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Introduction - giant air showers

» (P. Auger 1938) :

timing coincidence experiments lead to

the detection of giant air showers with
energy 2 10> eV...







Introduction - all particle CR spectrum e
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‘low” energy cosmic rays likely originate in

: at ‘high’ energy... ???
Galactic supernovae remnants ... & gy

where does 'high' energy starts?
where do the cosmic rays come from?
how many different components ?




Longitudinal shower profile
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... Fe-p discrimination on sample of events



Lateral shower profile S
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timing information on coincidence events — geometry
nature of secondaries —  nature of the primary
lateral distribution function —  energy of the primary

.. Total energy in center of mass (for 102 eV): /s ~ (2Em,c®)Y/? ~ 4 x 101 FEy eV



Fly's Eye (1981 - 1993)
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The Akeno Giant Air Shower Array (AGASA) e
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Energy spectrum measured by AGASA (1992 - 2003) oy
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Fluorescence telescopes

High Resolution Fly's Eye now followed by the Telescope Array (2007-)




Pierre Auger Observatory (2005-)

The Pierre Auger Observatory:

— the largest cosmic ray detector ever built : about 3000 km? !

— a combination of ground detectors and fluorescence detectors...
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Many questions ... a few hints...

» What is the source of ultrahigh energy cosmic rays ?

... what is the fundamental acceleration process to ultrahigh energies?

» Where does the cosmic ray spectrum stop?

... HiRes and Auger have detected a high energy cut-off at the expected
location for the Greisen-Zatsepin-Kuzmin cut-off ~ 6 10%° eV

» What are ultrahigh energy cosmic rays: protons, nuclei, photons, neutrinos?

... the giant air showers are typical of hadronic showers

... HiRes sees protons at UHE, Auger sees an increasing fraction of heavies...?
» Should we expect to see the source in the arrival directions of UHECR?

.. What are the effects of the Galactic and extra-galactic magnetic fields?
. no powerful source seen in the arrival directions of highest energy CR...?

... Auger has reported 99% c.l. detection of anisotropy of arrival directions!
» Should we expect to detect photons/neutrinos/gravitational waves?

... diffuse backgrounds detectable?

... any signal from arrival directions of UHECR ?



Many questions ... a few hints...

© , p asimple criterion: to find which object might be a source of UHE cosmic rays:
= a particle gets accelerated as long as it is confined in the source:
)
a0 20 :
S |tE rn, < L = E <107 eVZB,gLiookpe Hillas 84
15 necessary, but by no means sufficient!
\ . . .
10 |- - oroton: E =102 eV p refined criterion:
I Fo ! compare acceleration timescale with
-t energy loss timescale and escape timescale
5
tacc S tloss; tesc
Wi t,.. depends on acceleration mechanism...
0 | | dwarfs t... depends on magnetic field...
- t,.sc depends on environment...
- - = requires an object by object study...
Norman et al. 95
5 10 15 20 25  log,,(L/1 cm)
1 km 3 Mpc

... magnetars, gamma-ray bursts and giant radio-galaxies are promising candidates...



Acceleration to UHE in gamma-ray bursts fireballs g
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shear acceleration in the core of the?
: jet (Rieger & Duffy 06) :
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Acceleration to UHE in gamma-ray bursts fireballs o
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» Notes:

— acceleration in internal shocks may lead to a neutrino signal at the Waxman-Bahcall

limit, now probed by Ice Cube... detection of PeV neutrinos would imply acceleration
of p to >10'7 eV... absence of detection would not rule out acceleration

to UHE...

— radiative signatures of proton acceleration to ultra-high energies? (Asano et al. 09, 10,
Razzaque et al. 10)

— acceleration at the external shock appears difficult... in the reverse shock?

— strongest 'difficulty’ for GRB model is production rate:

flux of UHECR above 10'° eV requires an energy input rate: ~ 10%* erg/Mpc3/yr

. - . . . . ~ 73 . ’ff»] 13 o
with a GRB rate ngrp this requires: Lyprcr/gre =~ 1077 erg (.1 Gp(fj_?;'yr 1)

i.e., EUHECR/GRB/ E’Y/GRB (g 10 = ...?

— chemical composition of UHECR: expected to be light, but heavy enrichment is also
possible, if nuclei survive spallation and photodisintegration in the flow (Murase et al. 08,
Wang et al. 08)



Faranoff-Riley Il radio-galaxy Cygnus A

acceleration in the central AGN:
unipolar inductor, shocks in blazar zone...

AGN

\

hot spots

acceleration in hot spots:
mildly relativistic shocks...

relativistic

jets
acceleration in the jets: shocks, shear...
(... only FRII carry relativistic jets)

lobes

acceleration in the lobes:
no strong shock... stochastic Fermi acceleration




Notes:

— acceleration in the central zone is strongly inhibited by radiative losses...
E . <10 eV (e.g. Protheroe & Szabo 92, Norman et al. 95)

max ~~v
— only ~ 1% of AGN are radio-loud (jets / lobes)

— enormous luminosities are required to provide proper conditions for
acceleration of protons to ~ 102° eV in jets, hot spots I

= FRIl sources in steady state (e.g. Rachen & Biermann 93, ...)
or flaring FRI sources (e.g. Dermer et al. 08)

— cumulative contribution of all radio-galaxies, e.g. Ptuskin 10

— no apparent correlation with FRIl sources

— chemical composition: mostly protons (at least up to E heavier nuclei

beyond? e.g. Aloisio et al. 09)

max,p’



Acceleration... source luminosity vs E_ g

) _ _ (Lovelace 76, Norman et al. 95, Waxman 95, 05, hatioy,
» A generic case: acceleration in an outflow  |yutikov & Ouyed 05, ML & Waxman 09)
o acceleration timescale (comoving frame): ¢,.. = At
A 21, A~ 1at most: .
- for non-relativistic Fermil, A~ g/B 2 withg 2 1 wind
o time available for acceleration (comoving frame): tqyn =~ —= u
Gle R
: —1
o maximal energy: tacc < tdyn = Eobs < A" ZeBR/S = ®

B2
o ‘magnetic luminosity’ of the source: Lp = 27TR2@28—P2,BC
s

o lower bound on total luminosity: L, > 0.65 x 10*° ©°T?A?3°Z ?E3, erg/s

10% ergs/s is robust: forp — 0, A23% > 1/ > 1
K
for®F 0, Ltot > 1.2 x 10® AB—Z?E3; erg/s
’ riC

= only most extreme sources for 102%eV protons...

...E, . further constrained by energy losses...



Acceleration — in FR-l radio-galaxies?

(Romero et al. 96, Farrar & Piran 00, Gorbunov et al. 08,
Dermer et al. 08, Hardcastle et al. 09, O'Sullivan et al. 09)

» Centaurus A:

=
o in steady state:
jet kinetic luminosity: Lie ~ 2 x 10" erg/s
=
= too small to account for 1020 eV protons ...
Frax ~ Z x 10'% eV in jet/lobe (ML & Waxman 09)
b

o more generally, leptonic models of the SEDs of /

blazars associated with FR-I radio-galaxies: <
Lp ~10*2 —10%erg/s  (celotti & Ghisellini 08)
inCen A: Ly~ 210* erg/s (Lenain et al. 08)
=

o flares / proton blazars (e.g. Farrar & Gruzinov 08, Rachen 08,

Dermer et al. 08):
higher luminosity = acceleration of p to 10%° eV?

10 f

Log Power [erg s°!]

... however: PAO does not see correlation with nearby blazars (Harari 07)...

... energy losses in blazar zone? ...



as an executive summary:

— acceleration of protons to 10%° eV requires extraordinary
conditions: magnetars, gamma-ray bursts, FRII radio-galaxies...

— magnetic luminosity: L 2 10% Z2 E,, erg/s...

— much larger pool of candidates for acceleration of high Z
nuclei...




Many questions ... a few hints...

» What is the source of ultrahigh energy cosmic rays ?

... what is the fundamental acceleration process to ultrahigh energies?

» Where does the cosmic ray spectrum stop?

... HiRes and Auger have detected a high energy cut-off at the expected
location for the Greisen-Zatsepin-Kuzmin cut-off ~ 6 10%° eV

» What are ultrahigh energy cosmic rays: protons, nuclei, photons, neutrinos?

... the giant air showers are typical of hadronic showers

... HiRes sees protons at UHE, Auger sees an increasing fraction of heavies...?
» Should we expect to see the source in the arrival directions of UHECR?

.. What are the effects of the Galactic and extra-galactic magnetic fields?
. no powerful source seen in the arrival directions of highest energy CR...?

... Auger has reported 99% c.l. detection of anisotropy of arrival directions!
» Should we expect to detect photons/neutrinos/gravitational waves?

... diffuse backgrounds detectable?

... any signal from arrival directions of UHECR ?



Many questions ... a few hints...
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Greizen-Zatsepin-Kuzmin cut-off: CMB becomes opaque to pion production

through p+~,,, — N

+ forE 2> 6 10%° eV

... a similar cut-off for iron nuclei due to photodisintegration on CMB/IR,
cut-offs at smaller energy for light nuclei...



Greisen — Zatsepin — Kuz’'min cut-off

Greisen 66, Zatsepin & Kuzmin 66

UHE protons lose energy by interacting with cosmic microwave background photons
to produce pions:

N+veug = N + 7

CMB photons EY ~ 1073 eV are seen as y-rays in UHECR rest frame...

(tbarn)

total cross section

1000 g

cross-section vs photon energy in nucleon rest frame L
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Greisen — Zatsepin — Kuz’'min cut-off oy

Threshold energy: reaction is permitted when

My

2
E/v > MgC (1 - ) nucleus rest frame

2my,

or, in the cosmic rest frame (frame where CMB is isotropic):

(g + 2mp) ¢! y
E, > ~ 6x 1077 eV
P~ 2E,(1 - cos?)
:510 | '| cosmic backgrounds
£ i -
AE m =
Energy loss: € = P~ 2% ~ 15% x
Iap IIlp fJO a2
| 1 5
Interaction length: A = ~ 8 Mpc .
1170'p7 10 ¢
_ A [
Energy loss distance:  ljoss ~ — ~ 50 Mpc! o
€ 3
'10_...| A T BN T T

10 2 13I .

‘3 g " 15
10 10 10 10
frequency (Hz)

0 4

g EE
10 10

= The Universe is opaque to protons with energy >6 x 1019 eV !




Greisen-Zatsepin-Kuzmin cut-off

Greisen 66, Zatsepin & Kuzmin 66
» GZK cut-off: the Universe becomes opaque to protons of energy , 6 10%° eV

(in the cosmic rest frame) as a result of pion production on the CMB,
with characteristic energy loss length 100 Mpc

10%2m 1T 0 T T T ; ™ ; ™ ' L
1021 _:
X E
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Frergy [eV]

10" —

1015

1 10
redshift {1+z)

» Consequence: the source of: >102%° eV particles must lie within ~100 Mpc
>4 1019 eV particles must lie within ~1000 Mpc




Greisen — Zatsepin — Kuz’'min cut-off 3
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Nuclei : photodisintegration losses

10 000
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intermediate mass nuclei are very fragile at high energies...

in practice, at the detector:
either protons or heavy (Si-Fe-?) nuclei at GZK (6 10*° eV) energies

Bertone et al. 02



as an executive summary:
— detected cut-off at GZK energies may point to...
... pion production of UHE protons...

... photodisintegration of Si-Fe nuclei...
... or even, to the maximal energy at the source...




Many questions ... a few hints...

» What is the source of ultrahigh energy cosmic rays ?

... what is the fundamental acceleration process to ultrahigh energies?

» Where does the cosmic ray spectrum stop?

... HiRes and Auger have detected a high energy cut-off at the expected
location for the Greisen-Zatsepin-Kuzmin cut-off ~ 6 10%° eV

» What are ultrahigh energy cosmic rays: protons, nuclei, photons, neutrinos?

... the giant air showers are typical of hadronic showers

... HiRes sees protons at UHE, Auger sees an increasing fraction of heavies...?
» Should we expect to see the source in the arrival directions of UHECR?

.. What are the effects of the Galactic and extra-galactic magnetic fields?
. no powerful source seen in the arrival directions of highest energy CR...?

... Auger has reported 99% c.l. detection of anisotropy of arrival directions!
» Should we expect to detect photons/neutrinos/gravitational waves?

... diffuse backgrounds detectable?

... any signal from arrival directions of UHECR ?



Many questions ... a few hints... iy
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... discrepancy related to some fundamental physical process? E [eV]
... a proton or iron composition bears a crucial impact on phenomenology...



Composition measurement by PAO
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as an executive summary:
— discrepant measurements of composition...
— HiRes, PAO and TA have similar values of X _ within error bars...
— whether one is dealing with protons or iron at UHE has drastic
conseqguences for phenomenology...

p: few candidate sources, small angular deflection
Fe: more candidate sources, large angular deflection...




Many questions ... a few hints...

» What is the source of ultrahigh energy cosmic rays ?

... what is the fundamental acceleration process to ultrahigh energies?

» Where does the cosmic ray spectrum stop?

... HiRes and Auger have detected a high energy cut-off at the expected
location for the Greisen-Zatsepin-Kuzmin cut-off ~ 6 10%° eV

» What are ultrahigh energy cosmic rays: protons, nuclei, photons, neutrinos?

... the giant air showers are typical of hadronic showers

... HiRes sees protons at UHE, Auger sees an increasing fraction of heavies...?
» Should we expect to see the source in the arrival directions of UHECR?

.. What are the effects of the Galactic and extra-galactic magnetic fields?
. no powerful source seen in the arrival directions of highest energy CR...?

... Auger has reported 99% c.l. detection of anisotropy of arrival directions!
» Should we expect to detect photons/neutrinos/gravitational waves?

... diffuse backgrounds detectable?

... any signal from arrival directions of UHECR ?



Propagation — transport in extra-galactic magnetic fields i)
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: 2 ° =22
Homogeneous turbulence:  §47 ~ 2°E5° B~ Ao .1Mpe R100Mpe

‘,. »7 "= at high energies (2 109 eV),
-.-. .- ] . .
ceat e s particles are weakly deflected

. o &'~ . ateach interaction
if B follows large scale structure: 7 A R T — ey
-, g :
— particles of different energies A
experience different Universes: .. ». L% % s
: -?:.. % 1::"’ ‘ : ‘. "_ ..
at low energies, opaque to '._'-'";_.5; _._-'!.'__. o' 3 a2 X A
scattering.... Lhve s 2.5 S 87 I
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(Kotera & ML 08) C Bonn'er.t.let al.06



Expected angular deflection oy

» localized regions of enhanced magnetic fields:

o typical values R ~ 1 Mpc, n ~ 102 Mpc3, B ~ 108 G for polluted regions
= mean free path to interaction ~ 30 Mpc

or interactions with magnetized filaments surrounded by magnetized accretion shocks,
with r ~ 1Mpc, B ~ 108 G, inter-distance ~ 30-40 Mpc Kotera & ML 08

1.0000 I I
| deflection histogram oG E= 1904
0 at source distance scale A~ I9an |
o then, per interaction: i\ S E= 2004 |
N o —1 1/2 1/2 | |
00; =~ 1.7 Fyg B-s Ay impeltinpe 1%
(+multiple interactions with polluted regions
in filaments)
o
_ 5 T o < 0.0100/ =
o total deflection angle: da” = §59i g
distance
and m = ———— ~ 3 atl10%eV
mip
0.0010 | \ .
o not dist | L (E ‘| = near isotropy for E < 3 1019Z eV...
note: source distance scale = I,,,(E) | ... small deflection above 5 10 19Z eV
. \
N . \
3 UHECR | \
F<< l) — / d T Nsource i _ 9 nsourceNUHECRl ' S
r<l Amr 50 100 150
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Propagation — small angular deflection

» High energy or weak magnetic fields: particle executes a random walk on magnetic
iInhomogeneities and suffers a time delay and angular deflection:

0B

B

~ 2.5% d

1/2
100

Mpe E5' B gl

1/2
coh,Mpc

» Application: for a bursting source (e.g. gamma-ray burst),

— the lack of temporal coincidence could explain the
— gamma-ray burst are seen only in a limited bandwidt

UHECR

1021

E [eV]

(photons arrival time: T = 0)

~ 1.5- 105 VIS d%OO Mpc E2_02 Bzglcoh,Mpc

Miralda-Escudé & Waxman 96

lack of observed counterpart...
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Many questions ... a few hints...

Auger (07,08) has reported excess correlation of UHECR arrival directions with
nearby (weak) AGN -- as of 2009, 99% c.l. rejection of isotropy of arriv  al directions ...
... but HiRes rejects correlation with galaxy and AGN catalogs at 95% cl...

excess of events in the region of Centaurus A... but note that direction of Cen A
coincides with direction of largest amount of extra-galactic matter within 200Mpc!

arrival directions (as of 2008) agree with a distribution according to large scale structure
(Kashti & Waxman 08)

7 ~J



Propagation — flux vs distance

D = 0 — 40 Mpc  source distance for 8B’x002e eV

0.0  osssssssssssssssssssssmmm 2. |

Kotera & ML 08: same map can be used to calculate angular deflection as a function
of direction in the sky



Anisotropies seen by PAO

PAO 09

number of events as a
function of angular distance
to CenA...
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Testing the chemical composition on the sky o

p Test: if anisotropic signal >E is due to heavy nuclei, then one should detect a stronger
anisotropy signal associated with protons of same magnetic rigidity at >E/Z eV...
argument independent of intervening magnetic fields ... (ML & Waxman 09)
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source(s) contributing 10% of all-sky
flux above 60EeV with iron nuclei, in
some direction of the sky
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p Signal to noise ratio of anisotropy pattern: S7(> Eipy) = AN (> Einr)

V Niso

» Compute signal to noise ratio of anisotropy for protons at >E /Z:

_ Op(Ethe/Z) s (sonat1)/2
Ep(> Ethr/Z) — EZ(> Ethr) QZ(Ethr/Z) A Moss
Y Y M~
>1 ~ 702> 1 qProp-,p(Ethr/Z) QZ(Ethr)
qP(EthF/Z) Qprop.,Z(Ethr>
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.. anisotropy expected to be (much) stronger atE;,/ Z ...




Testing the chemical composition on the sky

p Test: if anisotropic signal >E is due to heavy nuclei, then one should detect a stronger
anisotropy signal associated with protons of same magnetic rigidity at >E/Z eV...
argument independent of intervening magnetic fields ... (Lemoine & Waxman 09)
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p Example: source distribution around Cen A, injecting iron at UHE, making an angular

image of size 66 = 10° , contributing 10% of Auger all-sky flux above 60Ee\trsrammm

1 =— Model
- 100% isotropic

Histogram of #events
vs angular separation to CenA

E > 55 EeV

Auger (09): 12 events within 18° of Cen A
2.7 expected if isotropic arrival directions

p Proton contribution: compute signal expected
at 55/26 = 2.2 EeV from protons accelerated in

.| note the increased
“ number of events

sources.... . ]
neglecting energy losses, s=2.0, -LH"'\-LL_L _
p:Fe=1:0.06 825_ ‘ '- = ;
E>22EeV 9 3.0 ' : ) :
Z o5 anisotropy signal
FU ’ L]
anisotropy signal at > 2.2 EeV > fg ?nt;nsz?gr?]ta level
. o . L] LX)
in terms of deodeI / dNisotrOPiC 1.0 fecctorstaorivssivasiaoesssiavsd
o oo . .0 50 100 150
if p instead of Fe at E > 55 EeV and 46 oc (EIZ)* separation 8 [deg]

compatible with isotropy at > 2.2 EeV :



as an executive summary:
— the source is not seen in the arrival directions because...
... angular deflection is large for high Z nuclei...
... or, temporal coincidence is lost between photons and UHECR..
— anisotropies, if any, strongly favor proton composition

if no similar anisotropy is seen at E/Z ~ EeV...
(assuming a single type of source model!)




Many questions ... a few hints...

» What is the source of ultrahigh energy cosmic rays ?

... what is the fundamental acceleration process to ultrahigh energies?

» Where does the cosmic ray spectrum stop?

... HiRes and Auger have detected a high energy cut-off at the expected
location for the Greisen-Zatsepin-Kuzmin cut-off ~ 6 10%° eV

» What are ultrahigh energy cosmic rays: protons, nuclei, photons, neutrinos?

... the giant air showers are typical of hadronic showers

... HiRes sees protons at UHE, Auger sees an increasing fraction of heavies...?
» Should we expect to see the source in the arrival directions of UHECR?

.. What are the effects of the Galactic and extra-galactic magnetic fields?
. no powerful source seen in the arrival directions of highest energy CR...?

... Auger has reported 99% c.l. detection of anisotropy of arrival directions!
» Should we expect to detect photons/neutrinos/gravitational waves?

... diffuse backgrounds detectable?

... any signal from arrival directions of UHECR ?



Many questions ... a few hints...

short answer:
no counterpart in optical/IR photons < no counterpart in gamma-rays,
neutrinos, gravitational waves...

e.g.. — for gamma-ray burst sources, time delay ~ 10%10° yrs at 10%° eV
— for high Z nuclei, large angular deflection...




Many questions ... a few hints... 3

... but diffuse backgrounds are expected: N+v — N' + 7, 7*— v +... in gamma-ray burst
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Ice Cube 11: no detection of PeV neutrinos from gamma-ray bursts...
= would exclude acceleration of p to UHE in the internal shock phase...



Many guestions ... a few hints...

... but diffuse backgrounds are expected: N+y — N'+ 7, 7¥— v +... during propagation

GZK neutrinos
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Many guestions ... a few hints...

... but diffuse backgrounds are expected: N+vy — e.m. cascade down to GeV-TeV
Aharonian 02, Gabici & Aharonian 05, Kotera et al. 11:
synchrotron emission from UHE electrons (p+y— p + e*+€)

detection with CTA requires
a cosmic ray luminosity above

10%%eV:

s ]

L. 2 10% erg/s for a distance 1Gpc...

note: halo — smoking gun
signature of p acceleration to >10%%eV
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Many questions ... a few hints... ¥

... but diffuse backgrounds are expected: p+y — p + € + e*, with e.m. cascade energy
transferred into GeV range as a result of the high opacity of the Universe to >TeV photons
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= further constrains the diffuse neutrino background...

Berezinsky et al. 10



Summary + conclusions ... o
» Acceleration to ultra-high energies: s

— Ly = 10% Z2 ... erg/s to accelerate up to 10%%V

— leading contenders for 102%eV protons :
magnetars, gamma-ray bursts and most powerful AGN

» Issue of chemical composition:

— most pressing issue: pinning down the chemical composition at GZK energies
— search for anisotropies as a function of energy

IF light composition at UHE + distribution of arrival directions according to LSS:

— most likely sources are bursting objects camouflaged in ordinary galaxies:
gamma-ray bursts, magnetars...

"best case"

— do not expect counterparts from these directions due to time delay
2> 10*yrs between arrival of cosmic rays and photons/neutrinos/...

— but diffuse backgrounds ?

IF heavy composition at UHE: pessimistic scenario...

— expect substantial to large angular deflection: no source identification...?
— larger pool of source candidates... not much help from theory...
— production of secondary neutrinos/photons suppressed down to below detection?

"worst case"



