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Outline

What is a GW inteferometric detector
How to get it running
From first to second generation

Remarks:

€ Talk mostly about instrumentation
@ bias view: use Virgo as example
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Preamble

e Joseph Weber invents the bar detector
@ First claim for detection in 1968... but contested

e Evolve to cryogenic resonant bars (‘80-'90)

e Bar not enough sensitivity:
€ h:few 102! 1/sqrt(Hz) @ 900Hz

o ITF started In the 70’s (Ral Weiss)

RSITY OF MARYLAND

S, (1/VHz)
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Principle of a
GW interferometric detector
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Detecting GW with an interferometer

e [nterferometer mirrors = test masses
® Mirror are suspended: “free” test masses above pendulum frequency

test mass

light storage arm

ligh
festmass tstomge am

h =AL/L

test mass

test mass

beam
splitter photodetector

e Forh=~102% andL=3km = 4L ~ 10 -10*¥m
e Complex seismic isolation systems required

First and second generation of GW detectors 5



The Seismic Noise Challenge

ks

displacement [m Hz ~'/2

6400 km

HEH |
107" 10° 10’
frequency [Hz]

e Seismic noise at the Virgo site
€ ~ 10'm./sgrt(Hz) @ 1Hz (on a quite day: weather dependant)
e Vertical to horizontal coupling > 2 104

e Seismic attenuation requirements:
€ Attenuation larger than 10 order of magnitude above 4Hz on 6 d.o.f.

First and second generation of GW detectors



Virgo Seismic Isolation

e A chain of mechanical filters

—== sy ¢ Inverted pendulum
» for low freq. control
@ 6 seismic filter (in all DOFSs)

» Combine blades (vertical attenuatio
and wires (pendulum)

€ 1 longitudinal-angular control stage
» “marionetta”

€ 1 longitudinal control stage
» the reference mass

Stabilized Platform
[occelerometers//coils
magnats-actuators)

[Colls fixed to ground |-+

$)ispended
Selsmic Filters

Marionatte
[Coils and magnels
actuators|

First and second generation of GW detectors
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Virgo seismic Isolation performances
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The SA as a control device

I
e Four Sensing devices \ZZ\ E | [
€ LVDT Sensor on top
€ Accelerometers on top
€ Camera and optical lever on bottom .
& The interferometer itself |

e Hierarchy of noises -
hierarchy of forces | v

€ Avoid large forces applied directly to - 3
the test-mass : X

e Three actuation stages J L >
0

& Below 5Hz coils on the IP
€ .01-20 Hz from the marionetta 1
€ above 5 Hz: reference mass O]

/2
V<
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First generation: optical configuration

Po_wer Recycled end test mass
Michelson
Interferometer 3 km Fabry-Perot rm cavity
with Fabr_y_'PerOt Sensitivity (AL) ~ A =10%m
Arm Cavities
-~ Number of Bounces in Arm (~50)
recycling + Sqgrt (2.1021 photons/sec)
mirror \ ~ 4.101° m/sqrt(Hz)
Laser

signal beam splitter

First and second generation of GW detectors 10



Mirrors

e Low absorption fused silica
€ 35 cm diameter, 10 cm thick
€ 21kg

e Dedicated infrastructure built in Lyon for the coatings

e Challenge of keeping them clean
€ Included when installed on the seismic isolation

First and second generation of GW detectors



Noise sources

(7 S\ Seismic

_ Noise
Acoustic @
[

| Thermal ((¢ Q »))  Noise

,(‘ Noise

FQ “\" ~“ Index fluctuation

S
<> >
™ il = -
S AN
<V Shot
Noise ~~“|Detection
Laser Noié Noise
< |
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1.2m diameter beam tube T e e SRR =
;.-‘“-f-.-.ll 1] JHE (il | | 0 ::y__.__ ,!,.'":'I_ﬂ' i
All key mirrors under vacuum

r. .

First and second generation of GW detectors 13



The detection system

mode cleaner
d’entrée (L = 144 m)

\ cavités Fabry—Perot

LASER H P=Liw
A= 10640 m U
mireir de

P=20W recyclage

(L = 3 km, finesse = 50)

Dark fringe after
Dark fringe before output mode-cleaner

output mode-cleaner contrast ~ 0.1%
contrast~ 1 %

% node cleaner
defortie (L = 2.5 cm)
photg/Métecteurs

0




The Injection system

miroir de
recyclage mode cleaner
% de sortie (L. = 2.5 cm)

j/ photo—détecteurs




Running the first generation of GW
Interferometric detectors

First and second generation of GW detectors



Sensitivity of Virgo: a long story

1998 — 2002: installation and commissioning of the central part
2002 — 2003: completion of the full Virgo and start of commissioning
End 2004: control of the full interferometer at 0.8 W
2006: control of the full interferometer at 8 W

End 2006 — 2007: reduction of technical noises

2007-2011: science runs and upgrades T Nov 2003

C2 Feb 2004
C3 Apr 2004

10712 - - - — - - - —
: : I : : : Poolb b C4 Jun 2004
C5 Dec 2004
ID— d e e s S P A A L

O S S N C6 Aug 2005

H i i i I i C7 Sep 2005

WSRI1 Sep 2006

WSRO0 Mar 2007
: : i i i ; i F i VSR MMay 2007

po-ts L L0 ; : Ly | SR Db i WSR2 October 2000
W B i1iii WSR4 August 2011

ID_“;,_ _ ______________ ________________ 2 S Wirgo design

Sensitivity [WNHz]

Wirgo+ with MS design

101 y | i -1, 4

ok e ;_.u :ﬂgm m

AL
- l'-_i'l

A By s e e = — i ..iiii
10 >
10 10°

[ C1 & C2: single arm ; T3 & C4: recombined ; C5 & afier: recycled | Frequency [Hz]




Inspirale range and horizon

e Horizon: distance at which a source with optimal
orientations is seen with SNR=8

test mass
light storage arm

ligh
L st
test mass OTage arm test mass

test mass

beam
splitter photodetector

+ polarization X polarization

e The ITF antenna patterns are broad

e Range: radius of a sphere of the same volume as the
antenna pattern

e For BNS: horizon-~2.3 range

First and second generation of GW detectors 18



LIGO & Virgo Sensitivity Progress

Binary Neutron Stars Range

LIGO run S5
>

Mpc
10

3 vears =

—— LIGO H1
LIGO L1
LIGO Science runs:
S1: Sep-02

M31: 770 kpc

Vlrgo approval (1993)

L1GO/Virgo
Data |
sharing

Virgo Commissionning/Science runs
C6: Aug 05

C7: Sept 05

WSR1: Sep 06

% [
10 S2: Feb-03/Apr-03 VSR1: May-07/0ct-07
83: Oct-03Man-04 End post VSR1 commissinoning: May 08
___________ S4: Feb-05/Mar-05 VSR2: Jul 09/..
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 85: Sep-05/0Ct-07 | .o ————
s, | I o
2003 2004 2005 2006 2007 2008 2009 201 0
Time
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2007: LIGO-Virgo agreement

Agreement (MoU) Virgo-LIGO

Full data exchange and joint analysis working group
Joint publication policy

Science runs coordination

Collaborative technical research

Benefits:
€ Confidence in detection
€ Duty cycle
€ Sky coverage
€ Sky position localization

First and second generation of GW detectors
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First LIGO/Virgo joint data taking: 2007

=
=

e Virgo first science run (VSR1)
€ 4.5 months (May 18" - October 1st)
€ Duty cycle: 81%
€ NS-NS range from 3.6 to 4.5 Mpc

Virgo VSR1 (18 May 2007)

107 £ v
o - — Virgo Design
Livingsten 5
4 E: o ——— GEO (3 Jun 2006)
1.3 days 107°F LHO 2km (18 Jun 2006)
M —— LHO 4km (13 Mar 2006)
18 |- Y “J bl
107 E ! ——— LLO 4km (04 Jun 2006)
ol } T R O A R )
5 ’ A ‘
1021k ‘\ | l
107
10 107 10°

First and s frequency [Hz]



Virgo : VSR1, VSR2 runs

-
L]

(=]

o

1]

AIII

Average horizon distance (Mpc)
L]

i
M b h'

I 0
1 8105 03/07 17/08 0110 07/07 07/09 08/11 08/01
2007 2007 2007 2007 2009 2009 2009 2010
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Oct. 2009 (VSR2) Vlrgo noise budget

Mon Oct 19 21:51:34 2009 UT

0-1 9

h 1 /\NHz]

-20

—r

Technical and
Control noises

102

Environmental noise

(diffused light / beam jitter) + Nopadhli 1

Thermal noise

1

- Measured ser _

10-21 % N

E———— i 1020
= - UM OT MOoaelz
— =
= : - G
- - . - - - = = o= C
" . " " C [}

— c 10
B
0

.........................
1022
; 102

I
.......................

LIGO H1
LIGO L1

S6 (Aug.

S6 (Aug. 2009)
Virgo (Jul.
Virgo design

1070 E

2009)

2009)
(10 W) -

L_r_ui* T

v 10?

10°

Shot noise Hz
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VSR3: installing monolithic suspensions...

2005 2006 2007 2008 2009 2010 2011 2012

Advanced
Detectors

=]
=
c
=
7]
e
=
=
(=]
{1

200 |
50 g
100 |
50 | ﬁ |
° 20 40 60 80 " I . . o Total Mass (\L.) h "
Total mass (M)
All S5 Beginning of S6/VSR2 End of S6/VSR3
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2010 Virgo+ monolithic suspensions

cone

/"// _
ears . E

anchor

e Use of fused silica fibers to suspend the test masses
€ Replace steel wires
€ Reduction of suspensions thermal noise
€ Risk reduction for Advanced Virgo

e 4 arm-cavity mirrors installed in the spring-summer 2010

e No robustness or control problems experienced with
monolithic suspensions.

e But...

First and second generation of GW detectors 25



U

...excess of light at the ITF output

Before

Degradation of the interferometer <107
contrast due to the waist mismatch
(Laguerre-Gauss mode 01)

lot of power (2-3 W)
Scattered light on the detection optics  10*

VSR3 sensitivity only 5-6 Mpc
(8-9 before monolithic suspensions) 107

Part of the problem fixed with beam
dumps 102

IIW

T FT T

1 Il?]‘.|

I

|

1

GPS: 968892900 Local Time: Sep19,10-02:54.:45
Reference Sensitivity: July 12th, 2009

Virgo+ design

Virgo+ with MS design

| I I |

10?

First and second generat_ibn of GW detectors

| LR P O O 1 A N I
10° 10*
Frequency [Hz]
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Problems with radii of curvature of the new end miIrrors

23

e Mirrors inside the specifications
€ 3450+-100m,
e But asymmetry and average <
value of the ROC changed o e e, i e W D
e Optical simulation: I Virgor -
4 importance of mode degeneracy '8'\'_'_ e
inside Fabry-Perot cavities B e
€ not only the ROC asymmetry is ra
Important alSO the abSO|Ute Value Of IC?EDD 3‘2I50 -BBIDU 33ISD 3400 34I5C| 35:]0 3550 3600 SB;D 3700
the two ROCs s - et e P
e Specifications not correct ool RS > — West Am
- - i} North Arm
e Solution: increase both ROCS  suqlwacippingosi 1o,
by heating the center of the g, [} "}
mlrrorS |'-‘&1500 Pure s@httering
‘ USlng a IR source * Resonance -
1000
€ To minimize losses asymmetry 170ppm
between the two cavities s00f \\__/, L
3qI00 32100 33I00 343% ceh 35l00( \ 36I00 37I00 ?38I00
change (m
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Dealing with scattered light

e Scattered light can couple back to
main beam

€ Phase modulated by movement of
scattering surface

€ Source of excess noise + non-stationary
noise (glitches)

. Trap Stray | ig ht Channel 1 at 941214827 625 with Q of 36.0

€ Baffles, beam dumps...
e Minimize coupling by seismically
and acoustically isolating sensitive
elements

Frequency [Hz]

10 15 20 25
Mormalized tile energy
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Virgo : Four science runs

12

o |

o

210 m 10

1] B Nk I

O - Il |

e L " ! :

&8 ' I T 8

s | ' ‘ | H | | |

§6 ' | I ‘ | i | 6

N | ! ] | | ) '

_24_ } | | ! il I|| 'lI 4

[ y o i

: M \ | | \l \

g 28 | I | i 2

: __:HH H h 0111 1 |
1 05 03;07 17/08 01;10 07!07 07!09 08/11 08/01 |1ma 03;09 25,'09 19;10 03!06 14/06 25/06 06/07
2007 2007 2007 2007 2009 2009 2009 2010 7010 2010 2010 2010 2011 2011 2011 2011
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VSRA4 noise budget

Mon Jul 25 04:28:20 2011 UTC - GPS: 995603315

Sensitivity (10.76 Mpc)
CARM

MICH

PRCL

Angular noise
Diffused Light

Actuator noise LN2

- Thermal noise {OLD)

TCS noise

Shot noise
Electronic noise
Phase noise

Frequency noise dP=23 ppm dF/F=0.125
Frequency noise (shot noise B5)

Total noise {21.70 Mpc}

Virgo+ design (with MS,P=25W)

a1 i | _L
UTIRT dlMMI L.

10 102

10.8 Mpc
measured

Extra thermal noise, lefuse Ilght,

21.7 Mpc
modelled

Hz
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15t generation achievements

2005 2006 2007 2008 2009 2010

LIGO

Virgo

e Operating detectors at
their nominal sensitivities
took years of effort 10

e Long science data taking
e No detection, but some

science!

<
n
A
=

2011

VSR

VSR4

Hz)

LHO-4km (15 May 2010)

LLO-4km (31 May 2010)

Virgo-3km (Sept 2011)

Strain h(f) (1
S
I I\I\I\ImJ [T TTTTI

10—21

10-22

T TTTTT [ TTTTT \W-

10-23

10?

10°
Frequency (Hz)
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Science achieved with 1stgeneration

e All sky searches
€ Compact coalescing binaries

@ Burst sources
» Supernovae, cosmic strings...

€ Continuous waves (spinning neutron stars) :
€ Stochastic background

e Targeted searches
€ Known pulsars

€ Neutron star oscillations

» SGR flares, pulsar glitches
€4 Gamma ray bursts

» Long & short
€ High energy neutrinos

e Search for electromagnetic counterparts to GW

Gravitational waves

Other messengers

First and second generation of GW detectors 32



From first to second generation
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Advanced Virgo & Advanced LIGO

Initial LIGO
" Initial Virgo
= = = Advanced LIGO
Advanced Virgo

Capncomus E
/ Supercluster

*‘f

A
T L',l o
J .
b
-

Y oid

S 100milionly. b

* Capricorug ' -

P i . S %
- Pavodndus,.o 0o

Se nS|t|V|tv Xx10 = VoI ume Xx 1000 e A

il
 Corona-Borealis
. Supercluster

A

" Hercules ;
Superclusters
S

21 Supercluster Bootes
10 S : W oid
e S Centalurus R0 =
. i - N Shaple
ELlpl : Sculptor : : £ Supercusa ]
uperclust 15, | - Waid: s ik
1072 : rgin : Coma5 ol
A ot uﬁam T 5”'3'3":_'“3“5’ L
PiscesLefs! : =5 P g el = :
\ 5 upercluste ] S TR :
» e .; ¥
N e v B LIGO Vlrgn
- 5 ;
107 N - : o
b - - \ ' n '
b - - l - - - \ ‘_
_________ » - i
. . \ : orolc-glurn e SSthar? /
- Supercluster uperc Lster
10 102 103 ok MCDIumba

Very likely detection: o ==
€ BNS : ~ 40/year, typical range: 200Mpc

4 BBH

%‘S upercluster -; ]

e e

Bootes \

AdeIGO - AdvVirgo

~ .

e
. _‘_“— i

. ~ 20/year, typical range 1Gpc =» Start cosmology

O Planning: Commissioning 2013-15, first data taking 2015/16
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CBC: initial detector rates

[FO Source” _ﬁﬁow- _ﬁ%e f*ﬁ] fﬁﬁp
SR S ¢ S ¢
NS-NS 2 x 10™% © 0.02 0.2 0.6

NS-BH 7 x 107>  0.004 0.1

Initial BH-BH 2 x 10~ 0.007 0.5

IMRI into IMBH
IMBH-IMBH

GW data

—
=]

—
Lo
e

Models

Rate Estimates (I\"Ipc‘;iyr‘ l)
—
=

—
o]

10 10

BNS NSBI BBH

< 0.001% 0.01°
10~44  1073¢

e Rate upper limits from
LIGO-S6/Virgo-VSR2-3 data

e ~1 order of magnitude
above optimistic estimates
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CBC: advanced detector rates

[FO Source” Niow N,o 1‘;-"13.; Ei-"up
yr~* yr=* yr=* yr=
NS-NS 0.4 40 400 1000
NS-BH 0.2 10 300
Advanced BH-BH 0.4 20 1000
IMRI into IMBH 10° 300°
IMBH-IMBH 0.17 1@

Realistic rates do get substantial for advanced detectors

BBH visible up to a few Gpc

First and second generation of GW detectors
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M., Sensitivity x 10: How?

Strain,/ +Hz
[y
o

mmy Total
- —-¥ SuspTherm
——-% shot
- —-¥ MirTherm
=-=-¥7 zas
= 2V Total
—2dvV SuspTherm [|
—2adv shot '
—Rrdv M}

Higher laser

! ~ "~ power * signal

recycling to lower
quantum noise

Frequency [Hz]

cryotraps to lower gas noise
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Higher laser

power + signal

recycling to lower
quantum noise

{__

Fabry-Perot
arm cavities
to increase

Electromagnetically coupled

Signal recycling

Michelson-based detector:
sensitive to quadrupole motion
and rejects laser noise

AdvVirgo Quantum Noise: Pin =125.0 W SR-tuning = 0.07

(LASER) 10
Recycle wasted
laser light
Signal recycling
Shape the signal frequency response

SR mirror transmittance =» bandwidth
SR mirror tuning =» peak sensitivity frequency§

- | == SRM transmittance 0.20 -
- i|=—SRM transmittance 0.10

|| =—SRM transmittance 0.04
- +|—SRM transmittance 0.02

|
(e it il ol ol i

TR
SreCroTorIooT

Frequency [Hz]

AdvVirgo Quantum noise: P, =125.0 W SR-t

ransmittance = 0.04

-1 {—SR-tuning 0.2
; J==SR-tuning 0.1

s g g

17 ]==8R=tuning 0.07

Frcocd
h

|~ 1 =SR-tuning 0.035] |

o

Frequency [Hz]
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Strain [1/sqrt(Hz)]

Sensitivity tunabillity

B I I |||::I—Di3timliseldfl'0;'EIBI|'l| | Py ——— : T o
10" N=—=f35=—r=r+ 5531 =Example: narrow band BNS/BBH Mpc Stochastic,
x-d3--r-C 1357 1| ===Example: wide band i
i j jj t m— AV reference (optimised for BNS range]-

LLLLLLL

A=

b=
[

I P

____1__T_FT717T_ T (m
F———"—-——r—r == g — |~ T T T 9 | Gradient,
ainial el 145/1112 ST s
10‘2" 1 [ L1 L1l L1 1 ;
10" 10° 10° 10* 10 10° 10° 10*
Frequency [Hz] Frequency (Hz)

e Some degrees of freedom in the advanced detectors

sensitivity curves
€ some contingencies too...

e Can be tuned to detect/study various sources
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educe the shot noise

: New mirrors

e Increased the arm cavity finesse

e Mew mirrors with better flatness
€ Reduces the power loss by large angle diffusion
€ Goal: less than 50ppm per round trip

e Low absorption, high Q mirrors

e Super-polished surface
€ RoC tolerance: 1% (6% for initial Virgo)
€ All Roc within 0.2% (new)
€ Surface flatness: 0.5nm RMS (8nm for Virgo)
€ Absorption HR: < 0.5ppm (<5ppm for initial Virgo)
€ 0~ 0.3nm RMS on 150cm diameter

e Improved coating
€ New tools for better uniformity
€4 New material to reduce coating thermal noise

First and second generation of GW detectors [



Laser

" Enhanced
Initial detectors deteactgrs gg\t/::tg?g
~10 W Iinput power
e ~S0 W ~200 W
e Reduce shot noise Other requirements

Beam quality

=» Improve high frequency sensitivity  Frequency noise

: : Amplitude noise
e Cope with high power Beam jitter noise

€ Radiation pressure noise Semstieandeura -
& Mirror thermal lensing it
€ High power through input optics

e Requires new developments
€ Heavier mirrors

Vacuum
Injection
bench
IMC

125 W

e s 100W amplifier ‘B P
[T
100W amplifier il

PR

€ Improved thermal compensation
€ High power, low noise, input optics

First and second generation of GW detectors
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~= Thermal Compensation system

aueae

e The main issue:

€ The optics absorb some (O(ppm)) power stored in the cavities.
» Few kW on BS, ~MW in the arms for Advanced detectors

€ A thermal gradient is established in the substrate.

€ This create a thermal lensing: (dn/dT#0, O(ppm/K)).

€ Need to correct some “cold” defects (unstable recycling cavity)

d *RH

=@ The solution:
€ A compensation plate is added

€ llluminated by a non uniform CO2 laser )
» Double AXICON system for accurate compensation &
» + Scanning system ol
€ Fine tuning of the mirror radius of curvature
» Using a ring header around the mirror

120

100

IMX EMX
[ *

First and second generation of GW ¢



Increase beam size

e Average coating thermal noise on a larger surface gw

POP v NI

€ Reduce thermal density load - reduces power induced vom s 0% m[l
-

aberrations Cleaner

e Drawback: recycling cavity becomes (more) unstable ™
€ A laser beam always diverge sAm [
€ Propagation is different for the various modes @
€ For a too short cavity, all modes resonate at the same time .
€ Option of a “long” stable recycle cavity not selected by Virgo P
® Therefore Virgo need j‘*rb il
» “Perfect optics” to avoid problem = WT . %
» Tools to measure deformations: Hartman wave front sensors s o
» Tools to correct them: thermal compensation system -

e Changes in the central area:

€ Larger vacuum tube / valve
€ Larger beam:

» more complex mode matching telescopes
» More difficult to isolate pickoff beams

First and second generation of GW detectors 43



- -

i WA | suspensions to

=it | lower thermal
AV m‘ue

New monolithic suspensions

_ |
e Main optics are suspended from fused silica fiber

@ Low loss/ high Q system
€ Reduce the thermal noise effect
€ Improve the low frequency

e Installed in Virgo for VSR3

€ Some low Q factor observed
€ Improved design

e Heavier mirrors

€ From 21 to 42 kg
€ Reduce thermal noise effect
€ Reduce the radiation pressure effect

e Full new “payload”
€ Compensation plate added

First and second generation of &




M = I e - ; e EEE;E"E’EFE“:MMM ]
o Goal m‘“—.‘ e = : e Egggggzm:ﬁn?iﬁ!;
4 Reduce noise due to index of refraction £ %) " '
fluctuations S I RE 1
e Residual pressure in Virgo tubes _
‘ Current pressure ~ 10-7 mbar 107 _ ..... : i Nt o \_\\ ok
4 /100 reduction required = B as s e bt '\
Frequency [Hz]
Design
¢ Bake tubes R G TRAP
€ Separate tubes from towers L =
rge Valve
€ Cryotraps at tube ends P
[ {
1 8470 Pumping Module
C 9600
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And more improvements...

e High power optics:
€ Faraday isolator, Electro Optic
Modulator, Photodiodes...

e New optical bench suspended
under vacuum

e DC readout
€ New output mode cleaner

First and second generation of GW detectors 46



Sensitivity (1/rtHz)

3km arm length
Underground; Kamioka mine
Approved in 2010
Construction ongoing

First step « warm » (2015)
then cryogenic...

8 2 3 4 5 &788 2 3 4 5 E7E
10 100 1000
Frequency (Hz)

First and second generation of]
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Toward an extended 2" generation network

e KAGRA In Japan

e Third LIGO detector expected to go to
India

e Duty cycle
€ ~-80% at best for one detector
€ ~-50% for three detectors in coincidence

e Sky coverage
e Source localization capability

First and second generation of GW detectors 48



strain noise amplitude [HE_“E,I

aLIGO and AdVirgo schedule?

e A current estimate:

Advanced LIGO Advanced Virgo

10 10
B Early (2015, 40 - 80 Mpc) B Early (2016-17, 20 — 60 Mpc)
Mid (2016-17, 80 — 120 Mpc) Mid (2017-18, 60 — 85 Mpc)
B Late (2017-18, 120 — 170 Mpe)|| o I Late (2018-20, 65 — 115 Mpc)
Bl Cesign (2019, 200 Mpe) ' Bl C=sign (2021, 130 Mpe) ’
10722 0 BENS-optimized (215 Mpz) L - 0 BNS—-optimized (145 Mpc)
8 Z
=
2
=
]
o
107% =Rl
=
=
o -
—— £ .
—-24 —24
10 10
10' 10° 10° 10' 10° 10°

frequency (Hz) frequency (Hz)

...but commissioning usually does not go as you expect
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Conclusion

e First generation GW interferometric detectors

€ Reached their designed sensitivity

@ Collect data as a world wide network

€ Start to give astrophysical limits & multimessenger activity
& Field & community matured with 1t generation detectors

e Second generation (*“Advanced”) detectors
€ Upgrades well advanced
€ Should begging collecting data in 2015
€ Extended network
& Are very likely to open the GW astronomy

First and second generation of GW detectors
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