Searching for compact binary
coalescence with ground-based
GW detectors



Plan of the lecture

(1) Motivation: Detection of gravitational waves from
compact binary coalescence (CBC)

(2) Matched filter for a known signal in noise
(3) Application of matched filter to CBC signals
4) Template banks and multi-detector analysis
(5) Methods for non-Gaussian noise

(6) Recent results of LIGO-Virgo searches

(7) Challenges and expectations for future searches




1. Detection of CBC
gravitational wave signals

Motivation and statement of the problem
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Statement of the problem

Searching data from ground-based GW detectors

Each detector provides a data stream

® s(t) : time series of measured GW strain
® Discrete series sampled at 16384 Hz

® Data extends over several months

Do the data show that a CBC signal is present?

If yes, measure its physical properties

If no, set limits on astrophysical rate of signals
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Signal vs. noise in freqg domain

|h(f)|2xf plotted for optimally located signals at 30 Mpc
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2. Theory of detection for a
known signal




The statistical problem

® CBC signals arrive at the detector all the time!

® But the great majority are ‘too weak to detect’
® Sources are not within sensitive volume of detector
® (Cannot extract any useful information

® Detector output is signal plus noise:
s(t) = h(t) + n(t)

® Detection means:
The data favour nonzero signal, relative to no signal

= we can tell the difference between
s(t) = h(t) + n(t) VS. s(t) = 0 + n(t)




Signal and noise hypotheses

® Hypothesis Hy : s(t) = s,(t) = h(t) + n(t) h(t) # 0
® Hypothesis Hy : s(t) = sp(t) = n(t)

* Bayes’ rule:
P(Hi|d) P(d/Hy) y P(H;) ¢ 'data’ =50
P(Hold)  P(dHpy) =~ P;(Hy)

Posterior Odds Ratio Likelihood Ratio Prior Odds Ratio
(‘Bayes Factor’)

® Prior odds depends on astrophysical coalescence
rate: highly uncertain!




Hypothesis testing

® Use a function of the data A(d) to make decision
e [f A(d)> A" then we declare a detection
e [f A(d) < A" then we declare no detection

® Consider many different realizations of the data
stream s(t) with or without signal :'s; ;, sq;

® Different possible outcomes:
N> NA"fors;; “true positive”
° N> N"forsy; “false positive” [= ‘false alarm’]
® N <N fors;; “true negative”

~® N < N forsy; “false negative”




Ranking all possible outcomes

® N-dimensional space of
possible data streams d=s(t)

® N = number of time samples

® Different positions in space
have different probabilities to
occur under Hy and H,

¢ Constant levels of A(d) define
contours

® Any monotonic function F(A(d))
has the same contours and
produces the same decisions




Optimal decision function

* Define false alarm probability Q,= P(A>A"|H,)
* Define detection probability Q, = P(A>A"|H,)

* “Neyman-Pearson optimal statistic” :
A(d) is optimal if it maximizes detection probability
Q. at a fixed value of false alarm probability Q,

® Can be proved that the likelihood ratio
_ P(d[Hy)
"t P(d|Ho)

~is an optimal statistic for a known signal h(t).

A(d) = A




Statistics of (Gaussian) noise

® To calculate likelihood, need to describe statistics of
noise P(n(t))

® Gaussian colored noise is easy to describe in the
frequency (Fourier) domain n(f)

* Power spectral density S _(f)
1
(n* (H)n(f) = 8(f = £) 55 (f)
®* Noise at different frequencies is not correlated

* Noise variance at frequency f: {|n(f)|*) = £Sn(f) x T

vation time T [frequency resoluti




Likelithood for noise vs. signal

® Noise likelihood
e under Hy, n(f) = s(f)

S 2
P(s(f)Ho) = Nexp{ L[ gl }

35n(f)

* Signal likelihood
e under Hy, n(f) = s(f) - h(f)

2
P(s(f)|H1)=Nexp{_% [l h(f)l}

35n(f)




Scalar products and likelihood ratio

® Define scalar product of data streams a(t), b(t)

_ a*(f)b(f)
(a|b) —Re/_oodf %Sn(f)

® Usual properties: (a|b) = (bla) (ala) > 0 etc.

® Rewrite likelihoods :
P(d|Ho) = Ne 3l

P(d|H1) = Ne2(s-hls=h) — pre=a(sls)+(slh) =3 (hl)

P(dH1) _ (siny—1(nin)
P(d[Ho)

* Likelihood ratio Agpt =




Optimal matched filter

® (h|h) is constant for a fixed signal, e* is monotonic

* Therefore we can also use {s|h) as our statistic
e Known as ‘matched filter’ or ‘Wiener filter’
® |inear in the detector output s

o) =Re [ K (ah). KD =775
—00 59N

* Expected value of {s|h) under Hyis =0

* Expected value of {s|h) under H; is = {h|h)

* Variance of {s|h) is 2= <h|h)




Signal-to-noise ratio (SNR)
(s|h)
(h|h)

® Rescale the matched filter :  p =
® Variance c2(p)=1

® Mean o =0 (noise)

(h|h) (signal)
* o is called “optimal SNR” of the signal h(t)

® Distribution of p:
p(plp) dp = S—e= =P dp
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Describing (simple) inspiral signals

® Time domain

B GM to —t —1/4
ht) = c2Dqg (5GM/ 03) 008(2(]35/(:) ~ 20)
M = (mjl\/_,';?i% , M =mq + mo

® Frequency domain

B(f) = 2P Ainape ~7/6 exp(iT(f; M, M)
Dest J < Jmax
o Y()isaseriesinf a0 e e e
(“Post-Newtonian expansion”) »
valid up to fmax % oAV Il"\W |||V\| dl‘ W}
U(f)=2nfto—2¢0 +

K L 1 L L Il L Il L Il
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time (sec)




Frequency limits

® Theoretical expression
> e ar(f)b(f)
alb) = Re/ df
= ] s )
® |n practice need to limit frequency range

e f>f_ . :detector data is not reliable and/or
calibrated below a minimum frequency

® also length of waveform oc f_. =8/3
o f <f_ _ :inspiral waveform not reliable at large v/c

Mmax

® Thus, use (a|b) = 2Re/fmx df a”(/)o])

Jmin %Sn(f)




Signal parameters seen in h(t)

¢ Signal h(t) is not unique (not a ‘simple hypothesis’)

® Described by parameters “6”

® Amplitude oc Ay e/ Dess
Effective distance D encodes physical distance D
and binary geometry relative to the detector

® Coalescence phase ¢
® (Coalescence time t,
® Masses m;, m,

® Theoretically correct treatment:

Evaluate likelihood p(d|H4(8)) for all 8,
. inalize (integrate) over 6




Dealing with CBC parameters

1) Amplitude: Easy, the matched filter p = (slh)
doesn’t care about amplitude of h (h|h)

e The value of p is a measurement of expected SNR o
® Proportional to Ayy,./Des for a signal

9]

2) Coalescence phase: Easy, use ‘cos’ and ‘sin’ filters
(s|f_7/66i\1’(f)) = COS 2¢0(3|f_7/66w,(f)) + sin 2¢0(3|f_7/6(—7§)ei‘1’,(f))
= cos2¢q - + sin 2¢q - y U(f) = —2¢0 + ¥'(f)

® Can show that |z| = |:13 z’y| — \/x2 y2

~ is an optimal statistic if the phase @ is not known




Dealing with CBC parameters |

® zis a complex matched filter
24 [fmax if s(f)f /6= 1V' (1)
35n(f)

Z =
Deff f min

3) Coalescence time: Easy.
® Rewrite \If,(to) — \II/(tO — O) . 827rifto
o We get a matched filter time series :

24 /fmax of 8(f)f—7/66—i\11'(f;t0=0) —omifte
Deﬁ'

z(to) =

fmin %S'n(f)
® |t's just a Fourier transform !




Statistics of the CBC filter

® x and y are independent filters with variance
o2=<h|h

® Define “SNR” as p = |z|/0 = |x+iy|/ O

® p has a ‘Rayleigh’ distribution in noise

— plp) = pe ||

Probability density p(p)

> 3
Matched filter p




Horizon distance

® Farthest distance D where a coalescing binary would
produce a given expected SNR o0 (eg =8)

®* We have D < D and 0 oc A/D 4
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Time and masses in CBC search

e Cannot evaluate p (t) for all time (computation)

® [nstead filter short segments (order 1 min) and
record time at local maximum values of p

e (Called a ‘trigger’ (ty,0)

* Likelihood ratio A varies exponentially with o

e “Maximum likelihood” is a good approximation to to
the optimum statistic

® But each set of masses (m;, m,) requires a
different filter ...




4. Template banks and
multi-detector analysis

- _—



How many filters do we need?

® Different masses 6, = {my, m,} require different filters

* |f there is a signal with parameters 6 and we use

filter parameters 6 '#6 we do not have an optimal
search

® Given a fixed SNR o~ for detection, the probability that

the signal exceeds o™ will be smaller for a mismatched
template

e How much ‘lack of match’ is acceptable?

* Define ‘match’ M = 0/ 0 o (M <1)
= (SNR for template 6 ’)/(SNR for optimal template 6)




Loss In search sensitive volume

Assume binary mergers are uniform in space

Volume of space where signhals can be detected with
,5>,O* IS oc Dmax(lO*)3

A
Optimal template: Popt X =
Drmax
A
Non-optimal template: pox M ——, M <1
Dmax

M = ‘match’ of signal with non-optimal template

Thus D, (0 ") o< M/ p ", sensitive volume o< (M/ 0 ")3




(Mis)match of templates

* Normalized templates h( 0 ,ty, @) : <h|h)=1

® Match M for small mass differences :

M (0, Af) = max (h(0)|h(0 + 60))

t0a¢0
® max over ty, @ 5 ensures differences due to m; , only
LOOO —
® Expand near local 0.998
maximum at 0,996
AB=0: 09%4!

0992

2 "’
L O°M AG;AG; + O(AF)

2 00,00,

M(9,A0) =1+




Mismatch metric

® Local deviation from M=1 defines a metric over 6.
1 0°M

_ — «Je2” _ o AD. A . — __
1 —M = “ds 9i;A0;A0;,  gi;(0) 2 56,00,

* Calculating M(6, A 8) explicitly — find g;

® Can find coordinates where g; is (nearly) constant

® Use a regular lattice of templates

® Fnsures that no point in space is further than some
maximum distance from a template

® ds?

nax - Maximal mismatch




Template bank placement

T, (seconds)
o
F-N

0.3=¢

0.2? -

1 115 12 125 13 135 14
to(seoo

® Hexagonal bank is more efficient at covering space

® “Chirp time” coordinates 7, 7 3: functions of m;,




A template bank

Minimal match 0.97 (maximal mismatch 0.03)
e ~109, maximum possible loss of sensitive volume

Component masses 1 <m, ,/ Mg <24

Max mtotal = 25 Mg

Order 10,000
templates

Computationally
feasible to search v

Mass 2 (M)

14

12_ ...................... x .......... ............................................

10
Mass 1 (M)




Multi-detector search

Filter and record triggers (t;,m;,m,, 0) in each
detector

® | ocal maxima of likelihood using data in 1 detector

Would like to combine information between several
detectors

® ncrease number of signals seen for a fixed number of
false alarms

Test triggers for time and mass consistency
between detectors

use a combined detection statistic




Coincidence testing

Extend metric to 8,={m,, m,, 5}

Construct ellipsoids of fixed size
around each trigger

Coincidence test: Ellipsoids
from =2 detectors must touch

Allow for light travel time

058

%




Combined detection statistic

. Hanford vs V1 snr statistic
® Quadrature sum of p ' =
over detectors A, B, ...

snr V1

®* Expect a Gaussian
cumulative distribution

10!
snr Hanford

P (Pc > ,Oth) = const. X e‘/"fh/2




5. Non-Gaussian noise




Real detector noise is not Gaussian

10 T
| =80 Hz
w150 Hz
| =850 Hz

10‘2 o . N “SUTIEIEIEE t et enTeeesennearanes _---GaussianNoise-

Probability distribution function (a.u.)

Lo A 1 A 1 \ 1
2 0.4 0.6 0.8 1 1.2
RMS Strain [x 10%]

0

B. Abbott et al., Rep. Prog. Phys. 72 076901 (2009)

® Noise distribution is strongly non-ideal at mid/low
frequencies <




Matched filter in non-Gaussian noise
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Non-Gaussian noise transients

Detector output

Matched filter o

counts

-5 -4 -3 -2 -1 0 1 2 3 4 5
20 T
15 e -

a 10
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Seconds from GPS Time 714962326.557129

Abbott et al., arXiv:gr-qc/0308069



Simulated signal in

real noise
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Signal consistency vetos

For large o values, check:
® Does p (1) behave as expected for a signal?
® Does po(my,m,) behave as expected?

® |s signal power distributed as expected
Over time / frequency? Signal at LIGO Hanford Observato

9]

‘Chi-squared’ ( x 2) tests

Most widely used:

® Divide up frequency range (fin,fnay) INTO
p “sub-filters”

® Find matched filter output o, in each ...



Classic chisqg test
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SNR-chisqg for noise vs. signal

L1 chisqvs snr

10° b

+ + Inpctons
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A A Triggers

I
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Gaussian noise
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Real detector noise

® Contours : “reweighted” matched filter ,3

Detection statistic: o 2 = BA2 + 682 + o



Data quality vetoes

® Detector operation varies significantly over
seconds/hours/days

® Many sources of environmental/ instrumental
transient noise : “glitches”

* Auxiliary channels monitor potential
sources of transient noise Tigger Number

Im Before UPV
m After UPV

¢ |dentify times when noise
coupled / correlated with
GW strain s(t)
& remove from analysis

10°

10!

ristensen for LSC and Virgo,

log(SNR)



Background estimation

® Cannot predict distribution of noise triggers over
[

® How to assign a false alarm probability (FAP) to an
event with high o, 7?7

®* Answer: Time-shifted analysis

® Real signals occur with t, differences <0.1s between
detectors

® Artificially time shift o g(t) = 0 g(t + Nnx5s) in one
detector, redo the coincidence tests

® Result contains no real signals: use as background
estimate




ldentifying a candidate detection

H1.H2,L1 Time: ALL-DATA H1,L1 H1.H2,L1 Time: ALL-DATA H1.L1
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FAP = 0.01 candidate would look like this ... A
® “3 sigma evidence”: FAP < 0.003

~° “5sigma discovery”: FAP < 6e-7
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©. Recent results of CBC
searches in LIGO-Virgo data




Summary of recent searches

® LIGO science run S6: July 2009-October 2010

® Virgo science runs VSR2 (7/2009-1/2010),
VSR3 (8/2010-10/2010)

* Two main CBC searches performed
e ‘Lowmass’: inspiral templates, 2 < (m;+m,)/M, < 25
¢ ‘Highmass’: IMR templates, 25 < (m;+m,)/Mg < 100

_ W

®* No significant candidates Se21
found |

Gravitational Strain

_5e-21 1




Upper limits on merger rates

—~ T
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o
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® Current limits from lowmass search some
way above “realistic” astrophysical rates

J. Abadie et al. arXiv:1111




ighmass’ BBH merger limits

Heavier systems are —
. . Merger rate limit
visible at larger distance (10-7 Mpc—3 yr—1) \

Rate Iimit smallest
at high m;,m,

Astrophysical rates
highly uncertain

Rate limits from search
are approaching
“‘optimistic” astro models my1(Mp)

J. Aasi et al., arXiv:1209.6533



Blind Injection Challenge

® Test of LSC-Virgo collaborations ablllty to claim
detection in real data O i 111 ' Y0 i

g

e CBC signal injected into £

S6/VSR3 data: search gm Tl
groups were unaware S
flo—22
® Signal found by :
‘lowmass’ search = i
® Estimated False Alarm Rate Frequency f (Hz)

1/7000 yr (2x10° time shifts!)

aft paper prepared for submission to PRL




/. Future searches and
analysis challenges

- _—



Advanced detectors

® Eventual ~factor 10 improvement in sensitivity over

Initial LIGO
* Low-frequency sensitivity down to ~10 Hz
0™ = — Initi esign
* Many advances in B F] - Enhanced LIGO Goal
c N \| |-~ -Advanced LIGO Baseline High Frequency|
techno|ogy requ|red g 10 — Advanced LIGO Baseline Broadband
* Currently under =" =
construction | ST | A L [ L
3 ‘\\\ . = Z -
o Aim for first science  Ew S
run in 2015 , '

10°

10" 10° 10°

Frequency [Hz]




CBC sky localization

® Timing accuracy for single detector, o ~10:
~0.1ms

® Triangulation of time differences
(for 3+ operating detectors)

® Localization depends on location!

HILV, projected 2022+
20 deg?, 179




Challenges from spinning CBCs

® Current searches use non-spinning template
waveforms

® Signals from systems with spinning BH seen with
lower efficiency

® Reduced match with templates = lower search SNR
e Blind Injection signal was spinning — but also loud!

® Spinning systems have much larger parameter
space

® Challenge to increase search efficiency: find more
signals without also finding more noise




Spinning precessing signals
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Technical search challenges

® Number of templates
® |ncreases as f_.. —8/3

min

® |ncreased computing costs
® Length of templates

* Low latency

® Cannot use simple Fourier transform — different
filtering methods (multi-band, time domain, ...)

®* More sophisticated treatment of detector variability

® Faster, more efficient background estimation
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Extra slides
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Evidence for the Direct Detection of Gravitational Waves from a Black Hole Binary Coalescence
NOT A REAL DETECTION! Please see side note, and

http://www.ligo.org/news/blind-injection.php.

Background estimate
for Blind Injection
candidate
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