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Planning: Day 1 (today)
• Lecture 1 [8:30–9:15] 

• Brief introduction of the CMB research


• Temperature anisotropy from gravitational effects


• Lecture 2 [14:00–14:45] 

• Power spectrum basics


• Temperature anisotropy from hydrodynamical effects 
(sound waves)



Planning: Day 2
• Lecture 3 [8:30–9:15] 

• Temperature anisotropy from sound waves [continued]


• Cosmological parameter dependence of the 
temperature power spectrum


• Lecture 4 [14:00–14:45] 

• Cosmological parameter dependence of the 
temperature power spectrum [continued]


• Polarisation



Planning: Day 3

• Lecture 5 [8:30-9:15] 

• Polarisation [continued]


• Gravitational waves and their imprints on the CMB



From “Cosmic Voyage”

Hot, dense, opaque universe  
-> “Decoupling” (transparent universe)  
-> Structure Formation



Sky in Optical (~0.5μm)



Sky in Microwave (~1mm)



Light from the fireball Universe 
filling our sky (2.7K) 

The Cosmic Microwave 
Background (CMB)

Sky in Microwave (~1mm)



410 photons 
per  

cubic centimeter!!



All you need to do is to detect radio 
waves. For example, 1% of noise on 
the TV is from the fireball Universe

Prof. Hiranya Peiris
（Univ. College London）
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1:25 model of the antenna at Bell Lab
The 3rd floor of Deutsches Museum



The real detector system used by Penzias & Wilson
The 3rd floor of Deutsches Museum

Donated by Dr. Penzias, 
who was born in Munich

Arno 
Penzias



Recorder

Amplifier

Calibrator, cooled 
to 5K by liquid helium

Horn antenna



May 20, 1964
CMB 

Discovered

15

6.7–2.3–0.8–0.1
= 3.5±1.0 K



Spectrum of CMB 
= Planck Spectrum

4K Planck Spectrum
2.725K Planck Spectrum
2K Planck Spectrum
Rocket (COBRA)
Satellite (COBE/FIRAS)
Rotational Excitation of CN
Ground-based
Balloon-borne
Satellite (COBE/DMR)
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1989 COBE



2001 WMAP





Concept of “Last Scattering Surface”



This morning: Light Propagation
 in a Clumpy Universe



This afternoon: Hydrodynamics at LSS



Other lecturers: Lensing, SZ, Recombination

Jens  
Chluba

Antony 
Lewis

Jean-Baptiste 
Melin



Notation
• Notation in my lectures follows that of the text book 

“Cosmology” by Steven Weinberg



Cosmological Parameters

• Unless stated otherwise, we shall assume a spatially-flat 
Λ Cold Dark Matter (ΛCDM) model with 

which implies:

[baryon density]

[total mass density]

;



How light propagates in a 
clumpy universe?

• Photons gain/lose energy by gravitational blue/redshifts 

• Photons change their directions via gravitational lensing

Antony 
Lewis

this lecture



Distance between  
two points in space

• Static (i.e., non-expanding) Euclidean space


• In Cartesian coordinates 



Distance between  
two points in space

• Homogeneously expanding Euclidean space


• In Cartesian comoving coordinates 

“scale factor”



Distance between  
two points in space

• Homogeneously expanding Euclidean space


• In Cartesian comoving coordinates 

“scale factor” =1 for i=j
=0 otherwise



Distance between  
two points in space

• Inhomogeneous curved space


• In Cartesian comoving coordinates 

“metric perturbation”
-> CURVED SPACE!



Not just space…

• Einstein told us that a clock ticks slowly when gravity is 
strong…


• Space-time distance, ds4, is modified by the presence of 
gravitational fields

: Newton’s gravitational potential

: Spatial scalar curvature perturbation

: Tensor metric perturbation [=gravitational waves]



Tensor perturbation Dĳ:  
Area-conserving deformation

• Determinant of a matrix 

is given by

• Thus, Dij must be trace-less 

if it is area-conserving deformation of two points in space



Not just space…

• Einstein told us that a clock ticks slowly when gravity is 
strong…


• Space-time distance, ds4, is modified by the presence of 
gravitational fields

: Newton’s gravitational potential

: Spatial scalar curvature perturbation
is a perturbation to the determinant of spatial metric



Evolution of  
photon’s coordinates

• Photon’s path is determined such that the distance 
traveled by a photon between two points is minimised. 
This yields the equation of motion for photon’s 
coordinates 

This equation is known as the “geodesic equation”.  
The second term is needed to keep the form of the equation unchanged  
under general coordinate transformation => GRAVITATIONAL EFFECTS!

y

x
“u” labels  

photon’s path



Evolution of  
photon’s momentum

• It is more convenient to write down the geodesic equation 
in terms of the photon momentum: 

y

x
“u” labels  

photon’s path

then

Magnitude of the photon momentum is equal to the photon energy:



Some calculations…

With ( )

Scalar perturbation [valid to all orders] Tensor perturbation [valid to 1st order in D]



Recap
• Requiring photons to travel between two points in 

space-time with the minimum path length, we obtained 
the geodesic equation


• The geodesic equation contains        that is required to 
make the form of the equation unchanged under 
general coordinate transformation


• Expressing        in terms of the metric perturbations, we 
obtain the desired result - the equation that describes 
the rate of change of the photon energy!  

Math may be messy but the concept is transparent!



• Let’s interpret this equation physically

The Result

γi is a unit vector of the direction of  
photon’s momentum:

Sachs & Wolfe (1967)



• Cosmological redshift 

• Photon’s wavelength is stretched in proportion to the 
scale factor, and thus the photon energy decreases as

The Result

γi is a unit vector of the direction of  
photon’s momentum:

p / a�1

Sachs & Wolfe (1967)



• Cosmological redshift - part II 

• The spatial metric is given by


• Thus, locally we can define a new scale factor: 


• Then the photon momentum decreases as 

The Result

ds2 = a2(t) exp(�2 )dx2

ã(t,x) = a(t) exp(� )

p / ã�1

Sachs & Wolfe (1967)



• Gravitational blue/redshift (Scalar)

The Result

Potential well (φ < 0)

Sachs & Wolfe (1967)



• Gravitational blue/redshift (Tensor)

The Result
Sachs & Wolfe (1967)



The Result

• Gravitational blue/redshift (Tensor)

Sachs & Wolfe (1967)



Formal Solution (Scalar)

or

Line-of-sight direction

Coming distance (r)

Sachs & Wolfe (1967)

“L” for “Last scattering surface”



Formal Solution (Scalar)

Line-of-sight direction

Coming distance (r)

Initial Condition

Sachs & Wolfe (1967)



Formal Solution (Scalar)

Line-of-sight direction

Comoving distance (r)

Gravitational Redshit

Sachs & Wolfe (1967)



Formal Solution (Scalar)

Line-of-sight direction

Coming distance (r)

“integrated Sachs-Wolfe” (ISW) effect

Sachs & Wolfe (1967)



Initial Condition

• "Were photons hot or cold at the bottom of the potential well at 
the last scattering surface?” 

• This must be assumed a priori - only the data can tell us!



“Adiabatic” Initial Condition
• Definition: “Ratios of the number densities of all species are 

equal everywhere initially”


• For ith and jth species, ni(x)/nj(x) = constant 

• For a quantity X(t,x), let us define the fluctuation, δX, as

• Then, the adiabatic initial condition is

�ni(tinitial,x)

n̄i(tinitial)
=

�nj(tinitial,x)

n̄j(tinitial)



Example:  
Thermal Equilibrium

• When photons and baryons were in thermal equilibrium in 
the past, then


• nphoton ~ T3 and nbaryon ~ T3


• That is to say, thermal equilibrium naturally gives the 
adiabatic initial condition


• This gives 

• “B” for “Baryons” 
• ρ is the mass density



Big Question
• How about dark matter?  

• If dark matter and photons were in thermal equilibrium in 
the past, then they should also obey the adiabatic initial 
condition


• If not, there is no a priori reason to expect the adiabatic 
initial condition! 

• The current data are consistent with the adiabatic initial 
condition. This means something important for the nature 
of dark matter!

We shall assume the adiabatic initial 
condition throughout the lectures



Adiabatic Solution

• At the last scattering surface, the temperature fluctuation 
is given by the matter density fluctuation as

�T (tL,x)

T̄ (tL)
=

1

3

�⇢M (tL,x)

⇢̄M (tL)



• On large scales, the matter density fluctuation during the 
matter-dominated era is given by 

Adiabatic Solution

�T (tL,x)

T̄ (tL)
=

1

3

�⇢M (tL,x)

⇢̄M (tL)
= �2

3
�(tL,x)

�⇢M/⇢̄M = �2� ; thus,

Hot at the bottom of  
the potential well, but…



• Therefore:

Over-density = Cold spot

�T (n̂)

T0
=

1

3
�(tL, r̂L)

This is negative in an over-density region! 




