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Plan of  the lecture 
① Motivation: Detection of  gravitational waves from 

compact binary coalescence (CBC) 

② Matched filter for a known signal in noise 

③  Application of  matched filter to CBC signals 

④  Template banks and multi-detector analysis 

⑤ Methods for non-Gaussian noise 

⑥  Recent results of  LIGO-Virgo searches 

⑦  Challenges and expectations for future searches 
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1. Detection of  CBC 
gravitational wave signals 

Motivation and statement of  the problem 
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Statement of  the problem 
�  Searching data from ground-based GW detectors 

�  Each detector provides a data stream 
�  s(t) : time series of measured GW strain 

�  Discrete series sampled at 16384 Hz 
�  Data extends over several months 

�  Do the data show that a CBC signal is present? 

�  If  yes, measure its physical properties 

�  If  no, set limits on astrophysical rate of  signals 
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Signal in frequency domain 

As M increases: 

�  |h(f)| grows 

�  Maximum  
frequency 
decreases 
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Inspiral: 
h(f) ~ f −7/6  

Merger / ringdown:  
  modify waveform 
  at high freq 
 



Signal vs. noise in freq domain 
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|h(f)|2×f  plotted for optimally located signals at 30 Mpc 



2. Theory of  detection for a 
known signal 
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The statistical problem 
�  CBC signals arrive at the detector all the time! 

�  But the great majority are ‘too weak to detect’ 
�  Sources are not within sensitive volume of  detector 
�  Cannot extract any useful information 

�  Detector output is signal plus noise: 
  

           s(t) = h(t) + n(t) 

�  Detection means:  
The data favour nonzero signal, relative to no signal 

⇒  we can tell the difference between 
 

        s(t) = h(t) + n(t)       vs.       s(t) = 0 + n(t) 
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Signal and noise hypotheses 
�  Hypothesis H1 : s(t) = s1(t) = h(t) + n(t)       h(t) ≠ 0 

�  Hypothesis H0 : s(t) = s0(t) = n(t) 

�  Bayes’ rule: 

�  Prior odds depends on astrophysical coalescence 
rate: highly uncertain! 
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Posterior Odds Ratio Likelihood Ratio 
(‘Bayes Factor’) 

Prior Odds Ratio 

d, “data” → s(t) 



Hypothesis testing 
�  Use a function of  the data Λ(d) to make decision 

�  If  Λ(d) > Λ* then we declare a detection 

�  If  Λ(d) < Λ* then we declare no detection 

�  Consider many different realizations of  the data 
stream s(t) with or without signal : s1,i , s0,i 

�  Different possible outcomes: 
�  Λ > Λ* for s1,i   “true positive” 
�  Λ > Λ* for s0,i   “false positive”  [= ‘false alarm’] 
�  Λ < Λ* for s1,i   “true negative” 

�  Λ < Λ* for s0,i   “false negative” 
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Ranking all possible outcomes 
�  N-dimensional space of  

possible data streams d=s(t) 
�  N = number of  time samples 

�  Different positions in space 
have different probabilities to 
occur under H0 and H1  

�  Constant levels of  Λ(d) define 
contours  

�  Any monotonic function F(Λ(d)) 
has the same contours and 
produces the same decisions 
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Λ > Λ*  

Λ < Λ*  



Optimal decision function 
�  Define false alarm probability Q0 = P(Λ>Λ*|H0) 

�  Define detection probability Qd = P(Λ>Λ*|H1) 

�  “Neyman-Pearson optimal statistic” : 
Λ(d) is optimal if  it maximizes detection probability 
Qd at a fixed value of false alarm probability Q0 

�  Can be proved that the likelihood ratio  
 
   Λ(d) = Λopt =                    
 
is an optimal statistic for a known signal h(t).  
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Statistics of  (Gaussian) noise 
�  To calculate likelihood, need to describe statistics of  

noise P(n(t)) 

�  Gaussian colored noise is easy to describe in the 
frequency (Fourier) domain n(f) 

�  Power spectral density Sn(f)  

�  Noise at different frequencies is not correlated 

�  Noise variance at frequency f:  
 
for observation time T [frequency resolution Δf=1/T] 
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Likelihood for noise vs. signal 
�  Noise likelihood 

�  under H0, n(f) = s(f) 

�  Signal likelihood 
�  under H1, n(f) = s(f) – h(f) 
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Scalar products and likelihood ratio 
�  Define scalar product of  data streams a(t), b(t) 

 
 
  

�  Usual properties:                                            etc. 

�  Rewrite likelihoods : 

�   
 
  

�  Likelihood ratio  
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Optimal matched filter 
�  〈h|h〉 is constant for a fixed signal, ex is monotonic 

�  Therefore we can also use 〈s|h〉 as our statistic 
�  Known as ‘matched filter’ or ‘Wiener filter’ 

�  Linear in the detector output s 

�  Expected value of  〈s|h〉 under H0 is = 0 

�  Expected value of  〈s|h〉 under H1 is = 〈h|h〉 

�  Variance of  〈s|h〉 is σ2 = 〈h|h〉 
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Signal-to-noise ratio (SNR) 
�  Rescale the matched filter : 

�  Variance  σ2(ρ) = 1 

�  Mean  ρ = 0   (noise) 
 

             =    (signal)  

�  ρ is called “optimal SNR” of  the signal h(t) 

�  Distribution of  ρ:  
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Filter output distribution 
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3. Matched filtering for  
CBC signals 
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Describing (simple) inspiral signals 
�  Time domain 

 

�  Frequency domain 
 

 

�  Ψ(f) is a series in f  
(“Post-Newtonian expansion”) 
valid up to fmax 
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Frequency limits 
�  Theoretical expression 

 

�  In practice need to limit frequency range 
�  f  > fmin : detector data is not reliable and/or 

calibrated below a minimum frequency  
�  also length of  waveform ∝ fmin

−8/3 

�  f  < fmax : inspiral waveform not reliable at large v/c 

�  Thus, use 
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Signal parameters seen in h(t) 
�  Signal h(t) is not unique (not a ‘simple hypothesis’)  

�  Described by parameters “θ” 
�  Amplitude ∝ A1Mpc/Deff  

Effective distance Deff encodes physical distance D 
and binary geometry relative to the detector 

�  Coalescence phase φ0 

�  Coalescence time t0 

�  Masses m1, m2 

�  Theoretically correct treatment: 

Evaluate likelihood p(d|H1(θ)) for all θ, 
marginalize (integrate) over θ 
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Dealing with CBC parameters 
1)  Amplitude: Easy, the matched filter 

doesn’t care about amplitude of  h 
�  The value of  ρ is a measurement of  expected SNR ρ 

�  Proportional to A1Mpc/Deff for a signal 

2)  Coalescence phase: Easy, use ‘cos’ and ‘sin’ filters 

�  Can show that  
 
is an optimal statistic if  the phase φ0 is not known. 

23 

− 



Dealing with CBC parameters II 
�  z is a complex matched filter : 

3)  Coalescence time: Easy.  
�  Rewrite 

�  We get a matched filter time series : 

�  It’s just a Fourier transform ! 
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Statistics of  the CBC filter 
�  x and y are independent filters with variance 
σ2 = 〈h|h〉 

�  Define “SNR” as ρ = |z|/σ = |x+i·y|/σ 

�  ρ has a ‘Rayleigh’ distribution in noise 
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Horizon distance 
�  Farthest distance D where a coalescing binary would 

produce a given expected SNR ρ (eg =8) 

�  We have D ≤ Deff and ρ∝ A/Deff 

�  Depends on binary masses & detector noise spectrum 
Sn(f) 

26 

− 

J. Abadie et al., arXiv:1111.7314 

− 

J. Aasi et al., arXiv:1209.6533 



Time and masses in CBC search 
�  Cannot evaluate ρ(t) for all time (computation) 

�  Instead filter short segments (order 1 min) and 
record time at local maximum values of  ρ 
�  Called a ‘trigger’ (t0,ρ) 

�  Likelihood ratio Λopt varies exponentially with ρ 
�  “Maximum likelihood” is a good approximation to to 

the optimum statistic  

�  But each set of  masses (m1, m2) requires a 
different filter ... 
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4. Template banks and  
multi-detector analysis 

28 



How many filters do we need? 
�  Different masses θi = {m1, m2} require different filters 

�  If  there is a signal with parameters θ and we use 
filter parameters θ’≠θ we do not have an optimal 
search  
�  Given a fixed SNR ρ* for detection, the probability that 

the signal exceeds ρ* will be smaller for a mismatched 
template  

�  How much ‘lack of  match’ is acceptable?  

�  Define ‘match’ M = ρ/ρopt      (M ≤ 1) 
  
= (SNR for template θ’)/(SNR for optimal template θ) 
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Loss in search sensitive volume 
�  Assume binary mergers are uniform in space 

�  Volume of  space where signals can be detected with 
ρ>ρ* is ∝ Dmax(ρ*) 
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�  Optimal template: 

�  Non-optimal template:  

�  M = ‘match’ of  signal with non-optimal template 

�  Thus Dmax(ρ*) ∝ M/ρ*, sensitive volume ∝ (M/ρ*)3 
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(Mis)match of  templates 
�  Normalized templates h(θ,t0,φ0) : 〈h|h〉=1 

�  Match M for small mass differences : 

�  max over t0,φ0 ensures differences due to m1,2 only 

�  Expand near local  
maximum at  
Δθ= 0 :   
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Mismatch metric 
�  Local deviation from M=1 defines a metric over θi 

�  Calculating M(θ,Δθ) explicitly → find gij 

�  Can find coordinates where gij is (nearly) constant 

�  Use a regular lattice of  templates  
�  Ensures that no point in space is further than some 

maximum distance from a template 
�  ds2

max : “maximal mismatch”  
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Template bank placement 

�  Hexagonal bank is more efficient at covering space  

�  “Chirp time” coordinates τ0 τ3 : functions of  m1,2 

33 T. Cokelaer, arXiv:0706.4437 



A template bank 
�  Minimal match 0.97 (maximal mismatch 0.03) 

�  ~10% maximum possible loss of  sensitive volume 

�  Component masses 1 < m1,2/M☉ < 24 

�  Max mtotal = 25 M☉ 

�  Order 10,000  
templates 

�  Computationally 
feasible to search ✓ 
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Multi-detector search 
�  Filter and record triggers (t0,m1,m2,ρ) in each 

detector 
�  Local maxima of  likelihood using data in 1 detector 

�  Would like to combine information between several 
detectors 
�  increase number of  signals seen for a fixed number of  

false alarms 

�  Test triggers for time and mass consistency 
between detectors  

�  use a combined detection statistic  
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Coincidence testing 
�  Extend metric to θi = {m1, m2, t0} 

�  Construct ellipsoids of  fixed size  
around each trigger 

�  Coincidence test: Ellipsoids  
from ≥2 detectors must touch 

�  Allow for light travel time 
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Combined detection statistic 
�  Quadrature sum of  ρ  

over detectors A, B, ... 

�  ρc
2 = ρA

2 + ρB
2 + ··· 

�  Expect a Gaussian  
cumulative distribution 
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5. Non-Gaussian noise 
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Real detector noise is not Gaussian 

�  Noise distribution is strongly non-ideal at mid/low 
frequencies 
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B. Abbott et al., Rep. Prog. Phys. 72 076901 (2009) 



Matched filter in non-Gaussian noise 
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Non-Gaussian noise transients 
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Detector output 

Matched filter ρ 

Abbott et al., arXiv:gr-qc/0308069 



Simulated signal in real noise 
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Detector output 

Matched filter 



Signal consistency vetos 
�  For large ρ values, check: 

�  Does ρ(t) behave as expected for a signal? 
�  Does ρ(m1,m2) behave as expected? 
�  Is signal power distributed as expected 

over time / frequency? 

�  ‘Chi-squared’ (χ2) tests 
 

�  Most widely used:  
�  Divide up frequency range (fmin,fmax) into  

p “sub-filters”  
�  Find matched filter output ρi in each ... 
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Classic chisq test 
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i=1 

i=2 

i=3 

i=4 

χ2 = 1.30   χ2 = 68.4   

B. Allen, arXiv:gr-qc/0405045 



SNR-chisq for noise vs. signal 

�  Contours : “reweighted” matched filter ρ 

�  Detection statistic : ρc
2 = ρA

2 + ρB
2 + ··· 
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Gaussian noise Real detector noise 
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Data quality vetoes 
�  Detector operation varies significantly over 

seconds/hours/days 

�  Many sources of  environmental/ instrumental 
transient noise : “glitches” 

�  Auxiliary channels monitor potential  
sources of  transient noise 

�  Identify times when noise  
coupled / correlated with  
GW strain s(t) 
& remove from analysis  

46 
N. Christensen for LSC and Virgo,  
CQG 27 (2010) 194010  



Background estimation 
�  Cannot predict distribution of  noise triggers over 
ρc  

�  How to assign a false alarm probability (FAP) to an 
event with high ρc ?? 

�  Answer: Time-shifted analysis 
�  Real signals occur with t0 differences <0.1s between 

detectors 
�  Artificially time shift ρB(t) → ρB(t + n×5s) in one 

detector, redo the coincidence tests  
�  Result contains no real signals: use as background 

estimate  
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Identifying a candidate detection 

�  “3 sigma evidence”: FAP ≤ 0.003 

�  “5 sigma discovery”: FAP ≤ 6e-7 
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  FAP = 0.01 candidate would look like this … 



6. Recent results of  CBC 
searches in LIGO-Virgo data 
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Summary of  recent searches 
�  LIGO science run S6: July 2009–October 2010 

�  Virgo science runs VSR2 (7/2009–1/2010),  
VSR3 (8/2010–10/2010) 

�  Two main CBC searches performed 
�  ‘Lowmass’: inspiral templates, 2 < (m1+m2)/M☉ < 25 
�  ‘Highmass’: IMR templates, 25 < (m1+m2)/M☉ < 100 

�  No significant candidates 
found 

50 



Upper limits on merger rates 

�  Current limits from lowmass search some  
way above “realistic” astrophysical rates 
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J. Abadie et al. arXiv:1111.7314 



‘Highmass’ BBH merger limits 
�  Heavier systems are 

visible at larger distance 

�  Rate limit smallest  
at high m1,m2 

�  Astrophysical rates 
highly uncertain 

�  Rate limits from search 
are approaching 
“optimistic” astro models 
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J. Aasi et al., arXiv:1209.6533 



Blind Injection Challenge 
�  Test of  LSC–Virgo collaborations ability to claim 

detection in real data 

�  CBC signal injected into 
S6/VSR3 data: search  
groups were unaware  

�  Signal found by  
‘lowmass’ search 

�  Estimated False Alarm Rate 
1/7000 yr (2×106 time shifts!) 

�  Draft paper prepared for submission to PRL ✓ 

53 http://www.ligo.org/science/GW100916/ 



7. Future searches and 
analysis challenges 
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Advanced detectors 
�  Eventual ~factor 10 improvement in sensitivity over 

Initial LIGO 

�  Low-frequency sensitivity down to ~10 Hz 

�  Many advances in  
technology required 

�  Currently under 
construction 

�  Aim for first science 
run in 2015 

55 J.R. Smith for the LSC, CQG 26 114013 



CBC sky localization 
�  Timing accuracy for single detector, ρ~10 : 

~0.1ms 

�  Triangulation of  time differences  
(for 3+ operating detectors) 

�  Localization depends on location! 
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HLV, projected 2017–18 : 
~10% within 20 deg2 

HILV, projected 2022+ : ~50% within  
20 deg2, 17% within 5 deg2 

J. Aasi et al., arXiv:1304:0670 



Challenges from spinning CBCs 
�  Current searches use non-spinning template 

waveforms  
�  Signals from systems with spinning BH seen with 

lower efficiency 
�  Reduced match with templates ⇒ lower search SNR  

�  Blind Injection signal was spinning – but also loud! 

�  Spinning systems have much larger parameter 
space 
�  Challenge to increase search efficiency: find more 

signals without also finding more noise 
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Spinning precessing signals 
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Technical search challenges 
�  Number of  templates 

�  Increases as fmin
–8/3 

�  Increased computing costs 

�  Length of  templates  

�  Low latency  
�  Cannot use simple Fourier transform – different 

filtering methods (multi-band, time domain, ...) 

�  More sophisticated treatment of  detector variability 

�  Faster, more efficient background estimation 
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Summary 
�  Ground-based GW detectors are well adapted to 

detect signals from stellar mass CBC 

�  Current analysis techniques can search real (non-
ideal) data efficiently  
�  and make a strong case for first detection – given 

extra effort 

�  Advanced detectors expected to make several 
detections per year 

�  Next few years: improve analysis to make best use 
of  coming data 
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Extra slides 
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Background estimate 
for Blind Injection 
candidate 


