CMB Angular Power Spectra and their Likelihoods: in Theory and in (Planck) Practice

E. Hivon & S. Galli

Planck likelihood: A hybrid approach

- Low-l (l < 30):
 - -TT: Pixel-based approach based on N_{side}=16 Commander component separated map, 92% sky, all Planck frequencies used+WMAP+Haslam
 - TE and EE: Pixel based approach based on Planck LFI 70GHz map, 46% of the sky.
 30 GHz and 353GHz used for foreground cleaning.
- High-l (30 < l < 2500):
 - -TT: Gaussian likelihood based on HFI 100, 143, 217GHz at (70, 60, 50% sky)
 - TE,EE: Gaussian likelihood, HFI 100, 143, 217GHz at (70, 50, 40% sky).

Planck 2015 results

XI. CMB power spectra, likelihoods, and robustness of parameters

Planck Collaboration: N. Aghanim⁶³, M. Arnaud⁷⁸, M. Ashdown^{74,6}, J. Aumont⁶³, C. Baccigalupi⁹¹, A. J. Banday^{103,10}, R. B. Barreiro⁹⁹, J. G. Bartlett^{1,71}, N. Bartolo^{32,70}, E. Battaner^{105,106}, K. Benabed^{64,102}, A. Benoît⁶¹, A. Benoît⁶¹, A. Benoît¹⁰⁰, J.-P. Bernard^{103,10}, M. Bersanelli^{35,51} P. Bielewicz^{86, i0,91}, J. J. Bock^{71,12}, A. Bonaldi⁷², L. Bonavera²⁰, J. R. Bond⁹, J. Borrill^{15,96}, F. R. Bouchet^{64,94,*}, F. Boulanger⁶³, M. Bucher¹, C. Burigana^{50,33,52}, R. C. Butler⁵⁰, E. Calabrese⁹⁸, J.-F. Cardoso^{79,1,64}, A. Catalano^{80,77}, A. Challinor^{66,74,13}, H. C. Chiang^{28,7}, P. R. Christensen^{87,38}, D. L. Clements⁵⁹, L. P. L. Colombo^{23,71}, C. Combet⁸⁰, A. Coulais⁷⁷, B. P. Crill^{71,12}, A. Curto^{69,6,74}, F. Cuttaia⁵⁰, L. Danese⁹¹, R. D. Davies⁷², R. J. Davis⁷², P. de Bernardis³⁴, A. de Rosa⁵⁰, G. de Zotti^{47,91}, J. Delabrouille¹, F.-X. Désert⁵⁷, E. Di Valentino^{64,94} C. Dickinson⁷², J. M. Diego⁶⁹, K. Dolag^{104,84}, H. Dole^{63,62}, S. Donzelli⁵¹, O. Doré^{71,12}, M. Douspis⁶³, A. Ducouf^{64,59}, J. Dunkley⁸⁸, X. Dupac⁴⁰, G. Efstathiou⁶⁶, F. Elsner^{24, 64, 102}, T. A. Enßlin⁸⁴, H. K. Eriksen⁶⁷, J. Fergusson¹³, F. Finelli^{30, 52}, O. Forni^{103, 10}, M. Frailis⁴⁹, A. A. Fraisse²⁸ E. Franceschi⁵⁰, A. Freisel⁸⁷, S. Galeotta⁴⁰, S. Galli⁷³, K. Ganga¹, C. Gauthier^{1,83}, M. Gerbino^{100,89,34}, M. Giard^{100,10}, E. Gjerløw⁶⁷, J. González-Nuevo^{20,69}, K. M. Górski^{71,107}, S. Gratton^{74,66}, A. Gregorio^{36,49,56}, A. Gruppuso^{50,52}, J. E. Gudmundsson^{100,89,28}, J. Hamann^{101,99}, F. K. Hansen⁶⁷, D. L. Harrison^{66,74}, G. Helou¹², S. Henrot-Versillé⁷⁶, C. Hernández-Monteagudo^{14,84}, D. Herranz⁶⁹, S. R. Hildebrandt^{71,12}, E. Hivon^{64,102}, W. A. Holmes⁷¹, A. Hornstrup¹⁷, K. M. Huffenberger²⁶, G. Hurier⁶³, A. H. Jaffe⁵⁹, W. C. Jones²⁸, M. Juvela²⁷, E. Keihänen²⁷, R. Keskitalo¹⁵, K. Kiiveri^{27,45}, J. Knoche⁸⁶, L. Knox²⁹, M. Kunz^{18,63,3}, H. Kurki-Suonio^{27,45}, G. Lagache^{5,43}, A. Lähteenmäki^{2,45} J.-M. Lamarre⁷⁷, A. Lasenby^{6,74}, M. Lattanzi^{33,53}, C. R. Lawrence⁷¹, M. Le Jeune¹, R. Leonardi⁸, J. Lesgourgues^{65,101}, F. Levrier⁷⁷, A. Lewis²⁵, M. Liguori^{32,70}, P. B. Lille⁶⁷, M. Lilley^{64,94}, M. Linden-Vørnle¹⁷, V. Lindholm^{27,45}, M. López-Caniego⁴⁰, J. F. Macías-Pérez⁸⁰, B. Maffei⁷², G. Maggio⁴⁹, D. Maino^{35,51}, N. Mandolesi^{30,33}, A. Mangilli^{43,76}, M. Maris⁴⁹, P. G. Martin⁹, E. Martínez-González⁶⁹, S. Masj³⁴, S. Matarrese^{32, 70, 42}, P. R. Meinhold³⁰, A. Melchiorri^{34, 54}, M. Migliaccio^{66, 74}, M. Millea²⁹, S. Mitra^{58, 71}, M.-A. Miville-Deschenes^{63, 9} A. Moneti⁶⁴, L. Montier^{100,10}, G. Morgante⁵⁰, D. Mortlock⁵⁹, S. Mottet^{64,94}, D. Munshi⁹³, J. A. Murphy⁸⁵, A. Narimani²², P. Naselsky^{88,39} F. Natil³³, P. Natoli^{33,4,53}, F. Noviello⁷², D. Novikov⁴², L. Novikov^{47,82}, C. A. Oxborrow¹⁷, F. Paci⁹¹, L. Pagano^{34,54}, F. Paiot⁶³, D. Paoletti^{50,52} B. Partridge⁴⁴, F. Pasian⁴⁰, G. Patanchon¹, T. J. Pearson^{12,60}, O. Perdereau⁷⁶, L. Perotto⁸⁰, V. Pettorino⁴³, F. Piacentini³⁴, M. Piat¹, E. Pierpaoli²³ D. Pietrobon⁷¹, S. Plaszczynski⁷⁶, E. Pointecouteau^{103,10}, G. Polenta^{4,48}, N. Ponthieu^{63,57}, G. W. Pratt⁷⁸, S. Prunet^{64,102}, J.-L. Puget⁶⁵ J. P. Rachen^{21,84}, M. Reinecke⁸⁴, M. Remazeilles^{72,63,1}, C. Renault⁸⁰, A. Renzi^{37,55}, I. Ristorcelli^{103,10}, G. Rocha^{71,12}, M. Rossetti^{35,51} G. Roudier^{1,77,71}, B. Rouillé d'Orfeuil⁷⁶, J. A. Rubiño-Martín^{68,19}, B. Rusholme⁶⁰, L. Salvati³⁴, M. Sandri⁵⁰, D. Santos⁸⁰, M. Savelainen^{27,45}, G. Savini⁹⁰, D. Scott²², P. Serra⁶³, L. D. Spencer⁹³, M. Spinelli³⁶, V. Stolyarov^{6,97,75}, R. Stompor¹, R. Sunyaev^{84,95}, D. Sutton^{66,74} A.-S. Suur-Uski^{27,45}, J.-F. Sygnet⁶⁴, J. A. Tauber⁴¹, L. Terenzi^{92,30}, L. Toffolatti^{20,69,59}, M. Tomasi^{35,51}, M. Tristram⁷⁶, T. Trombetti^{36,33}, M. Tucci¹⁸, J. Tuovinen¹¹, G. Umana⁴⁶, L. Valenziano⁵⁰, J. Valiviita^{22,45}, F. Van Tent⁸¹, P. Vielva⁶⁹, F. Villa⁵⁰, L. A. Wade⁷¹ B. D. Wandelt^{64,102,31}, I. K. Wehus^{71,67}, D. Yvon¹⁶, A. Zacchel⁴⁹, and A. Zonca³⁰ (Affiliations can be found after the references)

Received 9 July 2015 / Accepted 18 May 2016

 CI theory is simple, applying it to real data takes a lot of work
 Planck 2015 likelihood paper 99 pages, ~200 co-authors

Signal to noise

Planck sample variance limited till **l~1600** (data points till ~2500, fsky~40-70%)

WMAP sample variance limited till l~600 (data points till l~1200)
ACT and SPT use < 5% of the sky.</p>
Error bar due to sample variance ~3 times larger than Planck at l<1500!</p>

From 2013 to 2015 data analysis

- Know your instrument
 - recalibration
 - I 0x better beam knowledge
- Thou shalt commit (some) data alteration
 - remove "4K-cooler lines" from data
- Thou shalt covet more data
 - Polarisation !
 - Going from half-mission to full mission is good
 - Less correlated data splits are available

Datasets for the high-l likelihood

- 100, 143, 217GHz (best HFI channels for CMB).
 353 and 545 to estimate dust templates.
- Frequency maps from weighted average of all detectors at that frequency.
 Maps for each of the two temporal halves ~ 15 months of the total mission.
- Spectra only calculated correlating maps from two different half missions. Avoids noise bias, avoids correlating co-temporal systematics across detectors.

Planck 2015

• Data:
$$\hat{\boldsymbol{C}} = \left(\hat{\boldsymbol{C}}^{TT}, \hat{\boldsymbol{C}}^{EE}, \hat{\boldsymbol{C}}^{TE} \right)$$

$\hat{\boldsymbol{C}}^{TT} = \left(\hat{\boldsymbol{C}}_{100\times100}^{TT}, \hat{\boldsymbol{C}}_{143\times143}^{TT}, \hat{\boldsymbol{C}}_{143\times217}^{TT}, \hat{\boldsymbol{C}}_{217\times217}^{TT} \right)$ $\hat{\boldsymbol{C}}^{EE} = \left(\hat{\boldsymbol{C}}_{100\times100}^{EE}, \hat{\boldsymbol{C}}_{100\times143}^{EE}, \hat{\boldsymbol{C}}_{100\times217}^{EE}, \hat{\boldsymbol{C}}_{143\times143}^{EE}, \hat{\boldsymbol{C}}_{143\times217}^{EE}, \hat{\boldsymbol{C}}_{217\times217}^{EE} \right)$

 $\hat{\boldsymbol{C}}^{TE} = \left(\hat{\boldsymbol{C}}_{100 \times 100}^{TE}, \hat{\boldsymbol{C}}_{100 \times 143}^{TE}, \hat{\boldsymbol{C}}_{100 \times 217}^{TE}, \hat{\boldsymbol{C}}_{143 \times 143}^{TE}, \hat{\boldsymbol{C}}_{143 \times 217}^{TE}, \hat{\boldsymbol{C}}_{217 \times 217}^{TE} \right).$

$$-\ln \mathcal{L}(\widehat{\mathbf{C}}|\mathbf{C}(\{\Omega\})) = \frac{1}{2} \left[\widehat{\mathbf{C}} - \mathbf{C}(\{\Omega\})\right]^T \mathbf{M}^{-1} \left[\widehat{\mathbf{C}} - \mathbf{C}(\{\Omega\})\right] + \text{const.}$$

Planck 2015

• Covariance matrix:

$$\mathbf{C} = \begin{pmatrix} C^{TTTT} & C^{TTEE} & C^{TTTE} \\ C^{EETT} & C^{EEEE} & C^{EETE} \\ C^{TETT} & C^{TEEE} & C^{TETE} \end{pmatrix}$$

, ((100 × 100) × (100 × 100)	(100 × 100) × (143 × 143)	$(100\times100)\times(217\times217)$	(100 × 100) × (143 × 217)	
	$(143\times143)\times(100\times100)$	$(143\times143)\times(143\times143)$	$(143\times143)\times(217\times217)$	$(143\times143)\times(143\times217)$	
	(217 × 217) × (100 × 100)	(217 × 217) × (143 × 143)	(217 × 217) × (217 × 217)	(217 × 217) × (143 × 217)	
	(143 × 217) × (100 × 100)	(143 × 217) × (143 × 143)	(143 × 217) × (217 × 217)	(143 × 217) × (143 × 217)	

Unbinned, this is a ~23000x23000 matrix!

Foreground model

157

+ + Data

143x143

2000

217×217

1500

1500

2000

2500

2500

- We model the foregrounds in the remaining sky at the power spectrum level.
 - Galactic dust
 - **Unresolved Point sources**
 - **Clustered CIB-cosmic** infrared background
 - Thermal and Kinetic Sunyaev-Zeldovich from galaxy clusters
 - **Cross-correlation between tSZxCIB**

Planck 2015 results, XI.

We mask regions of the sky most contaminated by dust, CO and extragalactic point sources.We retain 66, 57, 47% at 100, 143, 217GHz.

Foregrounds

• Dust

 ◆ TT: use 545GHz C_ℓ modelled (via difference of masks) as dust + CIB + PS

TE and EE: use 353GHz instead

- Subtract $A_{v1v2} C_{\ell}^{DUST}(n)$ template from all cross-spectra, with a free amplitude, and free spectral slope, which are marginalised over
- Unresolved Point sources
 - \bullet TT only: flat spectrum fit on Cl

Table 10. Parameters used for astrophysical foregrounds and instrumental modelling.

Parameter	Prior range	Definition		
ATL	[0,400]	Contribution of Poisson point-source power to $D_{max}^{(00+10)}$ for Planck (in μK^2)		
A ^H	0,400	As for A ^{Ph} but at 143 GHz		
A	[0,400]	As for A ^{PG} but at 217 GHz		
AH	0.400	As for A ^{Ph} , but at 143 × 217 GHz		
A ^{C10}	10,2001	Contribution of CIB power to D22, at the Planck CMB (presency for 217 GHz (in aK2)		
A	10, 101	Contribution of (SZ to (D)(1)(1) at 143 GHz (in a K ¹)		
Aver	10, 101	Contribution of kSZ to Down (in aK ¹)		
(no-ca	10, 13	Correlation coefficient between the CIB and tSZ		
A 100	[0, 50]	Amplitude of Galactic dust power at $\ell = 200$ at $100 \text{ GHz} (\text{in } \mu \text{K}^2)$		
abol77	(7 8 2)	to first AlmOTT had up 1414/101-		
A10	(2, 30)	AT HE A 100 HE IN POOLE		
Abort	10, 1000	As for Abot?? but at 143 x 217 GHz		
MH440	(21 + 8.5)	10 HI 1/10 HI I I / X I / U II		
Abort	10,400	As for Addity but at 217 GHz		
	(80 ± 20)			
c100	[9, 3]	Power spectrum calibration for the 100 GHz		
	(0.9990004 ± 0.001)	-		
C217	[0,3]	Power spectrum calibration for the 217 GHz		
	(0.99001 ± 0.002)	Abashin man collibration for Blanck		
Ful	(1 ± 0.0025)	Automatic map canonication for Pranty		
Atos	[0, 10]	Amplitude of Galactic dust power at $\ell = 500$ at 100 GHz (in μK^2)		
	(0.06 ± 0.012)			
A 100+140	10, 101	As for A ₁₀₀ but at 100 × 143 GHz		
-1-11	(0.05 ± 0.015)	La Cara Alexandre La cara 100 - 110 Citta		
A 100-217	[0, 10]	As for A 100 A 217 GHz		
about	60.11 E 0.0559	As for Abrill has at 121/101		
A10	(0.1+0.02)	AS REATED BEEN POOLE		
Abstl	10.101	As for A ^{thould} but at 143 x 217 GHz		
HINDE	(0.24 ± 0.048)	100 100 100 100 100 100 100 100 100 100		
Ahot 8	0,10	As for Advert to but at 217 GHz		
	(0.72 ± 0.14)	-		
Ator	[0, 10]	Amplitude of Galactic dust power at $\ell = 500$ at 100 GHz (in μK^{2})		
	(0.14 ± 0.042)			
Abort	(0, 10)	As for A ^{dustry} but at 100 × 143 GHz		
	(0.12 ± 0.036)			
A 100-217	[0, 10]	As for A 100 m but at 100 × 217 GHz		
absTE	(0.3 ± 0.09)	to the shell be a tablette		
A10	(0.34)	An lost A 100 - But at 143 GHz		
about 6	10.04 20.0129	As for Abolt but at 143 x 212/084		
Hadn	(0.6 + 0.18)	NO PER CALLO DE LE CALO A SUCCESS		
Abort	(0, 10)	As for America but at 217 GHz		
	(1.8 ± 0.50)	the second		

Notes. The columns indicate the symbol for each parameter, the prior used for exploration (square brackets denote uniform priors, parentheses indicate Gaussian priors), and definitions. Buam eigenmode amplitudes require a corrotation metrix to fully describe their joint prior and so do not appear in the table; they are internally marginalized over rather than explicitly sampled. This table only lists the instrumental parameters that are explored in the released version, but we do consider more parameters to access the effects of buam uncertainties and buam hakage; see Sect. 34.3.

Many non-cosmological parameters

Correlated noise seen in detector sets (simultaneous observations) used in 2013 analysis Half-ring maps of detsets: (HRI-HR2)_{DS1} X (HRI-HR2)_{DS2} provide a correlated noise template added to cosmological analysis 100×100

No correlation seen in Half-Mission used in 2015, but deviation from white noise included in S+N covariance matrix calculation

Systematics

 Comparison of some systematics with statistical errors

Inter-frequency differences

Frequency redundancy allows us to check foregrounds cleaning and systematics.

TE and EE too large deviations. A sign of remaining systematics.

Planck 2015 results. XI.

Inter-frequency differences

 $\begin{array}{c} 127272\\ -3\\ -3\\ -200 \end{array}$

TT

TT behaves very well

TE and EE too large deviations. A sign of remaining systematics.

Frequency redundancy allows us to check foregrounds cleaning and systematics.

Planck 2015 results. XI.

EE

Beam related systematics

 In the absence of polarisation modulation (eg rotating half-wave plate, rHWP*), polarisation is obtained by differencing 2 different orthogonal detectors
 → any detector mismatch (in gains, beams, band-passes, ...) creates fake polarisation (Hu et al, 2003, and many others).

Note: *rHWP are still little used, and create their own kind of problems (Takakura et al, 2017)

QuickPol

100-1a: $\langle \cos 2\psi \rangle$

100-1a: $\langle \cos \psi \rangle$

For each *l*,

Wℓ is a 9x6 (diagonal dominated)

matrix

Sky Power Spectra

s=2

 $\delta = \bar{}$

 \tilde{C}^{BB}_{ℓ}

 \tilde{C}_{ℓ}^{TE}

 $\tilde{C}_{\ell}^{TB} \\ \tilde{C}_{\ell}^{EB} \\ \tilde{C}_{\ell}^{ET} \\ \tilde{C}_{\ell}^{BT} \\ \tilde{C}_{\ell}^{-}$

 $\dot{\gamma}BE$

- Temperature QuickBeam (used in 2013 and 2015 analyses):
 - $\bullet C_{\ell}^{TT} = \Sigma_{\ell} \omega_{\ell}^{2} b_{\ell}^{*} b_{\ell} C_{\ell}^{TT}$
 - b_{ω} : weighted combination of scanning beams in DetSet,
 - ω_{a}^{2} : encodes scanning strategy (assumed to vary slowly across the sky)
- Temperature + Polarisation QuickPol (in 2017 analysis):
 - $\blacklozenge \mathbf{C}'_{\ell} = \boldsymbol{\Sigma}_{\scriptscriptstyle \boldsymbol{\delta} i j} \ \boldsymbol{\Omega}_{\scriptscriptstyle \boldsymbol{\delta} i j} \ \circledast \ \mathbf{B}_{\scriptscriptstyle \boldsymbol{\ell} \diamond i}^{\ \ast_{\mathsf{T}}} \cdot \mathbf{C}_{\ell} \cdot \mathbf{B}_{\scriptscriptstyle \boldsymbol{\ell} \diamond j}$
 - C : 3x3 C(l) matrix
 - B : weighted scanning polarised beams in DetSet Map(s) Power Spectra or Half missions
 - $\blacktriangleright \ \Omega$: encodes scanning strategy weighted by map-making IQU inverse covariance matrix
 - provides effective beam window matrix W_l describing C_l coupling,
 without numerical simulations !
 - has be extended to gain and polar efficiency uncertainty
 - Backward C(I) fitting can then still be used as a rain check to detect/catch remaining systematics

EH, Mottet, Ponthieu, 2017

Covariance matrix

- Ingredients:
 - A fiducial CMB signal spectrum, based on your best estimate
 - Foreground fiducial models at relevant frequency, based on your best knowledge
 - A good estimate of the noise spectrum,
 - Systematics models and their uncertainty ² e.g. for Gaussian beam: $B_{\ell} = \exp(-\ell (\sigma + \delta \sigma))$
- Perform analytical calculations
- Validate with N_{sim} = 10 000 Monte-Carlo simulations (see P. Natoli lecture)
 - limited accuracy $\Delta M_{ii} / M_{ii} M_{ii} \sim (2 / N_{sim}) = 1\%$
 - mostly interesting for diagonal
- Apply to data,

1/2

TTEE block

where $X, Y \in [00, TT, PP]$, and $\alpha, \beta \in (TT, TE, PT, PP)$. They make use of window functions W,

Point sources mask and C_l

- In presence of a point source mask, the analytical computation of the covariance matrix (Efstathiou, 2004) that works fine for galactic masks, differ from Monte-Carlo based estimates, by up to 10 or 20%
- However, a new formalism, treating the point source 'holes' as a Poisson process, agrees much better with simulations (on going work with A. Challinor, F. Elsner, S.Gratton, M. Lilley & M. Migliaccio)

Validation

• tests, tests, and tests

Test impact of various settings on final parameters

Planck 2015 results. XI.

Tests final parameters of 300 end-to-end simulations

ACDM results from TT

[1] Parameter	2013N(DS)	2015F(CHM) (Pli	k)
$100\theta_{MC}$	1.04131 ± 0.00063	1.04086 ± 0.00048	
$\Omega_b h^2$	0.02205 ± 0.00028	0.02222 ± 0.00023	
$\Omega_c h^2$	0.1199 ± 0.0027	0.1199 ± 0.0022	
H_0	67.3 ± 1.2	67.26 ± 0.98	
<i>n</i> _s	0.9603 ± 0.0073	0.9652 ± 0.0062	
$\Omega_{\rm m}$	0.315 ± 0.017	0.316 ± 0.014	-1 sigma shift
σ_8	0.829 ± 0.012	0.830 ± 0.015	30% weaker
au	0.089 ± 0.013	0.078 ± 0.019	constraint
$10^9 A_{\rm s} e^{-2\tau}$	1.836 ± 0.013	1.881 ± 0.014	+3.5 sigma shift

2013=Planck Nominal 2013 TT+low-l WMAP polarization 2015=Planck Full 2015 TT+low-l Planck LFI polarization.

- Very good consistency between 2013-2015.
- Error bars improved by ~30%
- Calibration change shifts $10^{9}A_{s}e^{-2\tau}$.
- 2015 constraint on optical depth weaker and lower than 2013. We use large scale polarization from Planck LFI !
- LCDM is an excellent fit to the data!

Planck 2015 results. XIII.

WMAP and Planck cosmologies

Hubble parameter [Km/s/Mpc]

 67.8 ± 0.92

69.7 + 2.1

Planck

WMAP

- WMAP and Planck parameters differ by ~1 sigma_{WMAP}.
- WMAP errors factor 2 larger than Planck.

Compare apples to apples

• Same prior on the optical depth, temperature only, same multipole region (although noise properties and fsky are still different).

- Planck and WMAP agree very well when compared properly
- Still need to prove that shifts between lmax=800 and lmax=2500 for Planck itself are consistent with expectations!

Recipes for successful CMB analysis

- To deal with **foregrounds**:
 - mask the most affected pixels,
 - then make a parametric fit of the remaining foreground CI (where the foreground is dominant) using frequency differences, or masks differences, or a priori models,
 - + then marginalise over the fit parameters.
- Poor knowledge of the instrument:
 - add as many free parameters as necessary, and fit and/or marginalise them (eg, polar efficiency, relative calibration with respect to 143GHz)
 - include the unknowns in the covariance matrix (non-diagonal, low rank terms), (eg, beam shape)
- Expected systematic effects:
 - + model their impact on C_{ℓ} , (eg, beam induced T to P leakage in 2017),
 - ✦ if not, find a template to be fit on the data, (eg, beam induced T to P leakage in 2015),
 - ✦ if not, find an upper limit on their impact.
- To assess **robustness** of the results:
 - ★ compare various approaches, options, codes, hypotheses, ...
 - ▶ 5 pipelines at high-ℓ, 4 CMB-only maps
 - + compare to simulations,
 - ✦ test consistency across frequency, data splits, ...
- The analysis has to be repeated many, many times: need for a fast and robust pipeline

Bibliography

Hivon et al, 2017 (QuickPol) 2017A&A...598A..25H

Hu et al, <u>2003PhRvD..67d3004H</u>

Planck 2015-XI, 2016 2016A&A...594A..11P

Takakura et al, 2017 (Polarbear) 2017JCAP...05..008T

Back to page 1

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada.

