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Thermal Sunyaev-Zel’dovich Effect

Sunyaev and Zel’dovich (1972, 1980)
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✦ Distorted spectrum by tSZ



Weak Lensing: Cosmic Shear

galaxies

‘Cosmic Shear’: Gravitational lensing by large-scale structure. 
                             unbiased tracer of dark matter.

convergence

position kernel density

Convergence map from HSC (Oguri+, 2017)



Measurements of Cross-Correlation
✦Several groups have already reported the detection of  

the cross-correlation.
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Models
✦First, let us consider the model of the signal.  

•Theoretical prediction of auto- and cross-power spectra  
Spectra can be decomposed into two terms based on halo model.

well calibrated by N-body sim.

Fourier transform of 
Compton-y of halo 
➡We need pressure 

profile of halo.
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Analytic Model of Gas Profiles
✦We employ the analytic gas density/pressure profile model  

of individual halo, which is proposed by Shaw+ (2010) and  
improved by Flender+ (2017). 
The model contain six free parameters,  
each of which describes a physical process  
(e.g., SNe/AGN feedback, non-thermal pressure). 
Free parameters are calibrated by gas density and 
gas fraction of X-ray clusters. 

✦Non-thermal pressure 
Turbulent motion also can support the self-gravity of the halo.  
This effect is parametrized as,
Pnth
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Covariance Estimation
✦Let us move on covariance matrix estimation. 

•Simulations   
In order to estimate covariance matrix,  
we employ N-body simulations. 
Box size: (1 Gpc/h)3 

# of particles: 20483 
Cosmology: Planck 2015  
The snapshots cover up to z=4.13.  

•Mock observations 
WL: Multiple plane method (White & Hu, 2000) 
tSZ: First, we find halos with Rockstar (Behroozi+, 2013). 
        For each halo, we solve the analytic model, and assign 
        thermal pressure to the member particles.
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Covariance Estimation
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Covariance Estimation

10 deg

The variance of maps corresponds to 
the covariance matrix.
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•We can constrain the amplitude of non-thermal pressure and σ8 
with power spectrum and cross-correlation.
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•We can constrain the amplitude of non-thermal pressure and σ8 
with power spectrum and cross-correlation.
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Source of Tension
•The analytic model is calibrated with galaxy clusters and 

low-z galaxy groups. However, high-z groups contribute to a 
substantial fraction of signal. At this range, analytic model 
inevitably contains uncertainty.
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Around 50% of the signal comes 
from unresolved halos!
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•Let us consider an extreme case of enhanced star formation 

for group size halos by changing S* to 0.7 from 0.12.  
That corresponds to severe depletion of hot gas for such halos.
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multi-band imaging (grizy) 
survey down to 
r~28 mag

HSC-SSP will cover 
1400 deg2  
over 300 nights



HSC Weak Lensing
Weak lensing measurements have already done!

Oguri+ (2017)

Convergence



Convergence and Compton-y maps

Preliminary

✦Non-zero amplitude has already been detected!

KO+ (in prep.)
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Summary
•Weak lensing and thermal Sunyaev-Zel’dovich effect are  

promising probes into the large-scale structure.  

•Theoretical modeling and simulations can be  
used to estimate the signal and covariance matrix.  

•The cross-correlation of them can provide us  
with additional information of cosmology and  
cluster astrophysics. 

•We are currently working on the measurement of  
the cross-correlation with HSC and Planck data.



tSZ by Planck

Planck Col. (2015)
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•The all-sky thermal Sunyaev-Zel’dovich effect  
has already been measured by Planck. 
The power spectrum of Compton-y can place 
a tight constraint on σ8. 
(c.f. Komatsu and Seljak, 2002).



Cross-Correlation of tSZ and WL
•Astrophysics and Cosmology with WL and tSZ 

Power spectra of WL and tSZ give us information of the large-scale  
structure in the Universe and are very useful to constrain 
cosmological models. However, the combination of them 
(cross-correlation) provides us with additional and independent 
information. 
Furthermore, tSZ directly reflects gas distribution. We can obtain 
implications on cluster astrophysics as well. 

•From the observational aspect 
Cross-correlation does not suffer from noise auto-correlation 
in the assumption that noises of different observables  
are uncorrelated.

hAobsBobsi = hABi, Aobs = A+NA, Bobs = B +NB



Analytic Model of Gas Profiles
✦We employ the analytic gas density/pressure profile model  

of individual halo, which is proposed by Shaw+ (2010) and  
improved by Flender+ (2017). 
The model contain six free parameters,  
each of which describes a physical process  
(e.g., SNe/AGN feedback, non-thermal pressure). 

‣Basic ideas 
DM density follows NFW profile. 
Gas profile is determined from Euler eq. with polytope relation.

⇢DM =
⇢s

(r/rs)(1 + r/rs)2

dPtot

dr
= �⇢g(r)

d�(r)

dr
, Ptot / ⇢�g

Eg,f = Eg,i + "DM|EDM|+ "fM⇤c
2 +�Ep

hydro. sim. suggests Γ~1.2

dynamical friction between gas and DM

stellar and AGN feedback

work by gas expansion

To determine the normalization,

Energy of gas



Gas Profile Model
✦Non-thermal pressure 

Turbulent motion also can support the self-gravity of the halo.  
This effect is parametrized as,
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Note: only thermal pressure 
contributes as tSZ.

•Free parameters are calibrated by gas density and 
gas fraction of X-ray clusters. We fix parameters other than alpha.

Flender+ (2017)
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Constraints on Non-thermal Pressure
•Non-thermal pressure  

Non-thermal contribution is hard to measure by conventional 
X-ray observations of clusters. 
However, the power spectrum and the cross-correlation  
are sensitive to it and can be used to estimate its contribution. 
Note: Non-thermal pressure and σ8 are strongly degenerate.

Power spectrum of Compton-y Cross-correlation function

Varying the amplitude 
of non-thermal pressureLarge

Small


