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Outline of lectures (1/2)

 The world's shortest introduction to General Relativity   

 The linearized Einstein equations and the degrees of 
freedom of General Relativity

 Gravitational waves in linearized gravity and the 
quadrupole formula

 Gravitational waves in the geometric optics regime and 
their stress energy tensor

 A detector's response to gravitational waves: geodesic 
deviation and Weyl scalars



Outline of lectures (2/2)

 GW detectors and their sources    

 Source modelling:

- Numerical relativity in a nutshell: 3+1 form of the 
Einstein equations

- Analytic approximations: The Post-Newtonian 
expansion, the self-force formalism, the effective one-
body model

 Fundamental physics, astrophysics and cosmology 
with gravitational-wave detectors: a few examples



References

 Einstein equations: any GR textbook (Misner, Thorne & Wheeler, Wald, 
Carroll, …)

 Basics of gravitational waves:

- Flanagan, E. E. & Hughes, S. A. 2005, New Journal of Physics, 7, 204 
  (arXiv:gr-qc/0501041)

- Rezzolla, L. 2003, ICTP Lecture Series, Vol. 3 (arXiv:gr-qc/0302025)

- Thorne, K., ”Gravitational Waves and Experimental Tests of General     
   Relativity” www.pma.caltech.edu/Courses/ph136/yr2004/0426.1.K.pdf

 3+1 formulation of Einstein equations and numerical relativity: 
Gourgoulhon, E., gr-qc/0703035

 LISA: Pau Amaro-Seoane et al, arXiv:1201.3621 

 More specialized references for some slides



General Relativity: a description of gravity

 Newtonian mechanics (v<< c and weak gravitational fields M/r << 
c2): gravity is a force

- Gravitational potentials satisfies Poisson's equation (aka 
Newton's law of gravitation):  

- Motion described by 3 laws of Newtonian mechanics and             
  namely 

 Special relativity generalizes Newtonian mechanics (but not 
Newton's law of gravitation) to v ~ c by requiring that speed of 
light be the same and finite in all inertial reference systems (cf 
Michelson-Morley experiment!)               

Minkoswki metric 

 General relativity generalizes Newton's law of gravitation to           
v ~ c and strong gravitational fields, but gravity is not a force any 
more!

∇ 2φ=4πρ

F⃗=m a⃗

d s2=ημνd x
μdx ν=−c2dt 2+dx2+dy2+dz2



General Relativity in a nutshell (1/4)

 Gravity is not a force, but geometrical effect encoded in 4D metric

 

 Metric measures ”distance” between events                             and            
                          , is symmetric, has signature Lorentz signature (-,+,+,+)

 Particles move along lines that minimize distance (geodesics)

 General covariance: equations of motion take same form in any 
coordinate system (because defined in terms of spacetime geometry) 

In locally flat coordinates near moving particle (ie free-falling frame),        
                                  non-gravitational law of physics reduce to special 
relativity, and gravitational forces disappear (cf free-falling spacecraft in 
Newtonian gravity)

x1
μ=(c t , x , y , z )

x2
μ=(c t , x , y , z )

d s2=gμνd x
μdxν

Γνα
μ =1

2
gμσ(∂ν gασ+∂α g νσ−∂σ gα ν)

∇ νu
μ=∂νu

μ+Γν α
μ uαu ν=0aμ=uν∇ νu

μ=0uμ= d x
μ

d λ gμνu
μu ν=−1

gμνu
μu ν=0

(particles with mass)

(light rays)

gμν=ημ ν+O( x)
2



General Relativity in a nutshell (2/4)

 Geodesic motion generalizes Newtonian/special relativistic 
mechanics, but how do we choose the metric, ie how do we 
generalize Poisson's equation?

 Requirements for generalization

1) Must reduce to Poisson equation for v<<c and weak fields 

2) General covariance: equation for the gravitational field must 
be the same in all coordinate systems (must be defined in 
terms of 4D tensors)

3) Gravity described by metric alone (eg no gravitational 
scalars)

4) Possion equation is linear and second order in the 
derivatives of φ : look for simplest equation that is linear in     
2nd derivatives of metric and satisfies first 3 conditions

Einstein equations



General Relativity in a nutshell (3/4)

The Einstein equations

 Stress-energy tensor         describes                                       
matter content of spacetime,    

eg for perfect fluid

Gμ ν=Rμν−
1
2
R gμν=

8πGT μν

c4

(Riemann tensor)

(Ricci tensor) (Ricci scalar)

T μν

T μν=(ρ+ p )uμuν+ p gμν



General Relativity in a nutshell (4/4)

Bianchi identity Gμ ν=Rμν−
1
2
R gμν=

8πGT μν

c4∇ νG
μν=0 +

∇ νT
μ ν=0

 4 independent components: conservation of energy and linear 
momentum

 For a perfect fluid, energy conservation and Euler equation

 For dust (p=0) we get the geodesic equation. Same if we use 
stress energy tensor for a single particle

Equations of motion of matter follow from Einstein equations

uμ∂μρ=−( p+ρ)∇μu
μ aμ=−

( gμν+uμu ν)∂ν p
p+ρ



The degrees of freedom of GR

 4D metric has 10 independent components vs 1  potential of 
Newtonian theory. What are the other degrees of freedom?

 Let's consider linear perturbations over Minkoskwi 
background metric, ie                       , with               and           

(from now on, G=c=1) 

 If                    as           , most general decomposition is

gμν=ημ ν+hμν ∣hμν∣≪1

T μν , hμν→0 r→∞

∣T μν∣≪1



Gauge transformations

 Physics does not depend on choice of coordinates, ie we are 
free to use any coordinate system

 Metric and stress energy transform as

 For a ”small” coordinate change

 Decomposing  

g̃μν( x̃ )=gαβ (x ( x̃ ))
∂ xα

∂ x̃μ
( x̃ ) ∂ x

β

∂ x̃ν
( x̃ ) T̃ μν( x̃)=T αβ(x( x̃))

∂ xα

∂ x̃μ
( x̃) ∂ x

β

∂ x̃ ν
( x̃)

x̃μ=xμ+ξμ , ∣ξμ∣≪1

h̃μν=hμ ν−∂μξν−∂ν ξμ T̃ μν=T μν−∂μξν−∂νξμ

Similar expressions 
for perturbations of 
stress-energy tensor



The Poisson gauge

∂i h
ti=∂i h

ij=0 Defined 

 Equivalent to using gauge invariant combinations  

γ=λ=ϵi=0

and

(already gauge-invariant)



The linearized Einstein equations

(from ∂μT
μ ν=0)
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The linearized Einstein equations

(from ∂μT
μ ν=0)

htt ,generalizes Newtonian potential

hi
i ,appears at 1PN order, ie suppressed by (v /c)2

hti ,appears at 1PN order, ie suppressed by (v /c )2

TT part of hij ,

appears at 2PN (conservative part) and 2.5PN order (dissipative part)



1PN effects observed for a century!

2011

1916

1919



How about hij
TT ?

Gravitational waves!

Indirect detection: GWs carry 
energy away from binary, 
which shrinks (ie period decreases)

Direct detection: 2015-19?



The generation of GWs



The generation of GWs

far from the source, slow motion



The generation of GWs

From stress-energy tensor conservation:



The quadrupole formula, finally!

Quadrupole tensor small
number!



An example: a binary system
 Binary with total mass M, reduced mass μ, separation R, 

orbital frequency Ω; orbit lies in xy plane

 Consider GWs along z axis at distance r

×

vs h
Sun 

~ M
sun

/R
sun

 ~ 2 x 10-6



Generalizing the quadrupole formula

 Why? Approximate because based on slow-motion, weak 
gravity approximations

 Drop slow-motion approximation = include mass octupole, 
current quadrupole and higher order terms

mass quadrupole

current quadrupole

mass octupole

all multipole moments (Press 1977)



Generalizing the quadrupole formula

 Drop weak-gravity assumption = assume geodesic motion in 
strongly curved spacetime when calculating source (ie 
quadrupole, octupole etc)

harmonic gauge

Full Einstein equations!



Generalizing the quadrupole formula

 Drop weak-gravity assumption = assume geodesic motion in 
strongly curved spacetime when calculating source (ie 
quadrupole, octupole etc)

harmonic gauge

Full Einstein equations!

From gauge condition,

= geodesic motion in
   curved metric g



Quadrupole (or quadrupole + octupole + higher moments) 
formula + geodesic motion is usually decent approximation, 

eg for particle around Kerr BH (”kludge” waveforms)

Generalizing the quadrupole formula

Figure from Babak et al Phys. Rev. D 75, 024005 (2007)



The stress energy tensor of GWs

geometric-optics 
regime

Figure from Kip Thorne's website



Average Einstein equations on scale >> λ and << L

Using gauge freedom and intregrating by parts:

The stress energy tensor of GWs



The GW luminosity

Quadrupole formula + GW stress energy tensor

Conversion of any type of energy into GWs is 
inefficient, unless large masses and/or v ~ c



Propagation of GWs

GW propagating in z-direction

hii
TT=0



Propagation of GWs

=

Binary with masses m
1
 and m

2
, separation R, orbital frequency Ω, distance r; 

θ = angle between orbital angular momentum and direction to observer                 
(θ = 0 or 180 deg: face-on; θ = 90: edge on)

Linear polarization Circular polarization Elliptic polarization=
other phase differences



How to detect GWs

Measure proper (i.e. physical) distance between two free-falling 
test masses

 Each test mass follows geodesics

Consider flat spacetime + GW (TT perturbation)

 Coordinate positions of test massive unaffected, but how about 
proper distance?

d 2 xμ

d τ2 +Γαβ
μ d xα

d τ
d xβ

d τ
=0

vi=d xi d t≪1



How to detect GWs

GW in z direction, test masses at x=0, y=0 and x=L
c
, y=0

Measurable effect!



A better derivation

 Locally flat coordinates

 Geodesics at

 Proper distance is            up to errors                                    
(eg for Earth-based detectors, L~ km and λ >~ 3000 km, but 
approximation not valid for space detectors) 

 Separation vector      between two geodesics obeys geodesic 
deviation equation (derivation on magic board?) 

 With

xi=0 and xi=Li( t )

√LiLi

Lμ

D 2Lμ

d τ2 =R αβ γ
μ uαuβL γ

uμ=δt
μ  and Lμ=(0, Li)

∼h L2 /λ 2≪1



A better derivation

Θ∼Φ∼mass
r

Ξ∼linear momentum
r

Only TT piece (=GW) contributes 
far from the source!

More formally, let's show this from field equations on the magic board



A back-of-the-envelope derivation of the 
quadrupole formula

Moments of mass and current distributions:

Conservation of mass

Conservation of angular momentum

Conservation of linear momentum



Geometrical meaning of h
+
 and h

x

Figures from Rezzolla's notes



Beyond GR: more polarizations?

Similar decomposition of Riemann tensor in vacuum via Newman-
Penrose scalars

e.g. Dipolar emission if 
equivalence principle is 
violated (Brans-Dicke, 
scalar tensor theories, etc)

Figures from Eardley, Lee and Lightman 1973



 Detectors are laser interferometers

 Photons acculumulate phase change                        when 
proper distance between ”mirrors” change

Analysis valid for L<< λ (ground-based detectors)

 More in general (space-based detectors), we can integrate 
photon geodesics between mirrors; photon frequency will 
change due to GW and produce phase change

δϕ=4πδ L /λ

τ= laser travel time between mirrors
σ  and n=  propagation directions of laser and GW

A real detector: 
frequencies and not distances



Existing and future detectors

Virgo: 3km
LIGO's: 4 and 2 km
GEO 600: 600m
TAMA 300: 300m
AIGO: 80 m

LISA



Astrophysical detectors

Animation from Hu 2001

CMB

Pulsar timing array (PTA)



Frequency ranges

Figure from Pitkin et al Living Rev. Relativity 14, (2011) 



GWs from binary systems
From quadrupole formula, GW frequency is twice orbital one

aLIGO/aVirgo:

1) Late inspiral of NS-NS: from few to hundreds of events per year

Binary pulsars observed with masses ~ 1.4 M
sun

, but isolated NS can 

have masses �  2 M
sun

2) BH-NS and BH-BH late inspiral and merger: rates unclear, possibly 
hundreds per year

BH candidates with mass ≳ 10 M
sun

 observed in isolation

3) If intermediate mass BHs exists, IMBH-BH/NS/WD and IMBH-
IMBH observable up to total masses ~ 1000 M

sun



GWs from binary systems
LISA: 

Supermassive BHs observed in center of galaxies with masses ~ 105 – 
109 M

sun
; believed to merge when galaxies merge (cf double AGNs)

1) Inspiral and merger of SMBH-SMBH (with masses ~ 105 – 106 M
sun

): 

from a few to hundreds per year

2) Inspiral and merger of SMBH – BH/NS/WD (aka Extreme Mass Ratio 
Inspirals, EMRIs): rates uncertain, from a few to hundreds/thousands 
per year

3) IMBH-SMBH: rates uncertain

4) WD-WD at separations of a few star radii (~ 105 km):  thousands of 
resolved sources, a few guaranteed sources in the Galaxy

Pulsar timing array:

SMBH-SMBH at 0.2 < z < 1.5, with masses ≳ 5 x 108 M
sun

 and 

separations of hundreds gravitational radii



GWs from isolated systems

 Rotating axisymmetric star/spherical collapse do not emit 

 Core collapse supernovae (type II) produce burst of GWs if 
instabilities develop due to high rotational velocities, or if 
asymmetries are present: 

possible sources for LIGO/Virgo/Einstein telescope

 Rotating pulsar can radiate monochromatically if rotation 
deviates from axisymmetry: possible sources for LIGO/Virgo/ 
Einstein telescope but no good model for 

ϵ

LIGO/Virgo will constrain ϵ<10−6



Stochastic backgrounds

 Isotropic and homogenous (cosmological origin)

 Look like noise by can be detected by cross-correlating detectors

 Inflationary GWs depend on energy scale of inflation

 GWs produced by phase transitions have peaked spectrum  

Ωgw( f )∝(E inflation/M P)
4≈constant E inflation<1.9×1016 GeV

E.g. some exotic models 
(eg extra dimensions, cosmic 
strings) could produce phase
transitions observable by LISA
(Dufaux 2012)



Frequency ranges
Figure from A. Cooray, astro-ph/0503118

Energy scale of inflation

Δ f =frequency band



LISA vs LIGO/Virgo



LISA vs LIGO/Virgo

Range depends on sources, but is at most few hundred Mpc for 
LIGO/Virgo... 



LISA vs LIGO/Virgo

... vs z>10 for LISA (for SMBH binaries)

SMBH binaries (from Sesana, Volonteri and Haardt 2007)

EMRIs (from Pau Amaro-Seoane et al 2012)



How to dig signal out of noise?

Matched filtering: cross correlate detector's output with bank of 
templates describing possible sources with all possible parameters

Elementary example

O (s , h)=
(s , h)
(h , h)

Look for template h(t) that 
maximizes overlap with signal s(t)
[ideally, O(s,h)=1]

                   Need good templates!

=∫∫h1(t )h2(τ)w( t−τ)dt d τ ,

  with   w̃( f )=1/ S n( f )

Discrete FT



Templates for binary systems

 Two-body problem is solvable analytically in Newtonian theory 
and for a test-particle particle around Schwarzschild/Kerr black-
hole

 Newtonian theory = GR at lowest order in v/c             two-body 
problem solved perturbatively in v/c (Post-Newtonian theory)

 Test particle (geodesic motion) = GR at lowest order in mass 
ratio m

part
/m

bh
 
                   

two-body problem solved perturbatively in 

mass ratio (self-force formalism)

 Numerical-relativity simulations can solve for BH binaries (with 
spins) for mass ratios ≳ 1/100 and small separations



Templates for binary systems



Numerical relativity, or Einstein 
equations on a computer

 Introduce 3+1 split of spacetime

Figure from Eric Gourgoulhon's lecture notes

is 3D metric 
of spatial slices

d l 2=γij dx
i dx j

N  is the ''lapse'' 

βi  is the ''shift'' 

ds2=−(N dt)2+γij (dx
i+βi dt )(dx j+β j dt)

Choice of lapse and 
shift is gauge choice!

∂t=N n+βi∂in⋅n=−1



Numerical relativity, or Einstein 
equations on a computer

 Curvature of t=constant hypersurface when embedded in 4D 
spacetime is described by extrinsic curvature

 Matter variable: energy   
 density E, momentum   
 density p and stress tensor   
 S

Figure from Eric Gourgoulhon's lecture notes

K μν=−hμ
α hν

β∇ α nβ

E=Tμ νnμnν
pα=−T μνhα

μ nν

Sαβ=Tμνhα
μ hβ

ν

hν
μ=δν

μ+nμnν



The Einstein equations in 3+1 form

Energy constraint, from G
tt
=8π T

tt

Evolution equations, from G
ij
=8π T

ij

Momentum constraint, from G
ti
=8π T

ti

● Equations do not depend on time derivatives of lapse and shift (ie 
they are not dynamical variables)
 

● Energy and momentum constraints are initial value constraints 
thanks to Bianchi identity

- Eg in vacuum                                        
    G

tα 
=0 at all times if G

tα
 =0 initially and evolution equations satified

- With matter, need matter's equations of motion                  to evolve system∇μT
μν=0   



The Einstein equations in 3+1 form

 Locally we can choose N=1, βi=0 (normal coordinates, aka 
synchronous gauge; not possible globally due to caustics)

 In pratice, to evolve system need to choose coordinates (gauge) 
and evolution scheme (eg BSSN)

 See Gourgoulhon's lecture notes for more details

Intial value (”Cauchy”) problem

Initial value constraints



NR ”trajectories” for binary BHs

a
1
=a

2
=-0.76 a

1
=a

2
=0.76

Figure from Campanelli, Lousto & Zlochower 2006



  

NR waveforms for binary BHs

It takes weeks/months to generate NR waveforms: too slow for 
data analysis!

Waveform produced by the Golm AEI group

inspiral

merger

ringdown



  

Faster templates

 PN waveforms do not have merger and ringdown (PN 
theory fails at small separations)

 Perturbative waveforms have merger-ringdown but 
can't be extrapolated to comparable masses

Possible fixes

 Use PN waveforms as guide for phenomenological fit 
of NR waveform + add ringdown by attaching quasi-
normal modes

 Effective-one-body model (”EOB”)



  

The EOB

EOB = phenomenological way of combining 
PN, NR and perturbation theory

EOB



  

The EOB

 Main idea: map 2-body problem into test-particle problem

 Newtonian non-spinning binaries can be mapped to non-
spinning test-particle with mass �  = m

1
 m

2
/(m

1
 +m

2
) 

around mass m = m
1
+m

2

 Energy levels of positronium (e+ - e-) can be mapped to 
those of hydrogen through

m
1
=m

2
 is the electron/antielectron's mass!



  

The EOB

Same mapping possible in PN theory (Buonanno & Damour 1999)

 PN Hamiltonian H
PN,real 

describes conservative dynamics (no GW 

emission)

 Particle with mass �  = m
1
 m

2
/(m

1
 +m

2
) around a m = m

1
 +m

2
 

deformed Schwarzschild BH (“effective problem'') has Hamiltonian 

 H
eff

 can be calculated at all PN orders (deformed Schwarzschild 

metric given at all PN orders)                invert Eq (*) and get “real” 
Hamiltonian valid at all PN orders:



  

How about dissipative dynamics?

Attach 
combination of 
quasinormal 
modes



  

EOB waveforms

Figures from Taracchini et al 2012

Model still inaccurate for spins > 0.7 
(because PN waveforms are not accurate enough already during inspiral)



  

GW vs EM astronomy

 GWs interact very weakly with matter, strain h decays as 1/r   
          GWs visible to very high z, eg SMBHs with LISA, 
stochastic backgrounds

 Gravitational wavelength >~ source's size (because GWs 
generated by bulk motion of matter) vs EM wavelengths << 
source's size (because EM waves generated by moving 
charges, atomic processes, etc)     

         EM can be used for imaging, GWs do not have angular 
resolution (akin to sound)

         EM survey cover small areas, GWs cover whole sky  

GW and EM waves are complementary tools for testing 
fundamental physics, astrophysics and cosmology 



  

The EOS of nuclear matter
 Equation of state of nuclear matter affects merger and ringdown of 

binary neutrons stars            effects for Einstein Telescope

 3 kinds of NS mergers: 

- Type I: BH is promptly formed

- Type II: short-lived (< 5 ms) hypermassive NS

- Type III: long-lived (> 5 ms)  hypermassive NS

 

Figures from 
Hotokezaka et al, 
PRD 83 
124008 (2011)



  

Figures from 
Hotokezaka et al, 
PRD 83 
124008 (2011)



  

Test gravity theories with NS mergers

Extra GW polarizations difficult to detect directly, but can 
backreact on orbital evolution and cause quicker mergers 
in some (quite special) scalar-tensor theories

From Barausse et al (2013)



  

Test gravity in the weak field

 Modifications to gravity theory cause different PN 
inspiral/ringdown than in GR              Parametrized 
Post-Einsteinian formalism [Yunes and Pretorius  
PRD 80, 122003 (2009)]

GR:

Also: theories with parity or Lorentz violations in the gravity sector



  

Test the Kerr metric with EMRIs

Stellar-mass BH orbits SMBH ~ 1.e6 times (evolution driven by GW 
emission, which is weak for small mass ratios)

Satellite

SMBH



  

Test the Kerr metric with EMRIs

Stellar-mass BH orbits SMBH ~ 1.e6 times (evolution driven by GW 
emission, which is weak for small mass ratios)

Spacetime mapping (analog of mapping Earth gravitational field with 
CHAMP and GRACE): is the SMBH really described by Kerr metric? 
(test of the no hair theorem) 

     Can one see an anomalous quadrupole moment (``bumpy BHs'')?              

      Could it be a BH in a modified gravity theory?

SMBHSatellite



  

Cosmography with LISA

 LISA's observations of SMBH binaries will measure luminosity 
distance to within 1-10%, with error mainly coming from pointing 
uncertainty (GWs are poorly localized in the sky, i.e. to within a 
few deg2) 

 GWs give no measurement of redshift: masses enter in 
waveforms through timescale Gm

i
/c3, but timescale redshift 

binary with (m
1
,m

2
) is indistinguishable (modulo amplitude) from 

(m
1
,m

2
) x (1+z)

L = binary's angular momentum
n = observer's direction
Φ = phase (depends strongly on
spins and redshifted chirp mass)

is the redshifted chirp mass



  

Cosmography with LISA
 Luminosity distance degenerate with angular factors depending 

on observer's direction

 Degeneracy broken thanks to LISA's precession

 Precession of L due to spin helps estimate distance, but 
measure degraded by weak lensing

 EM counterpart could provide redshift             improved 
measurement of distance (because of better localization), and 
test of Dark Energy

1000 sources,
From Dalal et al
PRD, 74, 063006 (2006)Holz & Hughes, ApJ 629, 15 (2005)



  

Cosmography with LIGO/Virgo

 NS binaries thought to be progenitors of short 
gamma-ray bursts (GRBs)

 GRBs will provide EM counterparts and allow 
localization, improved luminosity-distance estimates, 
and redshift measurement in the local universe 
(within a few hundred Mpc)

Measurement of Hubble constant to within ~ 2%



  

Can GWs be used to learn about 
galaxy formation?

 GWs produced in highly-dynamical/strong-gravity regimes,          
i.e. by massive BHs

 Massive BHs are tiny compared to galactic scales

MBH ~ 10-6 – 10-7 pc

MBH accretion disk ~ pc

Circumbinary disk ~ 100 pc

Galactic bulge ~ kpc

Galactic disk ~ 10 kpc

Dark-matter halo ~ Mpc

 There is more to physics than gravity! Highly non-linear, dissipative 
processed act on small scales                                                  

Star formation, supernova feedback, gas cooling, UV ionizing 
background, AGN feedback, ...

 

MBH scales

galactic scales



  

The basics of galaxy formation

 Galaxy formation is bottom-up: smaller systems form 
first and merger in larger ones...

 ...but most massive galaxies have older stars and 
weaker SF than smaller galaxies (cosmic downsizing)

Figure from 
De Lucia & Blaizot (2007)



  

The basics of galaxy formation

 Solution: AGN feedback (stronger for larger galaxies, which 
host more massive SMBHs)

 The kinetic energy of the jet is transferred to the galaxy and 
keeps it “hot”, quenching star formation 



  

How are the jets produced?

 Jets can be produced by isolated spinnning BHs in a 
magnetic field anchored to accretion disk (Blandford & 
Znajek 1977)...

 … or by BHs (even non spinning ones) moving a magnetic 
fields anchored to circumbinary disk (Palenzuela, Lehner 
and Liebling 2010)



  

GWs and galaxy formation
 AGN feedback (and therefore BH spins and mergers) crucial in 

modern galaxy formation models

 Galaxy formation regulates gas available to massive BHs for growing

 MBH mergers in gas-rich (“wet”) enviroment have aligned spins 
because they align with circumnuclear disk (Bardeen Petterson effect)

 For BH binaries in gas-poor (“dry”) environments, spin-orbit coupling 
make spins precess around total angular momentum J=L+S

1
+S

2
          

            modulations in gravitational waveforms visible with GWs!

PN waveforms for BH binaries with 
equal masses and maximal spins 
(Arun et al 2009)

Testable with LISA 
or similar space-base
detectors!



  

Galaxy formation with LISA
 Number of event rates (light vs heavy seeds)

from Sesana, Volonteri and Haardt (2007)

from Barausse (2012)

light

heavy



  

Galaxy formation with LISA

 Wet vs dry mergers

from Barausse (2012)Red = M
bin

< 104 M
sun

Blue = 104  M
sun

< M
bin

< 106 M
sun

Green = M
bin

> 106 M
sun



  

Galaxy formation with LISA

 The spin evolution

Color code = log
10

 of number density of MBHs per unit log-mass and unit spin, i.e

from Barausse (2012)



  

Galaxy formation with LISA

 The spin evolution

Color code = log
10
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Conclusions

 GWs are a generic prediction of relativistic gravity theories 
(including GR!) because they follow from casual structure of 
such theories (nothing can propagate faster than light)

 GWs have been observed indirectly, and direct detection is 
imminent

  They are can be used to probe gravitational physics, 
astrophysics, nuclear physics, cosmology
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