 300] µK.

Average power as a function of latitude
on a log scale for the same map.

Do we really want to compute two-point correlations over the whole sky?



Wide spectral dynamics, SNR variations

Ĉ(`) · `(`+ 1)/2π in [µKRJ]2 for fsky = 0.99.



Wide spectral dynamics, SNR variations

Ĉ(`) · `(`+ 1)/2π in [µKRJ]2 for fsky = 0.40.



And what about the noise ?

Noise RMS in µK in the SMICA map.



Distribution of Galactic foregrounds. 1) Frequency distribution

Brightness temperature RMS as a function of frequency and astrophysical component, for both

temperature (left) and polarization (right). For temperature, each component is smoothed to an

angular resolution of 1 degree FWHM, and the lower and upper edges of each line are defined by

masks covering 81 and 93% of the sky, respectively. For polarization, the corresponding smoothing

scale is 40 arcminutes, and the sky fractions are 73 and 93%.

From Planck 2014 foreground paper.



Distribution of Galactic foregrounds. 2) Spatial distribution

Planck 2015 Galactic foregrounds: (CMB), synchrotron, free-free, spinning dust, thermal dust, CO

lines.



Extra Galactic foregrounds

And then, there are extra Galactic foregrounds such as

• The Cosmic Infrared Background,

• Galaxy clusters seen via the SZ effect

And then point sources (non diffuse by definition)

• IR Galaxies

• Radio Galaxies

which can be masked out.



Proverb

It’s not how dirty it is.

It’s how well you can clean it up.



• Key factors helping CMB extraction

i) No occlusion of the CMB by (very?) coherent foregrounds.

ii) Good calibration, i.e. the instrument response to the CMB is well determined.

iii) Statistical independence between CMB and foregrounds+noise.

i+ii+iii) enough for simple methods to work.

• But optimal processing wants a complete statistical model, doesn’t it?

a) CMB very close to a realization of a Gaussian stationary field (good).

b) No realistic statistical model for Galactic foregrounds (bad).

c) And there is only one sky (bad).. . .

These lectures focuses on the importance (or lack thereof) of statistical modeling.

For doing so, we often simplify as much as possible the data model.



The mixing model for rigid components

The ith map, observed at frequency νi, is a noisy superposition of components:

Xi(θ, φ) =
C∑

c=1

Xc
i (θ, φ) +Ni(θ, φ). c = cmb, dust, SZ, . . .

If the emission of component c changes with νi while keeping the same spatial pattern,
then that component is said to ‘scale rigidly’ and we have

Xc
i (θ, φ) = Aci Sc(θ, φ)

If all components scale rigidly or, i.o.w. are fully coherent, then stacking the sky
maps seen at all F observation frequencies:

X(θ, φ) =



X1(θ, φ)

...
XF (θ, φ)


 = AS(θ, φ) +N(θ, φ) A : the F × C mixing matrix.

In these lectures, we focus on that simple model and consider the statistial aspects of
component separation, that is, the best recovery of S given X and various amounts
of prior information.

This is a simplified setting, complications may appear later. . .



The component separation problem may not be what you think

• If the beams have been perfectly corrected and

• if there are no more foreground emissions than channels and

• if each foreground is fully coherent so that an accurate model is

X(θ, φ) =



X1(θ, φ)

...
Xd(θ, φ)


 = AS(θ, φ) +N(θ, φ)

• if the mixing matrix A is known perfectly,

• if all fields are Gaussian stationary processes with known spectra,

then, optimal solution(s) can be easily derived (see below).

The main issue is dealing with the uncertainties
and the assumptions/approximations in the above statements.



Maximal uncertainty: Blind component separation (a.k.a. ICA)






=




A11 · · ·
· · · ·
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CMB!




+
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An ICA method (JADE) finds uncorrelated, maximally non Gaussian components.
Here, results on 5 W-MAP channels degraded to common resolution.



Foregrounds and how to get rid of them ?

CMB

Gal clusters

Gal clusters

Galaxies

Free-free

Synchrotron

Dust

Noise

Various foreground emissions (both galactic and extra-
galactic) pile up in front of the CMB.

But they do so additively !

Even better, most scale rigidly with frequency: each
frequency channel sees a different mixture of each as-
trophysical emission:

d = As + n (data = mixture x sources + noise)

Such a linear mixture can be inverted . . . if the mixing
matrix A is known. How to find it or do without it ?

1 Trust astrophysics and use parametric models, or

2 Trust your data and the power of statistics.



Diffuse foregrounds vs point sources

Not the same !

You mask resolved point sources.

You do compsep for diffuse foregrounds.



.

Best linear combination(s!)

.



The best MSE predictor

Try to predict a vector X based on the observation of a vector Y .

Assume a probablistic relation between X and Y , represented by their joint probability
distribution p(X,Y ).

Problem: What the best predictor in the MSE, that is, what is the function f(Y )

giving the minimum mean squared error:

min
f

E‖X − f(Y )‖2

The solution is the conditional expectation of X given Y

f?(Y ) = E(X|Y ).

Often called ‘the Wiener filter’.

Proof: E =
∫
p(X,Y ) =

∫
p(X|Y )p(Y )



The best linear filter

Best (in the MSE sense) linear predictor W of X given Y :

min
W

E‖X −WY ‖2

Depends on Rxx = Cov(X) and on Rxy = Cov(X,Y ), and only on that:

W ? = RxyR
−1
yy

regardless of the distribution of (X,Y ) (finite variance)

For (jointly!) Gaussian vectors X and Y , the Wiener filter boils down to:

E(X|Y ) = RxyR
−1
yy Y

This is linear in Y !



Statistical efficiency versus simplicity

For non Gaussian observations, the best processor (in terms of mean squared error)
is non linear. BUT,

1. In order to implement the best non linear processor on non Gaussian variables,
one needs to know or to estimate the non Gaussian part of their distribution.

2. The best non linear filtering may be significantly (or immensely) more difficult
to implement.

3. Non-linear filtering may induce non Gaussianities !

4. The characterization and propagation of errors is much harder for non linear
processing.

5. The CMB is Gaussian-distributed in a first very good approximation.



A quick look at the Gaussian scalar Wiener filter

Scalar Gaussian signal in uncorrelated Gaussian noise:

y = x+ n

Then Rxy = σ2
x and Ryy = σ2

x + σ2
n and we find a simple downweighting:

x̂ = W?y = RxyR
−1
yy y =

σ2
x

σ2
x + σ2

n
y =

1

1 + SNR−1 y SNR =
σ2
x

σ2
n

The relative reconstruction error

E(x̂− x)2

σ2
x

= · · · = 1

1 + SNR
≤ 1

If you’re smart, you never make more than 100% error. ;-)

1. ‘Better safe than sorry’ or ‘If SNR is bad, don’t even try’.

2. Not ‘unbiased’ (what a poor choice of words!)

3. No information gain (or loss, for that matter).

4. The story becomes interesting only for vector processing.



Wiener filter for stationary processes

Consider a noisy pixelized CMB map: xp = sp + np

where Es2
p = σ2

cmb and Es2
p = σ2

n is the variance of the noise in each pixel.

A pixel-wise Wiener filter produces an estimated CMB: ŝp = xp
σ2
CMB

σ2
CMB+σ2

n
.

That is excessively boring and useless. Cannot we use the inter-pixel correlation of
the CMB which is ignored in the pixel-wise processor? Maybe some kind of local
averaging ?

Yes! Do it in harmonic space where the model becomes x`m = s`m + n`m with

E(s`ms`′m′) = C(`) δ``′ δmm′ E(n`mn`′m′) ≈ Ωσ2
n δ``′ δmm′ Ω =

4π

Npix

It exposes the SNR contrast and justifies mode-wise processing, namely:

ŝ`m = x`m
C(`)

C(`) + Ωσ2
n

The ‘Wiener beam’

That does correspond to smoothing (the MSE-optimal one).



A (double) example from Gosh et al.

1) Total emission in WMAP K band
2) After subtracting a Wiener filtered version of (an estimated) CMB map.
3) After applying the Wiener to the previous result.

Does Planck deliver Wiener filtered CMB maps ?
No, we deliver maps with an effective Gaussian beam of 5 arc-minutes FWHM
which is simple and similar to it. But feel free to taylor the beam to your needs. . .



Wiener filter exploting the inter-pixel correlation.

Toward inpainting, that is the computation of a constrained realization.

Consider a spherical map,
modeled as a realization of a stationary Gaussian process,
hence characterized by its angular spectrum,
which encodes the two-point angular correlation.

Task: If only a part of the map is visible (call it Y ),
predict the masked part (call it X by its conditional expectation given the visible
part.

That is, compute EX|Y .







Wiener filter for noisy mixtures

Things get more interesting with vector observations.
Assume F noisy mixtures of C components (in pixel space, harmonic space,. . . ):

x = As+ n with an F × C mixing matrix A

and with Cov(s) = S and Cov(n) = N.

Often (but not always), we consider redundant observations: ’tall’ matrix F ≥ C.

The Gaussian Wiener estimate is

ŝ = W?x with W? = RsxR
−1
xx .

Now, Rsx = SA† and Rxx = Cov(As+ n) = ASA†+ N so

W? = SA†(ASA†+ N)−1

So the best reconstruction of the observations is

Aŝ = (ASA†)(ASA†+ N)−1x = Cov(signal) Cov(signal + noise)−1 x

Compare to the scalar case. But what happens at high SNR ?



The alternate form of Wiener and the high SNR limit

Pepole with really tall matrices love the second form of the Wiener filter:

W? = SA†(ASA†+ N)−1 = (A†N−1A+ S−1)−1A†N−1.

making it clear that, in the high SNR limit, A†N−1A� S−1,
the Wiener filter becomes

W? →W∞ = (A†N−1A)−1A†N−1

The global reconstruction of AS is by the filter AW∞

AW∞ = A(A†N−1A)−1A†N−1

1) AW∞ does not depend on the signal covariance S and
2) AW∞ depends on A only via Span(A), i.e. is invariant under A→ AT .
3) It also reads

AW∞ = N
1
2 Π N−

1
2

where Π is the orthogonal projector onto Span(N−
1
2A).

Geometric interpretation: see AW∞ as an oblique projector.
Statistical interpretation: leaves out uncorrelated noise.



What do we get out of the BLUE?

Best linear unbiased estimate (BLUE):

If x = As+ n, then find matrix Wu such that
E‖Wx− s‖2 is minimum under the ‘unbiasedness’ constraint, that is, WA = I.

That is a pure, no compromise, noise-fighting device.

One easily finds:

Wu = (A†X−1A)−1A†X−1 with X = Cov(x).

Notes:

1) Wu needs only X which can be replaced by a plain sample estimate!

2) AWu is an oblique projector, just as AW∞ = A(A†N−1A)−1A†N−1.



High SNR Wiener and the BLUE

For x = As+ n, with X = Cov(x) = ASA†+ N, two forms of Wiener

W? = SA†X−1 = (A†N−1A+ S−1)−1A†N−1. (1)

and two limits: BLUE Wu (enforces unbiasedness) and high SNR Wiener W∞:

Wu = (A†X−1A)−1A†X−1 W∞ = (A†N−1A)−1A†N−1.

Both clearly are left inverses of A since WuA = W∞A = IC.

Because of eq. (1), AWu and AW∞ must be identical projectors. See why?

Therefore

Wu = W∞

that is, the Wiener filter converges to the BLUE at high SNR.



Signal subspace and oblique projection

We saw P = AW∞ = AWu and P2 = P = N
1
2 Π N−

1
2

• Whiten the noise

• Project orthogonally onto the signal subspace

• Unwhiten

Final take:
Among all projectors onto Span(A), we look for the one yielding an uncorrelated
decomposition

x = xs + xn = Px+ (I − P )x Cov(xs, xn) = 0

Now

Cov(xs, xn) = (I−P )Cov(x)P † = (I−P )XP † = (I−P )(ASA†+N)P † = (I−P )NP †

so P is the projector onto Span(A) orthogonally wrt to the norm defined by N or X.



Wiener and the BLUE

For x = As+ n, we can connect the ‘true Wiener’ and the BLUE:

W? = SA†(ASA†+ N)−1 = SA†X−1 = (A†N−1A+ S−1)−1A†N−1

Wu = W∞ = (A†N−1A)−1A†N−1 = (A†X−1A)−1A†X−1

because they share the same row space Span(N−1A) = Span(X−1A).

Then, let’s rephrase in terms of BLUE output. Define

su = Wux = s+ nu with Nu = Cov(nu) = (A†N−1A)−1.

We find the C × F Wiener W is the concatenation of
1) C × F compression by Wu without ‘bias’ or information loss followed by
2) C × C reversible reshaping (biasing) by 1/(1 + SNR−1):

W? = (I + NuS
−1)−1

︸ ︷︷ ︸
reshape

Wu︸︷︷︸
project



.

The ILC (in excruciating detail)

.



Combining all 9 Planck channels, non parametrically: the ILC

1/ Linear combination:

Stack the 9 Planck channels into a data 9 × 1 vector x = [x30, x44, . . . , x545, x857]†

and estimate the CMB signal s(p) in pixel p by weighting the inputs:

ŝ(p) = w†x(p) p = 1, . . . , Npix

2/ Known calibration: At frequency ν, the CMB signal s(p) has amplitude aν and
is independently contaminated by fν(p):

xν(p) = aν s(p) + fν(p) or x(p) = a s(p) + f(p)

Then, the best (minw〈(s−w†d)2〉p) unbiased (w†a = 1) estimator is:

w =
Ĉ−1 a

a†Ĉ−1 a
with Ĉ = 〈xx†〉p, the sample covariance matrix.

That is known as ILC (Internal Linear Combination) in CMB circles, as MVBF
(Minimum Variance Beam Former) in array processing, the BLUE elsewhere. . .



The ILC and its Wiener version

1. For x = As+ n, recall the BLUE estimator:

ŝ = Wux = (A†X−1A)−1A†X−1 x with X = Cov(x).

2. Assume we look for a single component: the CMB. Matrix A reduces to a single
column vector A = [a] (and a = 1 in CMB units).
The BLUE in any domain reduces to

ŝ = Wux =
a†X−1 x

a†X−1a
‘Internal’ linear combination.

3. Optionnally Wienerize the ILC map i.e. impose the Wiener beam:

̂̂s`m = ŝ`m
C`

C` +N`
Reversible smoothing minimizing overall MSE

4. Estimation of missing quantities.
• BLUE: X estimated by a sample average X̂ in the appropriate domain.
• Wiener: What about C`,N`? Estimation using Planck jackknives.



Is pixel-based ILC good enough for Planck data ?

ILC looks good: linear, unbiased, min. MSE, very blind, very few assumptions:
knowing a (calibration) and the CMB uncorrelated from the rest (very true).

However, a simulation result shows poor quality:

←− ILC map on a
±300µK color scale

Error on a ±50µK

color scale −→

Two things, at least, need fixing:

• localization (in real space? harmonic space? both ?) and

• chance correlations.



Spatial localization

• Pixel-based ILC

ŝ(θ, φ) =
a†X̂−1x(θ, φ)

a†X̂−1a
X̂ =

1

Npix

∑

pix

x(θp, φp)x(θp, φp)
†

with the data covariance matrix estimated globally over the sky.

• Localize by working on sky domains and stitching the results, a la W-MAP



Multipole localization : Harmonic ILC

• Localize in harmonic space (Tegmark)

ŝ`m = w` x`m w` = (a†X̂−1
` a)−1 a†X̂−1

` X̂` = Smooth
[

1

2`+ 1

∑

m
x`mx†`m

]

• The SMICA CMB map is synthesized
from spherical harmonic coefficients ŝ`m
obtained by harmonic ILC.
• At high `, spectral covariance matrices
well estimated by (smoothed) X̂`.
• At lower `, chance correlation must
be fought using a model.
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• Bonus: trivial control of an effective beam.



Double direction-multipole localization : Needlet ILC

• Localize in both space and multipole using wavelets.

→ Needlet ILC ‘optimally’ exposes the local SNR condition.



Simple CMB cleaning by “template removal”

X143 GHz X353 GHz X143 GHz − α̂X353 GHz

Assume that the 353 GHz channel sees only dust emission
and that the 143 GHz channel sees CMB plus a rescaled dust pattern:

X143 = CMB + α X353

Find α by cross-correlation and get a clean (?) CMB map as

ĈMB = X143 −
〈X143X353〉
〈X353X353〉

X353 where 〈·〉 denotes a pixel average

The result (top right) does not look bad, but it is !

Note: By construction 〈ĈMB X353〉 = 0.



Template removal and the ILC

Single template removal works if one channel contains the signal of interest plus
unspecified contamination while the second channel does not carry at all the signal
of interest.

So it’s like

x =

[
x1
x2

]
a =

[
1
0

]

Now

If X̂ =

[
r11 r12
r21 r22

]
then ŝ =

a†X̂−1x

a†X̂−1a
= · · · = x1 −

r12

r22
x2

so, yes, template fitting is a special case of BLUE/ILC.



Nulling out components with known emissivity

Want to get unbiased CMB but block a component
with a known emissivity b, like SZ emission ?

The ILC is easily generalized to minimize the mean squared error
under both constraints w†a = 1 and w†b = 0:
just take w as the first column of

C−1[a b] ([a b]†C−1[a b])−1

Or apply the BLUE with A = [a b] to get the same result (remember WuA = I).



.

Fighting chance correlations

.



.

Beware notations x→ d and w → w†

.



Another derivation of the BLUE/ILC, with sample statistics.

Estimate the CMB as a linear combination of the data ŝ(~η) = w†d(~η).

Assume d(~η) = a s(~η) + c(~η) and w†a = 1. Then w†d(~η) = ŝ = s+ w†c(~η),

and the pixel-averaged output power is

〈ŝ2〉P = 〈(w†d)2〉P = 〈s2〉P + 2 w†〈c s〉P + 〈(w†c)2〉P
where 〈·〉P defines a pixel-based average over the sky:

〈f〉P
def
=

1

Npix

∑

p
f(~ηp) ∝

∫∫

S2
f(~η).

Thus, if 〈c s〉P = 0, then arg min〈(w†d)2〉P = arg min〈(w†c)2〉P

ŵP = (a†Ĉ−1
P a)

−1
Ĉ−1
P a where ĈP

def
= 〈d(~η)d(~η)†〉P

so ILC, BLUE, do the right thing.

But 〈c s〉P 6= E(cs) = 0 i.e. ‘chance correlation’ between CMB and contaminants .

Having 50 million pixels to average over, we should not worry. Or should we ?



Correlations

Empirical angular spectra
in units of (µK)2

of 10 simulated CMB maps
drawn independently with a
typical angular spectrum C(`).

Sharp decrease with ` → the CMB map is dominated by its large angular scales.

We do not have 50 millions independent pixels→ Bad averaging in pixel space !

But we do have 50 millions independent harmonic coefficients (well, not really. . . ).

We can look again at the chance correlation term:

〈s(~η)c(~η)〉P =
∫∫

S2
s(~η)c(~η) =

∑

`

∑

m
s`mc`m

and see that only a few independent terms are contributing to the correlation.



Cleaning coherent contamination.

• Maximal coherent contamination:

d(~η) = As(~η) = [a H]

[
s(~η)
f(~η)

]
or D = AS = [a H]

[
S
F

]
(matrix form)

where matrix A is n×n and has vector a in its first column, where H is an (unknown)
set of n− 1 columns and where f(~η) is a vector of n− 1 ‘foregrounds’

• The contamination is fully coherent here i.e. it can be completely nulled out : this
is a noise-free model, only representative at large scales.

• Note: if chance correlations were magically suppressed, that is, if

ĈP = 〈dd†〉P
magic−→ Ĉfake = aa†〈s2〉P + H〈ff†〉PH†,

the ILC filter ŵfake = (a†Ĉ−1
fakea)−1Ĉ−1

fakea would give perfect foreground rejection.



Preprocessing or re-parameterization.

In the mixing matrix A = [a H], matrix H is unknown.
But replacing H with a fixed arbitrary matrix T and inverting yields

[
a T

]−1
D

def
=

[
Y
G

]
and

[
a T

]−1
A

def
=

[
1 v†K

0(n−1)×1 K

]

for unknown K and v. The model D = AS = [a H]

[
S
F

]
is turned into

[
Y
G

]
=

[
S + v†KF

KF

]

In other words, pre-processing∗ the data D yields Y and G such that

Y = S + v†G

meaning that the contamination of S in Y by G is available deterministically.

∗That pre-processing is only introduced here as a ‘mathematical device’ but a similar idea is actually
implemented in the SEVEM algorithm for CMB extraction.



A likelihood pD(D|A).

Two ingredients for the likelihood of D = A

[
S
F

]
:

pS(S) = PS(S) · PF(F)︸ ︷︷ ︸
1) Statistical independence

and
[
a T

]−1
D

def
=

[
Y
G

]
=

[
S + v†KF

KF

]

︸ ︷︷ ︸
2) (Pre-processed) mixing model

.

After just a little bit of work:

pD(D|A) = pS(Y − v†G)︸ ︷︷ ︸
CMB

· pF(K−1G)|det(K)|−N︸ ︷︷ ︸
foregrounds

· |det
[
a T

]
|−N

︸ ︷︷ ︸
Constant

.

Thus the maximum likelihood solution for the signal of interest is

ŜML = Y − v̂†G v̂ = arg max
v

pS(Y − v†G)

and this value depends neither on K nor on the contamination model pF(·).



Maximum likelihood solutions for some models pS.

The ML solution v̂ = arg maxv pS(Y − v†G) can be found in some simple models.

• If S is modelled as N i.i.d. Gaussian samples, logPS(S) = −1
2
∑
p s

2
p/σ

2 + cst, and
then ŜML exactly as produced by pixel-based ILC.

• If S is taken non Gaussian i.id.: logPS(S) =
∑
p log p(sp), then

∑

p
ψ(ŝML

p ) gp = 0 with ψ(s)
def
= −p′(s)/p(s) (compare to regular ICA)

• If S is a Gaussian stationary spherical field with spectrum C(`), then

logPS(S) = −1
2
∑
`
∑
m s

2
`m/C(`) + cst

takes again the form of an ILC filter except that the covariance matrix ĈH is com-
puted in the harmonic domain with an inverse-variance weighting.

ŵH =
Ĉ−1
H a

a†Ĉ−1
H a

with ĈH =
∑

`≤`max

m=+`∑

m=−`
d`md†`m/C`.



Pixel space versus harmonic space.

Compare the two versions of the ILC filter obtained in pixel space ŵP and in harmonic
space ŵH by comparing the empirical covariance matrices ĈP and ĈH.

ĈP
def
= 〈dd†〉P ∝

∑

`

m=+`∑

m=−`
d`md†`m ĈH

def
=

∑

`

m=+`∑

m=−`
d`md†`m/C`.

For a flat spectrum C(`) = cst, one has ŵP = ŵH but flat spectrum means uncorre-
lated pixels, so (again) pixel-based ILC = Gaussian i.i.d. Max. Likelihood.

Otherwise, for a correlated field, the two solutions ŵP and ŵH are different.

For a rapidly decreasing C(`) like the CMB, they are very different because only
a few terms then dominate the sum ĈP . The maximum likelihood principle, in
its asymptotic wisdom, shows clearly the cure: equalise the summands, the 1/C(`)

factor making the CMB power of each term in CH identical at all angular scales.

Notes:
a) Needlet-ILC 2013 uses wH in its first scale.
b) It’s only a weight: using w` = `2 instead of w` = 1/C(`) works almost as well.



One more thing

The optimal weight vector w is the normal vector to the foreground subspace.



How is this is relevant to Planck work ?

0 25 100 250 500 750 1000 1500 2000 2500
`

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

`(
`
+

1)
C
`
/2
π
[ µK

2
]

C-R
NILC
SEVEM
SMICA

0 25 100 250 500 750 1000 1500 2000 2500
`

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

`(
`
+

1)
C
`
/2
π
[ µK

2
]

C-R
NILC
SEVEM
SMICA

Angular power spectra with FFP6 simulations.

CMB (dashed); residual noise (dot-dashed); residual foregrounds (solid).

Left (resp. right) evaluated over a clean (resp. less clean) region of the sky.

Two messages:
• At fine scales: the weights should really be allowed to depend on `.
• At large scales: spatial localisation by wavelet does not seem to help much.
My interpretation: closer to the Galactic plane, the same ennemy, only stronger.



Conclusions for part 2

• Likelihood analysis reveals that for the CMB in the high SNR limit,

+ ILC suboptimal (also true for any highly correlated signal).

+ the ‘exact’ MLE is easily implemented in the harmonic domain,

+ it is an harmonic ILC with a proper weighting of the harmonic coefficients,

+ it is used in the first scale for the needlet-ILC (NILC) method,

+ it does not depend at all on the foreground model.

• In my view, it validates using a Gaussian stationary likelihood
and makes sparsity arguments questionable.

• A full solution (accouting for beams, noise,. . . ) at all scales
implemented in the SMICA CMB product.



Appendix 1

Number of effective samples

Loss of efficiency in pixel space.



Invariance and chance correlation.

Recall the model after pre-processing: the CMB S contaminated by
a linear combination of visible foregrounds G with unknown weights w?:

Y = S + v†?G

• The signal estimated by the ILC is

Ŝ = Y − v̂†G with v̂† = ĈygĈ
−1
gg

and the estimation error is found to be

Ŝ − S = −ĈsgĈ−1
gg G.

• The error does not depend on v?!
We can assume v? = 0: no contamination, you always clean too much.

• The error is strictly invariant with respect to
any invertible mixing or rescaling of the foregrounds.

• The error strictly vanishes with the chance correlation Ĉsg



Error covariance.

Recall the (invariant) estimation error :

Ŝ − S = −ĈsgĈ−1
gg G.

We evaluate Cov
(
ĈsgĈ

−1
gg

)
where the Cov is over the CMB for fixed foregrounds.

When statistics are computed in harmonic space with weight w`, one gets

Cov(Ĉsg) = Cov


∑

`

w`
∑

m
s`mg`m


 =

∑

`

w2
` C` Γ` with Γ` =

∑

m
g`mg†`m

so

Cov(ĈsgĈ
−1
gg ) =


∑

`

w`Γ`



−1 

∑

`

w2
` C` Γ`




∑

`

w`Γ`



−1

.

Taking w` = 1 also yields the error for statistics computed in pixel space.



Optimal weighting

We found

Cov(ĈsgĈ
−1
gg ) =


∑

`

w`Γ`



−1 

∑

`

w2
` C` Γ`




∑

`

w`Γ`



−1

= Σ(w`)

Theorem:

Σ(w`) ≥ Σ(C−1
` ) =


∑

`

C−1
` Γ`



−1

The optimal weighting is w` = C−1
` and does not depend on the foregrounds.



Relative gain of optimal harmonic weighting

Assume that the spectral inter-frequency correlation of the foregrounds does not
change with the angular scale i.e. Γ` = g` Γ.

Then, the error covariance factors as

Cov(ĈsgĈ
−1
gg ) =

∑
`w

2
` g` C`

(
∑
`w` g` )2 · Γ

−1

Now, we can make a simple statement regarding the gain brought in by optimal
harmonic weighting w` = C−1

` with respect to flat pixel averaging w` = 1.

It is like have α times more effective samples since the pixel-based variance is larger
by a factor α

α = α(C`, g`) =
(
∑
` g` C`) (

∑
` g`/C`)

(
∑
` g` )2 ≥ 1

That loss also is the ratio between of the (g`-weighted) arithmetic mean to the harmonic mean of

the CMB spectrum over the multipole range.



Some orders of magnitude

• Multipole range 2 ≤ ` ≤ 25

• Galactic foregrounds with g` = (2`+ 1) `−2.4

Variance decreases by a factor 6.60 with respect to pixel average
if optimal weighting w` = 1/C` is used.

Variance decreases by a factor 6.55 with respect to pixel average
if suboptimal weighting w` = `2 is used.



.

Filtering

.



Four CMB cleaning methods used in Planck 2013

NILC SEVEM SMICA C-R

`SNR=1 = 1790 `SNR=1 = 1790 `SNR=1 = 1790 `SNR=1 = 1550

Wavelet space Pixel then harmonic Harmonic space Pixel space

non-parametric non-parametric semi-parametric parametric

They differ, in particular, by their filtering schemes.

But they all use HEALPix. . .



HEALPix (Gorski, Hivon et al.)

1. Hierarchical structure.
Essential for large data bases, neighbor-
hood search, multi-resolution analysis,. . .
2. Equal pixel area.
Preserves white noise, among other things.
3. Iso-latitude distribution.
Recall Y`m(θ, φ) = P`m(cos θ) eimφ.
θ direction: Associated Legendre func-
tions are evaluated via slow recursions.
φ direction: FFT possible.

The HEALPix grid at resolution r has Npix = 12N2
side = 12 · 22r pixels.

It offers synthesis and (approximate) analysis up to `max ≈ 3×Nside:

X(θp, φp) =
∑

`≤`max

∑

|m|≤`
a`mY`m(θp, φp)

4π

Npix

∑

p
X(θp, φp)Y`m(θp, φp) ≈ a`m

Jargon: WMAP delivers at Nside = 512, Planck at Nside = 2048.



Spherical basis and frames

• Unlocalized orthogonal harmonic decompostion. Analysis and synthesis

X(ξp) =
∑

`m

x`mY`m(ξp) ↔ x`m =
4π

Npix

∑

p
X(ξp)Y`m(ξp)

• A simple but very redundant scheme: undecimated wavelets (JL Starck).

• A tighter frame: needlets (Petrushev).

Needlet analysis. Bandpass and synthesize (at appropriate resolution):

xj,`m = x`mw
a
j (`) xjk =

∑

`m

xj,`mY`m(ξk) ξk ∈ Hj for 1 ≤ j ≤ J

Needlet synthesis: analyze, bandpass, synthesize

x̃j,`m =
4π

Nk

∑

ξk∈Hj
xjkY`m(ξk) x̃`m =

∑

j

wsj(`)x̃j,`m X̃(ξ) =
∑

`m

x̃`mY`m(ξ)

Perfect reconstruction: impose
∑
j w

s
j(`)w

a
j (`) = 1



Needlet ILC in a nutshell

ŝjk = w†jKxjk wjK = ILC
(
〈xjkx†jk〉K

)



.

Fighting chance correlations
with spectral matching

.



SMICA: Linear filtering in harmonic space

Since resolution, noise and foregrounds vary (wildly) in power over channels and
angular frequency, the combining weights should depend on `.

SMICA CMB map synthesized from
spherical harmonic coefficients ŝ`m :

ŝ`m = (a†C̃−1
` a)−1 (a†C̃−1

` d`m)

with C̃` an estimate of C` = Cov(d`m).
• At high `, spectral covariance matrices
well estimated by (smoothed) Ĉ`.
• At lower `, chance correlation must
be fought using a model.
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ILC coefficients: raw (thin lines) and via SMICA modelling (thick lines)



Likelihood for a Gaussian isotropic spherical field.

• The (real) spherical harmonics are a complete orthonormal basis on the sphere:

X(~η) =
∑

`≥0

m=`∑

m=−`
x`mY`m(~η) ←→ x`m =

1

4π

∫∫

S2
X(~η) Y`m(~η)

• The harmonic coefficients x`m of an isotropic random field are uncorrelated:

E (x`mx`′m′) = C` δll′ δmm′

+ The angular spectrum {C`
def
= Var(x`m)}`≥0 has a natural sample estimate

Ĉ`
def
=

1

2`+ 1

m=+`∑

m=−`
x2
`m

• . . . which is a sufficient statistic for a Gaussian field since

−2 log p(X) = −2 log p(X|C`) =
∑

`

(2`+ 1)
[
Ĉ`
C`

+ logC`

]
+ cst

• The likelihood reads like a spectral matching criterion:

p(X|C`) ∝ exp−1

2

∑

`

(2`+ 1) k(Ĉ`/C`) k(u) = u− log(u)− 1



The joint likelihood for N Gaussian isotropic maps

If d`m is the N × 1 vector of harmonic coefficients
of N spherical maps modelled as Gaussian isotropic, . . .

then their joint distribution depends only on spectral N ×N covariance matrices

C`
def
= Cov d`m = Ed`md†`m

containing angular auto-spectra (on diagonal) and cross-spectra (off diagonal).

A sufficient statistic for the joint likelihood of the N maps is the set

Ĉ`
def
=

1

2`+ 1

∑

m
d`md†`m ` = 0,1,2, · · · of sample spectral covariance matrices

and the joint likelihood again is a spectral matching criterion since

p(X|C`) ∝ exp−1

2

∑

`

(2`+ 1) K(Ĉ`, C`)

where K(·, ·) is the Kullbak-Leibler divergence between two positive matrices

K(Ca, Cb)
def
= trace(CaC

−1
b )− log det(CaC

−1
b )−N



Foregrounds, physical components and the mixing matrix

• Mixing matrix. The 9 Planck channels as noisy linear mixtures of components:

d`m = A(θ) s`m + n`m

• Some models for the mixing matrix A = A(θ):

Model type Mixing matrix parameters θ

physical, fixed A = [acmb adust aCO aLF] θ = [ ]

physical, parametric A = [acmb adust(T ) aCO aLF(β) ] θ = (T, β)

non-parametric (∼ ILC) A = [acmb F] (a square matrix) θ = F

semi-parametric, SMICA A = A (any tall matrix) θ = A



SMICA semi-parametric model

• SMICA models the 9 Planck channels as noisy linear mixtures of CMB and 6 “foregrounds”:



d1

d2
...
...
d9




=




a1

a2
...
...
a9

F11 . . . F16

F21 . . . F26
... . . . ...
... . . . ...
F91 . . . F96



×




s
f1
...
f6


+




n1

n2
...
...
n9




or d`m = [ a | F ]

[
s`m
f`m

]
+ n`m

• SMICA only assumes decorrelation between foregrounds and CMB.

The foregrounds must have 6 (say) dimensions but are otherwise completely unconstrained:
they may have any spectrum, any color, any correlation. . .

So the data model is very blind: all non-zero parameters are free !

Cov(d`m) = [ a | F ]

[
Ccmb
` 0
0 P`

]
[ a | F ]† +



σ2

1` . . . 0
... . . . ...
0 . . . σ2

9`


 = C`(a, Ccmb

` ,F,P`, σ
2
i`).

• Blind identifiability: can it be done? Maths say: yes! (with diversity. . . )

• Fit by spectral matching minθ
∑

` (2`+ 1) K
(
Ĉ`, C`(θ)

)
= maximum likelihood.

• Only Span(F), the foreground subspace, is needed to suppress the foregrounds.
It is collectively determined by all the multipoles involved in the fit.



Why spatial localization may not be critical

Two arguments for spatial localization:
a) The (relative) strengths of contaminants
change with angular scale and position on the sky.
b) For some astrophysical components, emmission laws
change (slightly) over the sky, (e.g. varying Galactic dust temperature).

Qualitative answers:

a) It’s the subspace that counts !

b) Sky-varying emissivity can be accounted for
• locally by letting A depend on the pixel: A(θpix) (Commander) or
• globally by adding columns to A (SMICA).

For instance, a sky-varying low-frequency emission aLF(θpix) could be approximatively
represented by two fixed columns over the whole sky: [ aLF(〈θ〉), daLF/dθ(〈θ〉) ]



SMICA vs “basic” ICA

SMICA differs from “basic” ICA in several aspects:

• No use of non Gaussianity.

Use spectral diversity instead as the source of contrast.

• Explicit handling of the noise

• One big multi-dimensional component to capture all contaminants.

In other words, non-CMB components can have arbitrary correlation.

This is no problem so long as one does not care
about the unmixing of the other astrophysical emissions.



.

Conclusions

.


