Physics of CMB Anisotropies

Eiichiro Komatsu (Max-Planck-Institut für Astrophysik) "The CMB from A to Z", November 13–15, 2017

Planning: Day 1 (today)

- Lecture 1 [8:30-9:15]
 - Brief introduction of the CMB research
 - Temperature anisotropy from gravitational effects
- Lecture 2 [14:00–14:45]
 - Power spectrum basics
 - Temperature anisotropy from hydrodynamical effects (sound waves)

Planning: Day 2

- Lecture 3 [8:30-9:15]
 - Temperature anisotropy from sound waves [continued]
 - Cosmological parameter dependence of the temperature power spectrum
- Lecture 4 [14:00–14:45]
 - Cosmological parameter dependence of the temperature power spectrum [continued]
 - Polarisation

Planning: Day 3

- Lecture 5 [8:30-9:15]
 - Polarisation [continued]
 - Gravitational waves and their imprints on the CMB

Hot, dense, opaque universe -> "Decoupling" (transparent universe) -> Structure Formation

From "Cosmic Voyage"

Sky in Optical (~0.5µm)

Sky in Microwave (~1mm)

Sky in Microwave (~1mm)

Light from the fireball Universe filling our sky (2.7K)

The Cosmic Microwave Background (CMB)

410 photons per cubic centimeter!!

All you need to do is to detect radio waves. For example, 1% of noise on the TV is from the fireball Universe

I:25 model of the antenna at Bell Lab The 3rd floor of Deutsches Museum

The real detector system used by Penzias & Wilson The 3rd floor of Deutsches Museum

May 20, 1964 CMB Discovered 6.7-2.3-0.8-0.1 $= 3.5 \pm 1.0 K$

Di

Z

Schreiberaufzeichnung der ersten Messung des Mikrowellenhintergrundes am 20.5.1964

13 2 4

2.4

d Cdl

E DT HUS

gration Gard

Recording of the first measurement of cosmic microwave background₅ radiation taken on 5/20/1964.

@Ans_S10C01_1k 000255

2001 WMAP

Concept of "Last Scattering Surface"

Notation

 Notation in my lectures follows that of the text book "Cosmology" by Steven Weinberg

Cosmological Parameters

Unless stated otherwise, we shall assume a spatially-flat
 Λ Cold Dark Matter (ΛCDM) model with

 $\Omega_B h^2 = 0.022$ [baryon density] $\Omega_M h^2 = 0.14$ [total mass density] $\Omega_M = 0.3$

which implies:

 $\Omega_A = 0.7, \ \Omega_D h^2 = 0.118, \ \Omega_B = 0.04714$

 $H_0 = 100 \ h \ \mathrm{km \ s^{-1} \ Mpc^{-1}}$; $H_0 = 68.31 \ \mathrm{km \ s^{-1} \ Mpc^{-1}}$

How light propagates in a clumpy universe?

Photons gain/lose energy by gravitational blue/redshifts

this lecture

Photons change their directions via gravitational lensing

- Static (i.e., non-expanding) Euclidean space
 - In Cartesian coordinates $\boldsymbol{x} = (x, y, z)$

$$ds^2 = dx^2 + dy^2 + dz^2$$

- Homogeneously expanding Euclidean space
 - In Cartesian **comoving** coordinates x = (x, y, z)

$$ds^{2} = a^{2}(t)(dx^{2} + dy^{2} + dz^{2})$$
"scale factor"

- Homogeneously expanding Euclidean space
 - In Cartesian **comoving** coordinates x = (x, y, z)

$$ds^2 = a^2(t) \sum_{i=1}^3 \sum_{j=1}^3 \delta_{ij} dx^i dx^j$$

"scale factor" $i=1 j=1 \delta_{ij} \delta_{ij} dx^i dx^j$

- Inhomogeneous curved space
 - In Cartesian **comoving** coordinates x = (x, y, z)

$$ds^2 = a^2 \sum_{i=1}^3 \sum_{j=1}^3 (\delta_{ij} + h_{ij}) dx^i dx^j$$
"metric perturbation"
-> CURVED SPACE!

Not just space...

- Einstein told us that a clock ticks slowly when gravity is strong...
- Space-time distance, ds₄, is modified by the presence of gravitational fields

$$ds_4^2 = -\exp(2\Phi)dt^2 + a^2\exp(-2\Psi)\sum_{i=1}^3\sum_{j=1}^3[\exp(D)]_{ij}dx^i dx^j$$

 ${I\hspace{-.2em}/}\Phi$: Newton's gravitational potential

 Ψ : Spatial scalar curvature perturbation

 D_{ij} : Tensor metric perturbation [=gravitational waves]

Tensor perturbation D_{ij}: Area-conserving deformation

• Determinant of a matrix

 $[\exp(D)]_{ij} \equiv \delta_{ij} + D_{ij} + \frac{1}{2} \sum_{k=1}^{3} D_{ik} D_{kj} + \frac{1}{6} \sum_{km} D_{ik} D_{km} D_{mj} + \cdots$

is given by $\exp(\sum_{i} D_{ii})$

• Thus, D_{ij} must be trace-less $\sum_{i} D_{ii} = 0$ if it is area-conserving deformation of two points in space

Not just space...

- Einstein told us that a clock ticks slowly when gravity is strong...
- Space-time distance, ds₄, is modified by the presence of gravitational fields

$$ds_4^2 = -\exp(2\Phi)dt^2 + a^2\exp(-2\Psi)\sum_{i=1}^3\sum_{j=1}^3[\exp(D)]_{ij}dx^i dx^j$$

- ${I\hspace{-.2em}/}\Phi$: Newton's gravitational potential
- Ψ : Spatial scalar curvature perturbation is a perturbation to the determinant of spatial metric

Evolution of photon's coordinates

• Photon's path is determined such that the distance traveled by a photon between two points is minimised. This yields the equation of motion for photon's coordinates $x^{\mu} = (t, x^{i})$ \mathbf{y}^{\dagger} $\frac{d^{2}x^{\lambda}}{du^{2}} + \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \Gamma^{\lambda}_{\mu\nu} \frac{dx^{\mu}}{du} \frac{dx^{\nu}}{du} = 0$

photon's pat

This equation is known as the "geodesic equation". The second term is needed to keep the form of the equation unchanged under general coordinate transformation => GRAVITATIONAL EFFECTS!

Evolution of photon's momentum

 It is more convenient to write down the geodesic equation in terms of the photon momentum:

$$p^{\mu} \equiv \frac{dx^{\mu}}{du}$$
then
$$\frac{dp^{\lambda}}{dt} + \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \Gamma^{\lambda}_{\mu\nu} \frac{p^{\mu}p^{\nu}}{p^{0}} = 0$$

$$\begin{array}{c} \mathbf{y} \\ \mathbf{y} \\$$

$$\begin{split} & \text{Some calculations...} \\ & \frac{dp^{\lambda}}{dt} + \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \Gamma_{\mu\nu}^{\lambda} \frac{p^{\mu}p^{\nu}}{p^{0}} = 0 \\ & \text{With } ds_{4}^{2} = \sum_{\mu\nu} g_{\mu\nu} dx^{\mu} dx^{\nu} \left(\int_{g_{ij}=a^{2} \exp(-2\Psi)[\exp(D)]_{ij}}^{g_{00}=-\exp(2\Phi), g_{0i}=0,} \right) \\ & \Gamma_{\mu\nu}^{\lambda} \equiv \frac{1}{2} \sum_{\rho=0}^{3} g^{\lambda\rho} \left(\frac{\partial g_{\rho\mu}}{\partial x^{\nu}} + \frac{\partial g_{\rho\nu}}{\partial x^{\mu}} - \frac{\partial g_{\mu\nu}}{\partial x^{\rho}} \right) \\ & \text{Scalar perturbation [valid to all orders]} \quad \text{Tensor perturbation [valid to 1st order in D]} \\ & \Gamma_{00}^{0} = \phi, \ \Gamma_{0i}^{0} = \frac{\partial \phi}{\partial x^{i}}, \ \Gamma_{ij}^{0} = \exp(-2\Phi) \left(\frac{\dot{a}}{a} - \dot{\psi}\right) g_{ij}, \\ & \Gamma_{ij}^{k} = \delta_{ij} \sum_{\ell} \delta^{k\ell} \frac{\partial \Psi}{\partial x^{\ell}} - \delta_{k}^{k} \frac{\partial \Psi}{\partial x^{j}} - \delta_{j}^{k} \frac{\partial \Psi}{\partial x^{i}}, \end{split}$$

Recap

Math may be messy but the concept is transparent!

- Requiring photons to travel between two points in space-time with the minimum path length, we obtained the geodesic equation
- The geodesic equation contains Γ^λ_{µν} that is required to make the form of the equation unchanged under general coordinate transformation
- Expressing $\Gamma^{\lambda}_{\mu\nu}$ in terms of the metric perturbations, we obtain the desired result the equation that describes the rate of change of the photon energy!

$$p^2 \equiv \sum_{i=1}^3 \sum_{j=1}^3 g_{ij} p^i p^j$$

The Result

γⁱ is a unit vector of the direction of photon's momentum:

 $\sum_{i} (\gamma^i)^2 = 1$

• Let's interpret this equation physically

 $\sum (\gamma^i)^2 = 1$

The Result

$$\frac{1}{p}\frac{dp}{dt} = -\frac{\dot{a}}{a} + \dot{\Psi} - \frac{1}{a}\sum_{i}\frac{\partial\Phi}{\partial x^{i}}\gamma^{i} - \frac{1}{2}\sum_{ij}\dot{D}_{ij}\gamma^{i}\gamma^{j}$$

γⁱ is a unit vector of the direction of photon's momentum:

- Cosmological redshift
 - Photon's wavelength is stretched in proportion to the scale factor, and thus the photon energy decreases as

$$p \propto a^{-1}$$

The Result

$$\frac{1}{p}\frac{dp}{dt} = -\frac{\dot{a}}{a} + \dot{\Psi} - \frac{1}{a}\sum_{i}\frac{\partial\Phi}{\partial x^{i}}\gamma^{i} - \frac{1}{2}\sum_{ij}\dot{D}_{ij}\gamma^{i}\gamma^{j}$$

- Cosmological redshift part II
 - The spatial metric is given by $ds^2 = a^2(t) \exp(-2\Psi) d\mathbf{x}^2$
 - Thus, locally we can define a new scale factor:

$$\tilde{a}(t, \mathbf{x}) = a(t) \exp(-\Psi)$$

• Then the photon momentum decreases as

$$p \propto \tilde{a}^{-1}$$

The Result

$$\frac{1}{p}\frac{dp}{dt} = -\frac{\dot{a}}{a} + \dot{\Psi} - \frac{1}{a}\sum_{i}\frac{\partial\Phi}{\partial x^{i}}\gamma^{i} - \frac{1}{2}\sum_{ij}\dot{D}_{ij}\gamma^{i}\gamma^{j}$$

Gravitational blue/redshift (Scalar)

The Result

$$\frac{1}{p}\frac{dp}{dt} = -\frac{\dot{a}}{a} + \dot{\Psi} - \frac{1}{a}\sum_{i}\frac{\partial\Phi}{\partial x^{i}}\gamma^{i} - \frac{1}{2}\sum_{ij}\dot{D}_{ij}\gamma^{i}\gamma^{j}$$

Gravitational blue/redshift (Tensor)

$$D_{ij} = \begin{pmatrix} h_+ & h_{\times} & 0 \\ h_{\times} & -h_+ & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

The Result

Gravitational blue/redshift (Tensor)

$$D_{ij} = \begin{pmatrix} h_{+} & h_{\times} & 0 \\ h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{(-, -)}_{i} h_{*} > 0$$

Initial Condition

- "Were photons hot or cold at the bottom of the potential well at the last scattering surface?"
- This must be assumed a priori only the data can tell us!

"Adiabatic" Initial Condition

- <u>Definition</u>: "Ratios of the number densities of all species are equal everywhere initially"
 - For ith and jth species, $n_i(x)/n_j(x) = constant$
- For a quantity X(t,x), let us define the **fluctuation**, δX , as $\delta X(t,m{x})\equiv X(t,m{x})-ar{X}(t)$
- Then, the adiabatic initial condition is

$$\frac{\delta n_i(t_{\text{initial}}, \mathbf{x})}{\bar{n}_i(t_{\text{initial}})} = \frac{\delta n_j(t_{\text{initial}}, \mathbf{x})}{\bar{n}_j(t_{\text{initial}})}$$

Example: Thermal Equilibrium

- When photons and baryons were in thermal equilibrium in the past, then
 - $n_{photon} \sim T^3$ and $n_{baryon} \sim T^3$
 - That is to say, thermal equilibrium naturally gives the adiabatic initial condition
 - This gives

$$3 rac{\delta T(t_i, \boldsymbol{x})}{\bar{T}(t_i)}$$

- $= \frac{\delta \rho_B(t_i, \boldsymbol{x})}{\bar{\rho}_B(t_i)}$
 - "B" for "Baryons"
 - ρ is the mass density

Big Question

- How about dark matter?
- If dark matter and photons were in thermal equilibrium in the past, then they should also obey the adiabatic initial condition
 - If not, there is no a priori reason to expect the adiabatic initial condition!
- The current data are consistent with the adiabatic initial condition. This means something important for the nature of dark matter!

We shall assume the adiabatic initial condition throughout the lectures

Adiabatic Solution

• At the last scattering surface, the temperature fluctuation is given by the matter density fluctuation as

$$\frac{\delta T(t_L, \mathbf{x})}{\bar{T}(t_L)} = \frac{1}{3} \frac{\delta \rho_M(t_L, \mathbf{x})}{\bar{\rho}_M(t_L)}$$

Adiabatic Solution

• On large scales, the matter density fluctuation during the matter-dominated era is given by $\delta \rho_M / \bar{\rho}_M = -2\Phi$; thus,

$$\frac{\delta T(t_L, \mathbf{x})}{\bar{T}(t_L)} = \frac{1}{3} \frac{\delta \rho_M(t_L, \mathbf{x})}{\bar{\rho}_M(t_L)} = -\frac{2}{3} \Phi(t_L, \mathbf{x})$$

Hot at the bottom of the potential well, but...

Over-density = Cold spot

This is negative in an over-density region!

