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Planck likelihood: A hybrid approach

• Low-ℓ (ℓ < 30): 

–TT: Pixel-based approach based on Nside=16 
Commander component separated map, 92% sky,  
all Planck frequencies used+WMAP+Haslam 

–TE and EE: Pixel based approach based on  
Planck LFI 70GHz map, 46% of the sky.  
30 GHz and 353GHz used for foreground 
cleaning.  

• High-ℓ (30 < ℓ < 2500): 

–TT:  Gaussian likelihood  based on  
HFI 100, 143, 217GHz at (70, 60, 50% sky) 

–TE,EE: Gaussian likelihood,  
HFI 100, 143, 217GHz at (70, 50, 40% sky). 

Planck 2015 results. XI. 



• Cl theory is simple, applying it to real data takes a lot of 
work 
Planck 2015 likelihood paper 99 pages, ~200 co-authors



Signal to noise
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Planck sample variance limited till l~1600 (data points till ~2500, 
fsky~40-70%)  
 
WMAP sample variance limited till l~600    (data points till l~1200)  
ACT and SPT use < 5% of the sky.  
 Error bar due to sample variance ~3 times larger than Planck at l<1500!



From 2013 to 2015 data analysis
• Know your instrument 

‣ recalibration

‣ 10x better beam knowledge

• Thou shalt commit (some) data alteration 

‣ remove “4K-cooler lines” from data

• Thou shalt covet more data 

‣ Polarisation !

‣ Going from half-mission to full mission is good

‣ Less correlated data splits are available
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Datasets for the high-ℓ likelihood

• 100, 143, 217GHz (best HFI channels for CMB).  
353 and 545 to estimate dust templates.

• Frequency maps from weighted average of all detectors at that 
frequency.  
Maps for each of the two temporal halves ~ 15 months of the total 
mission.

• Spectra only calculated correlating maps from two different half 
missions. Avoids noise bias, avoids correlating co-temporal systematics 
across detectors.
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Planck 2015

• Data:
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Planck 2015
• Covariance matrix:

Unbinned, this is a ~23000x23000 matrix!



Foreground model

• We mask regions of the sky most 
contaminated by dust, CO and 
extragalactic point sources. We 
retain 66, 57, 47% at 100, 143, 
217GHz.  

• We model the foregrounds in the 
remaining sky at the power 
spectrum level.
• Galactic dust
• Unresolved Point sources
• Clustered CIB-cosmic 

infrared background 
• Thermal and Kinetic 

Sunyaev-Zeldovich from 
galaxy clusters 

• Cross-correlation between 
tSZxCIB

 

Planck 2015 results. XI. 



Foregrounds

• Dust

✦ TT: use 545GHz Cℓ modelled (via 
difference of masks) as dust + CIB + 
PS 
TE and EE: use 353GHz instead

✦ Subtract  Aν1ν2 Cℓ
DUST

(n) template 
from all cross-spectra, with a free 
amplitude, and free spectral slope, 
which are marginalised over

• Unresolved Point sources

✦ TT only: flat spectrum fit on Cℓ



Many non-cosmological parameters



Correlated noise seen in detector sets (simultaneous observations)  
used in 2013 analysis 
Half-ring maps of detsets: (HR1-HR2)DS1 X (HR1-HR2)DS2  
provide a correlated noise template 
added to cosmological analysis

No correlation seen in Half-Mission 
used in 2015, but deviation from  
white noise included in S+N 
covariance matrix calculation



Systematics

• Comparison of 
some systematics 
with statistical 
errors



Inter-frequency differences
TT

EE

TE and EE too large deviations. A 
sign of remaining systematics.  

Frequency redundancy allows us to check 
foregrounds cleaning and systematics.

TT behaves very well

Planck 2015 results. XI. 
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Beam related systematics

• In the absence of polarisation modulation  
(eg rotating half-wave plate, rHWP*), 
polarisation is obtained by differencing 2 
different orthogonal detectors 
➔ any detector mismatch (in gains, beams, 
band-passes, …) creates fake polarisation 
(Hu et al, 2003, and many others).  
 
Note: *rHWP are still little used, and create their own kind of 
problems (Takakura et al, 2017)
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• Temperature QuickBeam (used in 2013 and 2015 analyses): 

✦ C’l
TT = Σs ωs

2
    bls

*  bls
     Cl

TT   

‣ bls : weighted combination of scanning beams in DetSet,

‣ ωs
2: encodes scanning strategy (assumed to vary slowly across the sky)

• Temperature + Polarisation QuickPol (in 2017 analysis):

✦ C’l = Σsij  Ωsij  ⊛  Blsi
*t . Cl

 . Blsj

‣ C : 3x3 C(l) matrix

‣ B : weighted scanning polarised beams in DetSet  
or Half missions

‣ Ω  : encodes scanning strategy weighted by  
map-making IQU inverse covariance matrix⊛ : Hadamard/Schur product 

✦ provides effective beam window matrix Wℓ  
describing Cℓ coupling,  
without numerical simulations !

✦ has be extended to gain and polar efficiency uncertainty

✦ Backward C(l) fitting can then still be used as a  
rain check to detect/catch remaining systematics 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Ignoring beam leakage (2015 analysis)
With beam leakage prediction+correction (2017-8 analysis)

Inter-frequency consistency:
fg corrected C(l)

143x143 - 100x100

Multipole ℓ 

δ/σ

Multipole ℓ 

Preliminary!
Spectacular  

improvement  
for TE !

TE EE



Covariance matrix
• Ingredients:

‣ A fiducial CMB signal spectrum,  
based on your best estimate

‣ Foreground fiducial models at relevant frequency,  
based on your best knowledge

‣ A good estimate of the noise spectrum,

‣ Systematics models and their uncertainty 
e.g. for Gaussian beam: Bℓ = exp (- ℓ

2

 (σ+δσ)
2

 )

• Perform analytical calculations

• Validate with Nsim  =10 000 Monte-Carlo simulations 
(see P. Natoli lecture)

‣ limited accuracy ΔMij / Mii Mjj ~ ( 2 / Nsim  )
1/2

 = 1%

‣ mostly interesting for diagonal

• Apply to data,

• Repeat from step 1

MC Analytical



Point sources mask and Cℓ 
• In presence of a point source mask, the analytical computation of the covariance matrix 

(Efstathiou, 2004) that works fine for galactic masks, differ from Monte-Carlo based estimates, by 
up to 10 or 20%

•  However, a new formalism, treating the point source ‘holes’ as a Poisson process, agrees much 
better with simulations (on going work with A. Challinor, F. Elsner, S.Gratton, M. Lilley & M. 
Migliaccio)

Numerical / old

Numerical / old (smoothed)

New         / old



Validation

• tests, tests, and tests



Test impact of various settings on final parameters

Planck 2015 results. XI. 



Tests final parameters of  
300 end-to-end simulations



Final Cℓ and residuals



ΛCDM results from TT 

2013=Planck Nominal 2013 TT+low-l WMAP polarization 
2015=Planck Full          2015 TT+low-l Planck LFI polarization. 

• Very good consistency between 2013-2015.  
• Error bars improved by ~30% 

• Calibration change shifts 109Ase−2τ.  
• 2015 constraint on optical depth weaker and lower than 2013. We use 

large scale polarization from Planck LFI !  
• LCDM is an excellent fit to the data! 

  

+3.5 sigma shift

-1 sigma shift 
30% weaker  
constraint

Planck 2015 results. XIII. 



Excellent agreement  
between TT, TE and EE 
Despite remaining uncharacterized systematics in polarization at 
muK2 level 

Improvement in error bars up to 50% 
Some parameters determined from TE as  
precisely as from TT. 

Planck 2015 Polarization at high-ℓ



WMAP and Planck cosmologies

Hubble parameter 
[Km/s/Mpc]

67.8 ± 0.92

69.7 ± 2.1

Planck 
WMAP

• WMAP and Planck parameters differ by ~1  
sigmaWMAP.  

• WMAP errors factor 2 larger than Planck.



Compare apples to apples
• Same prior on the optical depth, temperature only, same multipole region 

(although noise properties and fsky are still different). 

• Planck and WMAP agree very well when compared properly  

• Still need to prove that shifts between lmax=800 and 
lmax=2500 for Planck itself are consistent with 
expectations!

Planck 
TT   2-2500 
TE,EE 2-30

WMAP 
TT 2-1200 
TE 2-800

Only TT, same τBaselines

2-800

H0 [Km/Mpc/s]

Planck WMAP



Recipes for successful CMB analysis
• To deal with foregrounds:

✦ mask the most affected pixels,

✦ then make a parametric fit of the remaining foreground Cl (where the foreground is 
dominant) using frequency differences, or masks differences, or a priori models,

✦ then marginalise over the fit parameters.

• Poor knowledge of the instrument:

✦ add as many free parameters as necessary, and fit and/or marginalise them  
(eg, polar efficiency, relative calibration with respect to 143GHz)

✦ include the unknowns in the covariance matrix (non-diagonal, low rank terms),  
(eg, beam shape)

• Expected systematic effects:

✦ model their impact on Cℓ, (eg, beam induced T to P leakage in 2017),

✦ if not, find a template to be fit on the data, (eg, beam induced T to P leakage in 2015),

✦ if not, find an upper limit on their impact.

• To assess robustness of the results:

✦ compare various approaches, options, codes, hypotheses, …

‣ 5 pipelines at high-ℓ, 4 CMB-only maps

✦ compare to simulations,

✦ test consistency across frequency, data splits, …

• The analysis has to be repeated many, many times: need for a fast and robust pipeline
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