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GW astronomyGW astronomy

photon-based astronomyphoton-based astronomy



EM follow-up EM follow-up will likely be 
a key ingredient  key ingredient 

during the advanced detector eraadvanced detector era

Why? – MotivationsWhy? – Motivations

What? – EM signals from GW transient sourcesWhat? – EM signals from GW transient sources

EM emission mechanism for binary mergers

Gamma-ray bursts and their afterglows

Other scenarios

How? – EM follow-up of GW eventsHow? – EM follow-up of GW events

First EM follow-up program and lessons learned

Source position reconstruction

Pointing and observational strategy

EM transient search (methods, background, ...)



  

Short history of 
photon-based astronomy
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Rationale for 
multimessenger astronomy

● EM observatories have long history
● Many orders of magnitude more sensitive than GW detectors

● If we assume that the GW flux fixes the size of the energy 
reservoir, a tiny fraction of this reservoir converted into 
EM radiation suffices to produce a detectable signal

● Which conversion mechanism?

● Caveat: source compactness may be an obstacle

● Motivation for EM follow-up
● Pointing telescopes in response to GW observations



GW transients (1)

● Coalescing binary mergersCoalescing binary mergers
✔ Neutron stars and/or black  holes

✔ Three main dynamic regimes of the 
coalescence

●   GW signal from binariesGW signal from binaries
✔ Frequency modulated signal, “chirp” 

✔ SNR is concentrated at ~ few 100 Hz

● Observ. horizon and event rateObserv. horizon and event rate
✔ NS–NS initial: 20 Mpc, advanced: ~200 Mpc

    < 1/yr        40/yr 
✔ NS–BH initial: 50 Mpc, advanced: ~400 Mpc

    < 1/yr      10/yr



GW transients (2)
● Supernova core collapsesSupernova core collapses

✔ Collapse of the iron stellar core 
into proto-NS 

✔ Infalling material → core bounce  
→  post-bounce shock →explosion

● GW signal from SN CC and rateGW signal from SN CC and rate

✔ GW emission uncertain

✔ Different scenarios

Core bounce: f0= 1 kHz, EGW=10-8 Msun

→ D
L
~ 100 kpc, galactic SNCC

Fragmentation: f
0
= 100 Hz, E

GW
=10-2 M

sun

→ D
L
~ 200 Mpc

✔ 1/100 yr/galaxy & 1/yr at 10 Mpc

For monochromatic burst



Connection to gamma-ray bursts

Coalescing binary 
mergers

Core collapse of 
massive stars

Three closest SHBs
GRB 080905, z=0.122 560 Mpc
GRB 050709, z=0.161 760 Mpc
GRB 050724, z=0.257 1.28 Gpc

LGRBLGRB SHBSHB



Gamma-ray bursts
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An example :SHB 050709

(VLA)

(Swope40, Du Pont100, Subaru, HST)

(HETE, Swift, Chandra)

HST 

Offset location (typ. 2 
kpc) wrt center of host 
galaxy due to kick at 
the NS formation

days monthsminutes

Prompt emission 
within seconds of 
the central engine 
activity



SHB afterglows in the X-rays

● ““On-axis” On-axis” 
✔ Swift XRT finds the afterglows of 80% of the 

observed SHBs

✔ decays with t- with ~1.5    (minutes)

✔ < 1045  erg/s after a day 

→ 10-9 erg/s/cm2 @ 200 Mpc

● ““Off-axis”Off-axis”
✔ Longer brightnening time (> 1 day to 20 days)

✔ Much fainter: observable with the XRT for 
close source with long (>10 ks) exposure

Swift XRT
Kanner et al. arXiv:1209.2342
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Swift XRT
0.3 keV – 10 keV



  

SHB afterglows in 
the optical & near IR
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● ““On-axis” On-axis” 
✔ ~30% of the detected SHB afterglows 

are observed

✔ decays as L~ t- with ~1 – 1.5  (hours)

✔ mR~16-24 after a day @ 200 Mpc 

● ““Off-axis”Off-axis”
✔ Longer brightnening time (> 10 days)

✔ Much fainter: R > 20 @ 100 Mpc, close 
source and large aperture telescopes

off axis  obs  ~ 2 jet →
 jet ~ 0.2 rad
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Van Eerten et al., ApJ, 733 L37
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SHB afterglows in 
the radio band

● ““On-axis” On-axis” 
✔ 2 (3?) SHB afterglows detected in the radio 

band: GRB 050724, 051221, 121226A?

many more radio afterglows of LGRB observed

✔ Typical decay time ~ weeks

✔ F ~O(10) mJy at 1-10 GHz @ 200 Mpc

● ““Off-axis”Off-axis”
✔ Longer brightnening time (months to year!)

● Much fainter but still detectable: t=30 days, 
F=0.3 mJy at 1 GHz @ 300 Mpc

VLA
GHz

time (days after burst in the observer frame)
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“Orphan” afterglow

● PTF11agg, 2011 Jan 30 detected by the PTF11agg, 2011 Jan 30 detected by the 
Palomar 48 inch telescopePalomar 48 inch telescope

✔ Bright (R~18.5 mag) rapidly fading (+4 
mag in 2 days) optical transient

✔ No connection to HE trigger

● Galactic origin is excludedGalactic origin is excluded

✔ Blue quiescent

✔ Year-long, scintillating radio transient

● LGRB as an extragalactic source?LGRB as an extragalactic source?

✔ "Untriggered", lack of satellite coverage

simplest explanation but unlikely (~2.6 %)

✔ "Orphan" afterglow: viewing-angle effects

but obs inconsistent with off-axis afterglow

✔ "Dirty fireball": suppressed HE emission

in that case: pop. > 4 x larger than LGRBBradley Cenko et al. arXiv:1304.4236



  

Other (unobserved) scenario

Courtesy of B. Metzger
See Piran et al MNRAS 2013 and ref. therein

Tidal tails form
an accretion disk

SHB and 
on-axis 

afterglow off-axis 
afterglow

Disk wind: neutrino cooling 
& nuclear recombination

 .1 Msun ejected at v~.1c

Decay of heavy 
radioactive elements 
formed by neutron 

capture

 thermal optical 
transient

 Ejecta-ISM shock

radio
transient



  

Macronova
Kilonova



  

Macro/kilonova optical transients

source at 200 Mpc
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after a day

GRB 080503: Candidate Kilonova 

Perley et al. 2009

● EM transient similar to supernovaEM transient similar to supernova

✔ Isotropic

✔ Luminosity peak about a day after 
merger

✔ R > 20 mag @ 200 Mpc

Requires large telescopes

✔ Uncertainty due to unknown opacity of 
heavy r-process elements

●   GRB080503: potential candidate?GRB080503: potential candidate?

PTFPTF

LSSTLSST



  

Macro/kilonova radio transients

● Year-long radio flareYear-long radio flare
✔ Peaks 1 – 5 years after merger

✔ Larger signal < 1 mJy in the low-
frequency band (100 MHz)

Target for LOFAR

✔ Depends on ambient density!

Courtesy of M Branchesi
Piran et al MNRAS 2013

source at 300 Mpc

ISM density: n~1/cm3



  

First EM follow-up program

GW data
from HLV

Low-latency 
analysis

GW trigger
selection

Source 
direction 

reconstruction

Alert
validation

Partner EM 
observatories

10 mins 30 mins

CBC & bursts

● Dec 2009-Oct 2010, S6/VSR2/3Dec 2009-Oct 2010, S6/VSR2/3

✔ Initial detectors, horizon < 50 Mpc

✔ Three operating GW detectors 
required for source direction rec

✔ 14 GW alerts, 9 followed-up by at 
least 1 partner

EVLA

11 partner EM observatories11 partner EM observatories



  

Lessons learned

● Source position reconstructionSource position reconstruction
✔ Characterization of the GW error box

● Pointing strategyPointing strategy
✔ Field of View (FoV) of EM obs. << GW angular error

Techniques to increase probability of correct pointing

 (e.g., catalog of local galaxies, …)

● Searches for EM transientsSearches for EM transients
✔ Observational strategy (cadence)

✔ Methods for detecting EM transients

✔ Characterization of background
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time delay
scale
factorphase shift

Source position reconstruction (1)
● Response of detector networkResponse of detector network

✔ Detectors receive the same wave... 

✔ … but the wave couples differently

● Use of multi-detector dataUse of multi-detector data
✔ Sensitivity improvement

✔ Source direction reconstruction

If using timing information only →  
triangulation (leading order 
approximation)



Source position reconstruction (2)
● Triangulation angular errorTriangulation angular error

✔ Timing uncertainty

SNR =10, in the bucket, t ~ 0.1 ms

✔ Diffraction limit estimate

t / Tflight
 ~ 4 degrees

→ tens of square degrees

✔ Better resolution for burst at higher 
frequencies

10 deg2

1 deg2

Aasi et al, arXiv:1304.0670

TTflightflight



  

Source position reconstruction (3)

Aasi et al, arXiv:1304.0670

BNS 160 Mpc HLV 2019+ 
~30 % contained in 20 deg2

BNS 160 Mpc HILV 2022+ 
~50 % contained in 20 deg2

● Localization of binary systemsLocalization of binary systems
✔ Non-trivial interplay between 

sensitivity and angular error

Better sensitivity → larger SNR 
and larger bandwidtht

● More detectors around the globeMore detectors around the globe
✔ Long baseline between detectors 

leads to large improvements in the 
angular resolution

✔ LCGT (Japan),  LIGO India

✔ Ultimate subdegree resolution with 
five detectors
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Pointing strategy (1)
● Posterior sky mapPosterior sky map

✔ Composed of disconnected islands

● Galaxy weighingGalaxy weighing
✔ Local distrib. of mass is heterogeneous at 

small distances

✔ Observe close and massive galaxies first

✔ Ad-hoc ranking statistic

✔ Used catalog of close galaxies: GWGC

✔ Factor of 2 improvement in the probability of 
a correct pointing for initial detectors (50 
Mpc)

selected
tiles



  

Pointing strategy (2)

● Galaxy catalogs incomplete Galaxy catalogs incomplete 
from 100 Mpcfrom 100 Mpc

✔ Surveys of local galaxies (WALLABY 
and H) are upcoming.

● Galaxy distribution to 400 Mpc Galaxy distribution to 400 Mpc 
is isotropicis isotropic

✔ No significant gain in galaxy 
weighting

● Other ideas?Other ideas?
✔ Select hosts that are consistent to 

binary distance estimate

✔ Select potential hosts based on their 
type

100 Mpc
Schechter reference

GWGC catalog

Galaxy luminosity function
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Lessons learned

● Source position reconstruction
✔ Characterization of the GW error box

● Pointing strategy
✔ Field of View (FoV) of EM obs. << GW angular error

Techniques to increase probability of correct pointing

 (e.g., catalog of local galaxies, …)

● Searches for EM transientsSearches for EM transients
✔ Observational strategy (cadence)

✔ Methods for detecting EM transients

✔ Characterization of background

X-ray optical radio



  

Observational strategy
X-rays

● Depth/cadence/area trade-offDepth/cadence/area trade-off
✔ Fix amount of total observation time 

Short exposures → large mosaic but 
bad sensitivity and vice versa

✔ ~300 exposures of 100 sec → 35 
deg2 in 1 orbit at 6 x 10-12 erg/s/cm2 

Kanner et al. arXiv:1209.2342

100101
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Swift XRT FoV=0.16 deg2, 24 hr total



  

Search for EM transients (1)
X-rays
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● X-ray sky is quietX-ray sky is quiet
✔ O(1) extragalactic sources of flux 

> 2 x 10-12 erg/s/cm2 in 100 deg2

✔  Impose variability leads to a 
lower background

variable AGN, limit on variable 
sources ROSAT all-sky survey

1% sources of flux > 2 x 10-12 

erg/s/cm2 in 100 deg2



  

Search for EM transients (2)
X-rays

10-14 10-1010-1410-14 10-6 10-2

False Alarm Probability

E
ffi

ci
en

cy

0.1

1
GW data only 4

erg/s/cm2

● Sensitivity of a combined searchSensitivity of a combined search
✔ Require X-ray counterpart → reject 

background → relax cuts → increase 
sensitivity

✔ x ~2 improvement for an X-ray flux of 
10-12 erg/s/cm2 at FAP=4

✔ Saturation at large fluxes: sources 
missed because not targetted (not in 
the selected tiles)



  

Observational strategy
Optical/NIR

● Depth/cadence/area trade-offDepth/cadence/area trade-off
✔ Assume population of BNS search 

for kilonova-like transient: 
isotropic, MR=-14 for 2 hrs

✔ Budget: 3 x 1 hour

✔ Detection in 3 images

Conclusion: large telescopes required 
but meter-class telescopes may 
contribute

CHFTCHFT
FoV=0.9 degFoV=0.9 deg22

Single long exposure
mR= 25

Nissanke et al, arXiv:1210.6362

Single long exposure
mR= 25 (650 Mpc)

Many short exposures
mR= 23 (250 Mpc)

optimal
50 % success



  

Search for EM transients (1)
Optical/NIR

Search for fading point source in a series of images Search for fading point source in a series of images 

observationobservation referencereference

differencedifference zoomzoom

Selection cuts (decay evolution, 
consistent observation in multiple 
images)

Transient classification (e.g., 
machine learning)



  

Search for EM transients (2)
Optical/NIR

● Astrophysical background of Astrophysical background of 
optical transientsoptical transients

✔ Much less known – Lack of large 
surveys

✔ Rate are poorly known – Larger 
than X-rayskilonovakilonova

on-axis
on-axisafterglows

afterglows
off-axisoff-axis

afterglowsafterglows

Kasliwal, BASI, 2011



  

EMEM
bandband ProsPros ConsCons

Radio
waves

Isotropic emission

Quiet background 
sky

Long-duration 
signals and long 

delays

(Sub-) mm
waves

Isotropic 
emission

Immune of 
extinction+scintillation

Rather 
unexplored

Missing wide-field 
instrument

Near-IR
optical 

(kilonova)

Isotropic emission

Up-coming 
surveys

Weak and 
uncertain

signal

X-rays
Quiet and well-

understood 
background sky

Beamed emission
(3% association)

Missing wide-field 
instruments

Golden channel for EM follow-up?



  

Source modelsSource models
van Eerten et al, Off-axis GRB afterglow […], ApJ 722 (2010) 235, arXiv:1006.5125
Metzger and Berger, Electromagnetic counterpart of a neutron star binary merger, ApJ 746 (2012) 48, arXiv:1108.6056
Piran et al, Electromagnetic signals from compact binary mergers, MNRAS 430 (2013) 2121, arXiv:1204.6242
Rosswog et al, Multimessenger picture of compact object encounters […], MNRAS 430 (2013) 2585,  arXiv:1204.6240

ObservationsObservations
Kann et al, The Afterglows of Swift-era GRBs. I. […], ApJ 720 (2010) 1513, arXiv:0712.2186
Kann et al, The Afterglows of Swift-era GRBs II. […], ApJ 734 (2011) 96, arXiv:0804.1959
Rau et al, Exploring the optical transient sky […], PASP 121 (2009) 1334, arXiv:0906.5355 
Bradley Cenko et al, Discovery of [PTF11agg], arXiv:1304.4236

Source identificationSource identification
Nissanke et al, Localizing compact binary inspirals […], ApJ 739 (2011) 99, arXiv:1105.3184
Nissanke et al, Identifying EM counterparts to gravitational wave mergers, ApJ 767 (2013) 2, arXiv:1210.6362
Singer et al, Optimizing optical follow-up of gravitational-wave candidates, arXiv:1204.4510

SearchesSearches
Abadie et al, Implementation and testing of the 1st prompt search […] A & A 539 (2012) A124, arXiv:1109.3498
Abadie et al, First low-latency search for binary inspirals […]  A & A 541 (2012) A155, arXiv:1112.6005
Evans et al, Swift follow-up […] 2012 ApJS 203 28, arXiv:1205.1124

Advanced detector eraAdvanced detector era
Aasi et al, Prospects for localization [...] for Advanced LIGO and Advanced Virgo, arXiv:1304.0670
Kanner et al, Seeking counterparts […] with Swift,  ApJ 759 (2012) 22, arXiv:1209.2342
Branchesi, Presentation at VESF School on GW and multiwavelength astronomy, Rome 2013





Motivation for multimessenger 
astronomy with GW

RadioRadio

1 mJy (for LOFAR) F
radio 

~ 10-22 erg/m2

Optical [Optical [limit magnitude]]

25 cm aperture F
V
~ 5 x 10-7 erg/m2

X and gamma-rayX and gamma-ray

1 photon/cm2/s,100keV F  ~ 10-3 erg/m2

Initial GW detectors [Initial GW detectors [f=200 Hz]]

h
rss
~2.5 x 10-21 Hz-1/2 F

GW
= 103 erg/m2

Advanced GW detectorsAdvanced GW detectors

h
rss
~ 2.5 x 10-22Hz-1/2 F

GW
= 10 erg/m2

33rdrd generation detectors generation detectors

h
rss
~10-23 Hz-1/2 F

GW
= 1.5 10-2 erg/m2

EM observatories have a much longer history !
Sensitivity is better by orders-of-magnitude

Approximation here! Noise property affect 
similarly the detection of short and long signals



PTF11agg



  

Observational strategy (2) 
Optical/NIR

● CadenceCadence

Proper sampling of the expected light curve

“long” schedule for SN-like event

example: [D+0 +6 +7 +9 +16 +27 +28]

“short” schedule for GRB afterglow-like event

example: [D+0 +1 +2 +4 +6]

● ExposureExposure

Defines limiting magnitude for a given aperture

Short exposure < 60 s (→ ~15 mag)

Long exposure > 120 – 180 s (→ ~17 mag)

[more at the hand-on session tomorrow]

● No filteringNo filtering

1.0
time (days since GRB 990510)

10.00.1
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long cadence

short cadence
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