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Overview
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 Short historical review

e Current observations of the Galactic electron and positron cosmic rays:
the positron excess issue

e Review of the propagation modeling of electrons and positrons

e Secondary electrons and positrons

» Sources of primaries, basic predictions

* Discussion and perspectives

PART 1d: THESCACHE OBt

e Dark matter as potentially observable in antimatter cosmic rays

e Dark matter and positrons: standard predictions and the boost factor issue
 The role of cosmological substructures (clumpiness boost factor)

e Mixing the Sommerfeld effect with the clumpiness boost factor

 Latest news from latest N-body simulations

* Discussion and perspectives
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Brief historical review

1*" observation of cosmic ray
electrons > 0.5 GeV
Earl (1961): e/p ~ 3%

7 .
—DAN + _(]_r—'{b (e) V] = Q(e,r).

The origin of cosmic rays ~
Ginzburg & Sirovatsky (1964) ’d&&
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Discovery of the positron
Anderson, Phys. Rev. (1933)
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Current measurements of ¢''s and €''s

e+ and e- e'/(e" + e) PAMELA (e" +¢) HESS and Fermi
data compilation Adriani et al (2009) Aharonian et al (2009)
Abdo et al (2009)

Do we understand all of fthese measurements ?
(positron excess, spectral teatures)
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‘Propagation of Galactic electrons
- 1. Observational facts

408 MHz all-sky map

From Haslam et al data (1982)
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‘Propagation of Galactic electrons
2. Phenomenology of transport

DT =0
D, J*+ DpJ* =0

Current conservation
(Continuity eQHation) Momentum current (losses + reacceleration)

See formalism in:
Ginzburg & Sirovatskii (1964)
Berezinskii et al (1990)

Program:

 Solve the equation given boundary conditions
» Constrain the different parameters

» Make predictions, compare with data

Ditiss:

Credit: Maurin et al (2002)
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The Green function method

DJ =90 DG = 8%(Z — ,)6(E — E,)d(t — t,)
D,J*+ DpJ* = Q

J(Z,E,t) = / A7 dE.dts G(Z,E,t « T, Es,ts) Q(Fs, Es, ts)

Analytical solutions in the following cases for electrons:
. Isotropic diffusion + homogeneous losses + no conveclion + no reacceleration
. Radial diffusion + convection + homogeneous losses + no reacceleration
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Solution in an infinite 3D halo (1)

- R 7 .

. (L

Assumptions: diffusion + energy losses homogeneous and isotropic

We are looking for the particle density per unit energy at
any place, any energy, any time.

Assume steady state (time fluctuations negligible when averaged

over diffusion/energy loss timescales) — reasonable for energies ~
1-100 GeV, not for >100 GeV.

Kok(E)
—dE /dt

b(E )N
k(E)

G}
b E')

Heat equafion 11t
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Solution in an infinite 3D halo (2)

Green function characterized by a propagation scale

K(E"

M=4K,(t—t,) =4 / dEp' ——~

JE b(E')
- Propagation scale set by pseudo-time (energy)

The electron propagator is a Gaussian in space

_ The flux is the quantity to be
J. Lavalle, Astroparticle physics school, OHP 0/209 ‘ : Compared Wlth the data




Boundary conditions

The diffusion zone has a finite size: flat cylinder of radius R~20 kpc and half-height L. ~ 1-10 kpc.
Let us assume that the observer is on Earth, and that R-r < L.

If A<< L, the 3D solution 1s valid.

If , then one has to account for the : N(IzI=L) = 0.

Different methods exist: image method, expansion in terms of Helmholtz eigen-functions, etc.

e
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diffusion length i = 2 kpc

Example of the image method
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‘Propagation parameters

Propagation parameters constrained
with data on secondaries/primaries
(e.g. B/C): degeneracies !!!!

Iso-y° contours for BAC (3= 40)

e.g.:
Maurin's PhD thesis (2001)
also Maurin et al (2001)

0,004 0.005
A [Kpe Mye]
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Energy losses

Electrons lose their energy through electromagnetic interactions
(I) with the interstellar medium (ISM)
(ii) with the interstellar radiation fields (ISRF) and the magnetic fields
(see Blumenthal & Gould, 1970)

(i) Interactions with the ISM (in the disk):
Bremsstrahlung (braking radiation), Eneray losses
ionisation Bremestrahiung
CME {IC})
Dust (IC)

Stars (IC)

Total IC
- Synchrotron

Total

bion(E) o Ngas In(E)

'r:'l Termn 'IE ) X Ngas E In ( E I'

(i) Interactions with the ISRF (including
CMB) and magnetic fields: (inverse)
Compton processes

.... CMB anywhere, but ISRF
concentrated in the disk ... Thomson
regime only valid for yeEph <m...
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Translate losses in propagation scale

Transport mostly set by spatial
diffusion and energy losses

+- diffusion length
Eg = 1TeV
Eg = 0.1 TeV

Eg =0.01 TeV

Klgin Nishina

Koy = 0.012kpc®/Myr; 7 = 10'%s; 4 = 0.7
ME =1GeV — E, > E)

1Ir"1‘ra|:ti1:l|n of inieéot;d energy Ea'Esm-

6 kpe
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Current measurements of ¢''s and €''s

e+ and e- e'/(e" + e) PAMELA (e" +¢) HESS and Fermi
data compilation Adriani et al (2009) Aharonian et al (2009)
Abdo et al (2009)

Do we understand all of fthese measurements ?
(positron excess, spectral teatures)
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Can secondary ¢ s explain the PAMELA data ?

Energy (GeV)

e’/(e" + ) PAMELA
Adriani et al (2009)

Is there a standard model for secondary e*'s ?

J. Lavalle, Astroparticle physics school, OHP 09/2009
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Proton and alp

J. Lavalle, Astroparticle physics s

Short recipe for secondaries

ha fluxes

Inclusive nuclear cross section
ptp— e +X

Propagation
from (XS,ES) to (X,E)

Flux at the Earth

chool, OHP 09/2009

ISM gas distribution
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Proton and alp

J. Lavalle, Astroparticle physics s

Short recipe for secondaries

ha fluxes

The source term

Inclusive nuclear cross section
ptp— e +X

Propagation
from (XS,ES) to (X,E)

Flux at the Earth

chool, OHP 09/2009

ISM gas distribution

Each box contains
uncertainties !!!
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Uncertainties on the source term

R |

Donato et al
(2001)
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Uncertainties from energy losses

Energy loss effect (IS flux)
k= 1.77x 10 s

16
Tloss = 1.00= 10" s

min = 517 10" s
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Uncertainties from propagation parameters

Delahaye et al (2009) Same but with relativistic losses

Secondary " flux Secondary = flux

Propagation
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Index close to 3.5. Time for a short blackboard explanation ?
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Propagation (KN E loss)
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‘Positron fraction !

Energy (GeV)

Well, we also need the electrons ...
buf no need tor predictions it dafa ...

21



‘Electrons ...

Electron CR data
+ CAPRICE 94

= HEAT 94-95 h;ﬂ_*'_*r""* et
,,l-'fil' ats —
|l

AME01 58

[ e L
|_-_-'i'l'h"'

Index ¢ = 3.44 = L1
—— hard Index it
— m&d IndEx fit

soft Index fit
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Why using the data instead of predictions ?
e There are data !

 There are primary sources of electrons: no
theoretical uncertainties when using data.

But ....

e Limited energy range ~ 1-50 GeV

(pre-Fermi data).

e Scatter from an experiment to another ~ factor of
2 in flux, but larger when using different fits.
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From electrons to positron fraction

g* fraction (hard & spectrum)
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Electron CR data
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Let us play the devil's advocate ... Propaaon
® HEAT 2495
Hard versus soft electron spectrum — M S HEAT 00
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(Delahaye et al, 2009) E o s | PAMELA 13
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Fermi has just released the denominator

Elaciron CR data
+ CAPRICE B4
& HEAT 94-95
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Uncertainties are sfill large ... (relevance of analysis tor additional primaries ?)

&' fraction (med & spectrum)

3

pos fron fraction e'lje"+a)

‘ropagation (KN E lioss)
— MIN
— HMED
—  MAX
M558

& = GO0 KW

u  HEAT 84.85

O  HEAT@O

= AMST 07
PAMELA 0=

Yet, a convenfional secondary origin seems unlikely ..,
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“Primary” secondaries ?

Blasi (2009)
Secondaries created in sources are accelerated like primaries

b L — Fobe il
(TR — Fraichro

o

¥ +
- s o
g

ERE&ICHEA]

But ...

 Calculation “a la louche”

» Time effects important at high energy
 Antiprotons should also be produced ...
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Spatial effects ?

Shaviv et al (2009)

CE. Dhffusion: D~EP |

3 populations of electrons:

e From sources in the nearest arm
e From the disk

e From nearby SNRs

+ secondary positrons ... this might make it.

J. Lavalle, Astroparticle physics school, OHP 09/2009
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Positron Fraction e /

‘Standard " positron sources ? ... Pulsars !

|

Agrinier et al "6
Fanselow et al
Daugherty et al '75
Buffington et al "7
Golden et al. "87Y
Muller and Tang "B7

J0357+32
O

J1B36+5625
“CTAT"
J0007+7303
“Gamma Cygni
G iy 12021+4026
1208244127 j1oegi0a1
J0218+4232

J0030+0451

JOT51+1807
11614-2230
(0]
7444134,
J1742-2‘j]15:32 i Sak , Geminga
J1813-1246__ O - = J1418-6058 L I
—G-J..—__.-- ' -
4 . @ - L ]
JreoTioe g \ 1145960 8 J0633+40632
J1826-1256 “Taz' (o) Crab
1808-2332 106130200
J2124-3358 904374715

O New pulsars found in a blind search
O Millisecond radio pulsars

A Population of Gamma-Ray Millisecond Pulsars
Seen with the Fermi Large Area Telescope
A. A Abdo, _me.

THE AsTROPHYSICAL Joumtar, 342:-807-813, 1989 July 15
i . The American Astromomicsl Sasiety, All milts reerved, Printed aa U154,

THE NATURE OF THE COSMIC-RAY ELECTRON SPECTRUM, AND
SUPERNOYA REMNANT CONTRIBUTIOMNS

]_-‘h\\.m Departrment, Space Phy:

AHMED Bnnr_-mﬁ
i ity of Wisconsin—Madison

Received 1988 October 24 acc r'phd 1988 December 20

nate, There are many suggesied sources of

trons at high energy: Type 1 SN explosions (Colg
Johnson 1960; Colgate 1983); pulsar magnetospheres (Gunn
and Ostriker 1969; Arons 1983); dark matter annihilation
{Rudaz and Stecker 1988). Most of the positrons are produced

El}' pair product

n in these sources.
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‘Standard " positron sources ? ... Pulsars !

1000
E [GeV]
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Profumo (2009)

=2 MED diffusion setup, ST mode!
B0335+54

=]
=
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=
w
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P

1000 10000

Caveats:
* Inconsistencies in the propagation setup
» Theoretical uncertainties ?

Yet, pulsars are indeed very good candidates
(not a scoop !)
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‘Standard” primaries: the big mess

INFRARED

Credit: HESS Collab
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Standard paradigm, bul not standard model:

Standard paradigm:

e Cosmic rays in the GeV-TeV diffuse on
magnetic inhomogeneities (Ginzburg &
Sirovatskii, 1964)

» They originate from the vicinity of supernova
remnants (SNRs) or pulsars where they are
accelerated by shock waves (Drury, 1983).

But many many many many uncertainties!
 Spectral features of cosmic rays released in the
ISM: spectral index ~2, energy range ? max
energy ? Environment effects ? Species effects ?
 Relative fraction of e/p in sources ?

» Copious sources of positrons ?

» Time effects at the kpc scale (relevant for
electrons)
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Conclusions of Part [

General statements:

 The principles underlying the physics of cosmic ray transport have been understood for a long time
(Ginzburg & Sirovatskii, 1964).

* Yet, the unprecedented precision and amount of data allow and require to go farther: better constraints
on parameters + refinements in the models themselves. (more fundamental links between turbulence
and transport, etc.).

» Semi-analytical studies help in selecting the relevant information and parameters: complementary to
full numerical tools (e.g. GALPROP — Strong, Moskalenko et al).

 Although there is a standard framework, it is fair to say that there is no standard model of cosmic rays
at the moment.

On the positron excess and electron cosmic rays:
» A secondary origin seems unlikely, but ...

» Nearby pulsars could provide enough primaries

 Important to understand electrons

* High energy means short scale: spatial+time fluctuations!

» Theoretical uncertainties still very large (sources + ISM +
propagation), more data!

Strategy:
e Multimessenger + multiwavelength
» Connect people (ISM+turbulence+sources+transport)

J. Lavalle, Astroparticle physics school, OHP 09/2009
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Overview

PART LisBl b= LAREAT D" L-ORE

 Short historical review

e Current observations of the Galactic electron and positron cosmic rays:
the positron excess issue

e Review of the propagation modeling of electrons and positrons

e Secondary positrons

» Sources of primaries, basic predictions

* Discussion and perspectives

PART 18 THESCACHE OBt

e Dark matter as potentially observable in antimatter cosmic rays

e Dark matter and positrons: standard predictions and the boost factor issue
 The role of cosmological substructures (clumpiness boost factor)

 Latest news from latest N-body simulations

e Mixing the Sommerfeld effect with the clumpiness boost factor

* Discussion and perspectives

J. Lavalle, Astroparticle physics school, OHP 09/2009
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Dark matter annihilation as Galactic antimatter factor

VOLUME 53, NUMBER 6 PHYSICAL REVIEW LETTERS 6 AUGUST 1984

Cosmic-Ray Antiprotons as a Probe of a Photino-Dominated Universe

Astromomy Department, Un te for Theoretical P

Deparimeni, Univers a Barba “alifornia 93106

]

Courtesy P. Salati

Main arguments:

* Antimatter cosmic rays are rare because secondary products
* DM annihilation provides as many particles as antiparticles

* DM-induced antimatter CRs have specific spectral properties

But:

* Do we control the backgrounds?
» Antiprotons are secondaries, not necessarily positrons
* Do the natural DM particle models provide clean signatures?

J. Lavalle, Astroparticle physics school, OHP 09/2009 32



Origin of theoretical uncertainties

Propagation:

parameters?
depends on the species

The primary flux reads:

5 Borim X <00

Y
=
X

dN rim

gl:.flf-.,E — fSrEE-':l P]':Eﬂﬂl::j't'g] dE g

Dark matter distribution:
N-body simulations
spherical symmetry?

cusps vs observations?
substructures or fluctuations?
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Closing the case for antiprotons

Donato et al (2009)
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Data are perfectly consistent with predictions for secondaries.

Antiproton data can be used as constraints for DM
(e.g. in a multimessenger analysis)

J. Lavalle, Astroparticle physics school, OHP 09/2009
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The positron issue
Lavalle, Nezri, Ling et al (2008)
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SUSY: higgsino-like neutralino
Need to boost the signal!
(invoke clumpiness)
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Particle physics motivated models are not generically
observable in the antimatter spectrum.
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The boost factor issue

CAPRICE 54
+ HEAT 94-95
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Boost to get ~ 5 x dpg at ~100 Gel:

WIMP mass 100 GeV 500 GeV 1 TeV
final state
ete” 10 100 350
W+ - 80 500 1000
bb 250 500 1000

S B0 GeY

1000 GEV

Basically, 3 possibilities to boost the signal:

 Play with the propagation parameters

e Increase the local DM density, add other DM
sources (e.g. inhomogeneities)

 Enhance the annihilation cross section
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Play with propagation

Delahaye et al (2008)

Direct production

B/C best fit
M1 flux
M2 flux

uncer. band

bb channel

F? D+ [GeV em 25! sr_l]

EW*YW™ channel

NFW Halo profile (rg = 20 kpc)

cgve= 2.1 % 10750

my, = 500 GeV
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10" 10" 107

Positron energy [GeV]

10! 10°
Positron energy [GeV]
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¥//
1

Increasing L implies more DM in the

diffusion zone.

Translation in flux not that simple,
since B/C imposes K/L ~ cst.

Low energy effect for positrons
(large propagation scale), but small.
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Dark matter inhomogeneities wandering around ?

CLUMPY COLD DARK MATTER

JosEPH SILK
Departments of Astronomy and Physics, and Center for Particle Astrophysics, University of California, Berkeley, CA 94720

AND
ALBERT STEBBINS
NASA/Fermilab Astro ics Center, Fermi iomal Accelerator Laboratory, Batavia, IL 60510
R 1992 March 25 ted 1992 December 16

cores in globular clusters, and in galactic nuclei. The enhanced annihilation rate in clumps can lead to a sig-
nificant contribution to the diffuse y-ray background, as well as emission from the Galactic center. Results
from terrestrial dark matter detection experiments might be significantly affected by clumpiness in the Galactic
halo.

Two main cases:
— — : * A very “bright” single object ?
Mini-dark halos with intermediate mass black holes A

e Collective effect.

HongSheng Zhao and Joseph Silk
(Dated: 1 June 2005 on Phys. Rev. Letters 95, 011301)

Further developed by Bertone et al

Vol 460|2 July 2009 doi:10.1038 /nature 08083

An intermediate-mass black hole of over 500 solar
masses in the galaxy ESO 243-49

Sean A. Farrell"*f, Natalie A. Webb'?, Didier Barret"? Olivier Godet® & Joana M. Rodrigues'*

J. Lavalle, Astroparticle physics school, OHP 09/2009



Single object wandering around

The game one can play:

» Assume a single DM source at any distance d to the Earth.
e Assume a WIMP mass and its annihilation final states.
 Search for the brightness necessary to fit PAMELA.
 Check against other data (gamma, antiprotons, etc.)

Bringmann, Lavalle & Salati (2009)
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Collective effect: clumpiness boost factor

e Clumps are predicted by the current theory of
structure formation.
 They are observed in N-body simulations at all

resolved scales, as predicted.

e The minimal mass scale if ixed by the WIMP
properties (free streaming) ~ Earth mass.

» Smallest objects collapse first: they are more
DM concentrated !

Clumps are numerous: statistical properties

The flux from an object is a stochastic variable

Diemand et al (2004)

J. Lavalle, Astroparticle physics school, OHP 09/2009
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A taste of the final result

Inject a 200 GeV positron according to an

NFW profile. ' lo.012
Short propagation scale (high energy): : oa0e
 The detected positron comes from close f 0.0

around (small volume). ' 10,004
» The local DM density is small, a clump Carth I.j 002
there will be an efficient booster. I e UITRaRY :

» The probability is small: large statistical
variance.

Large propagation scale (low energy): '.m
» Large volume, can feel the Galactic center 1 0 .
* Many clumps, but signal likely dominated | =
by GC. |
» Small statistical variance.

@100 GeV I @10 GeV

J. Lavalle, Astroparticle physics school, OHP 09/2009
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Span over extreme cosmological configurations

Lavalle et al (2007)
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Clumpiness summary:
Use the current state of the art in N-body cosmology

Injes e spactra Injctad specim WaLactaa |l
. ‘Wla Lactas 11 Infctad specina - clumps hake (5
B (40 Co) clumpy hals 53) —  bb #0CaW 1™ bg

n
I"" by —  bbE 0 ca

CAPRICE M
HEAT M4-05
AMS

E{E) hm"h.;{:r‘l.‘:l"]
B TTHT) [I:nl":"h""‘.'ﬂ'l"l
T " "

5

&
&8
g
E L]
E

s

£

]

=%

i

HEAT 24-05
HEAT X
EME107

PAMELA 0

Wha Lotz 1
— smooth hak
== clumpy haks (5m

g

®w o' w' 1 " =3 1 " o'
posiran enargy E [24] peestiron anangy E [Ga%] antiprobon Knetio anergy T (28]

Pieri1 et al (2009)
using results from Via Lactea II (Diemand et al) and Aquarius (Springel et al)

Marginal enhancement from subhalos for all generic WIMPs ...
Yet, a 100 GeV one annihilating in efe” does not require a large boost ...
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Multimessenger, multiwavelength, multiscale

GLAST
HESS T
HESS LI

DM could still be detected at
the Galactic scale, provided
standard astrophysical
processes are under control:
self-consistent analyses
necessary.

J. Lavalle, Astroparticle physics school, OHP 09/2009

DM phenomenology may
manifest itself from the early
times of the Universe (e.g.
BBN), and on the largest
scales (CMB, clusters, etc.).

Sources |/ Transport | Backgrounds

ELAST, HESSII
AS-y, ARGO
AMS -y

AMTARES
km3




Conclusions on Part I1

Dark matter in the cosmic ray spectra:
e [dentifying DM in current cosmic ray measurements is unlikely, even if it were there.
» Higher energy measurements of antimatter cosmic rays necessary (PAMELA, AMS).

* Full electromagnetic spectrum more promising (information not limited to local regions).

Some criticism about the community:

» The hunt for scoops and citations pollutes the hunt for DM (more DM models in 1 year than in the
last 2 decades).

 People should not hide (even to themselves) the theoretical uncertainties: strong statements should
be weighted accordingly.

Some facts and hopes:

* DM remains a big mystery, but is still one the main building block of structure formation: strong
independent motivations for its existence.

e LHC is about to run and might provide interesting results: easier when WIMP properties are known.
e Interdisciplinary field ! Complementarity of detection methods !

 Looking for the unknown imposes on improving our understanding of the known (backgrounds !)

J. Lavalle, Astroparticle physics school, OHP 09/2009



Many thanks .

J. Lavalle, Astroparticle physics school, OHP 09/2009
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