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Overview

§ Was Einstein right?
● General relativity has never been tested in the regime of 

strong, dynamical gravitational fields

§ How does matter behave in strongly curved, dynamical 
spacetime?

● Neutron star “equation of state” uncertain by factor ~10
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Testing general relativity

General Relativity has enjoyed important successes:

● Perihelium precession of Mercury    

● Deflection of star light by the Sun      

● Shapiro time delay                             

● Gravity Probe B

– Geodetic effect                              

– Frame dragging                             

● Expansion of the Universe     

● Binary neutron stars                                             
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Testing general relativity

General Relativity has enjoyed important successes:

● Perihelium precession of Mercury     [weak, static field]

● Deflection of star light by the Sun      [weak, static field]

● Shapiro time delay                             [weak, static field]

● Gravity Probe B

– Geodetic effect                               [weak, static field]

– Frame dragging                              [weak, stationary field]

● Expansion of the Universe                 [dynamical but weak-field]

● Binary neutron stars                           [dynamical but weak-field]

No tests of genuinely strong-field dynamics of the gravitational field 

Direct detection of gravitational waves will provide us with first empirical 
access
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Coalescing binary neutron stars and black holes

§ The Hulse-Taylor pulsar does not 
suffice to study the dynamics of 
spacetime at strong gravitational 
fields:

GM/(c2 R) ~ 10-6, v/c ~ 10-3

§ Compare with binary neutron 
stars and/or black holes on the 
verge of merger:

GM/(c2 R) ~ 0.2, v/c ~ 0.4

Genuinely strong-field 
dynamics of spacetime can 
only be studied with direct 
gravitational wave 
detection
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§ Hulse-Taylor binary pulsar:         
can study dynamics up to leading 
order in (v/c) 

§ Use inspiraling and merging binary 
neutron stars or black holes to 
study extreme strong-field 
dynamics of spacetime



LISA

 

Was Einstein right?

§ Hulse-Taylor binary pulsar:        
can study dynamics up to leading 
order in (v/c) 

§ Use inspiraling and merging binary 
neutron stars or black holes to 
study extreme strong-field 
dynamics of spacetime

§ Most interesting effects occur 
starting at (v/c)3:

● Gravitational self-interaction: 
waves bouncing off the 
background spacetime



LISA

 

Was Einstein right?

§ Hulse-Taylor binary pulsar:      
can study dynamics up to leading 
order in (v/c) 

§ Use inspiraling and merging binary 
neutron stars or black holes to 
study extreme strong-field 
dynamics of spacetime

§ Most interesting effects occur 
starting at (v/c)3:

● Gravitational self-interaction: 
waves bouncing off the 
background spacetime

● Spin-orbit and spin-spin 
effects cause precession 
and even tumbling motion of 
orbital plane

● ...
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Testing GR with binary inspiral

§ Schematically: inspiral phase can be expressed in terms of 
characteristic speed v(t)

where the       and        depend on masses and spins of 
component objects  

§ Physical content:

●       incorporates lowest-order “tail effects” (non-linearity of GR), 
and spin-orbit interaction

●       has lowest-order spin-spin effects

●         is lowest-order non-zero “logarithmic” coefficient
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Testing GR with binary inspiral

§ Schematically: inspiral phase can be expressed in terms of 
characteristic speed v(t)

where the       and        depend on masses and spins of 
component objects  

§ Modifications to GR:

● "Massive graviton" would modify 

● Scalar-tensor theories add                 inside the sum

● Quadratic curvature terms in action add 

● "Dynamical Chern-Simons theory" adds 

● Variable G adds                          
Cornish et al., PRD 84, 
062003 (2011)
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Testing GR with binary inspiral

 

§ If no spins then coefficients only depend on the two component masses, hence 
only two independent coefficients 

§ Measure any two coefficients and see if third is consistent assuming GR correct:

      Arun et al., PRD 74, 024006 (2006)

 

In practice: parameter estimation not convenient, instead use 
Bayesian model selection
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TIGER: Test Infrastructure for GEneral Relativity
§ Schematically: inspiral phase can be expressed in terms of 

characteristic speed v(t)

where the       and        depend on masses and spins of 
component objects  

§ After one or more detections, compare two hypotheses:

●            the signal waveform is as predicted by GR 

●            the signal waveform deviates from the GR prediction

§ In practice not possible to let              be the negation of 

§ Choice we make:

           is the hypothesis that one or more of the       ,                              
           are not as predicted by GR, without specifying which ones
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TIGER: Test Infrastructure for GEneral Relativity
   

is the hypothesis that one or more of the       ,                 
are not as predicted by GR, without specifying which

§ No waveform model associated to this!

§ Split         into mutually exclusive sub-hypotheses:

– H
i
     coefficient ψi is not as predicted by GR, but all others are

– H
ij
    coefficients ψ

i 
and ψ

j  
are both not as in GR, but all others are

– H
ijk
   coefficients ψ

i
 , ψ

j
  , ψ

k 
are not as in GR, but all others are

§ Each of the sub-hypothesis does have associated waveform model 

§ Odds ratio:

                       

                 

d can be data from
multiple detections   
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Dealing with noise

§ Theoretically, should have O < 1 or logO < 0 if GR is correct

§ Noise can mimick GR violations!

§ Introduce a background distribution of log odds ratio for catalogs of GR signals

§ Pick a maximum tolerable false alarm probability and set logO threshold

§ For a given GR violation, efficiency is fraction of catalogs with logO above 
threshold

▶ Noise can be dealt with   ✔

                                         

                     

Li et al., PRD 85, 082003 
(2012)                                        
Li et al., JPCS 363, 012028 
(2012)
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Example 1: Constant 10% shift at (v/c)3

§ Binary neutron stars, masses uniform in [1, 2] M
sun

§ Uniform in co-moving volume, uniform in orientation and sky position

§ Distances [100, 400] Mpc

§ Simulated stationary, Gaussian noise following advanced detector projections

Histogram of log odds ratios for individual sources
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Example 1: Constant 10% shift at (v/c)3

§ Binary neutron stars, masses uniform in [1, 2] M
sun

§ Uniform in co-moving volume, uniform in orientation and sky position

§ Distances [100, 400] Mpc

§ Simulated stationary, Gaussian noise following advanced detector projections

Histogram of log odds ratios for catalogs of 15 sources each
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Example 2: Constant 2.5% shift at (v/c)3

Histogram of log odds ratios for catalogs of 15 sources each
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Example 2: Constant 2.5% shift at (v/c)3

§ Recall: pick a maximum tolerable false alarm probability β, and 
using the GR “background” distribution, set a threshold on logO

§ Given the maximum false alarm probability, the efficiency ζ is the 
fraction of “foreground” above threshold 
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Example 2: Constant 2.5% shift at (v/c)3

§ Efficiency as a function of number of sources per catalog:
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How general is the test?

 

§ Inspiral phase:

§ TIGER only looks for deviations in coefficients        ,        :

               is the hypothesis that one or more of the coefficients are not as 
               predicted by GR

§ In practice, we only look at lowest-order coefficients:

What if GR is violated in a more complicated way? 
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Example 3: A deviation at (v/c)2.5

 
Histogram of log odds ratios for catalogs of 15 sources each

§

One or more of the sub-hypotheses H
1
, ..., H

123
 will accommodate 

the signal better than the GR hypothesis!
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Further examples

 
      (v/c)4

     (v/c)-1+M/Msun

▶ Sensitive to very generic deviations    
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BNS versus NSBH, BBH

§ Due to computational restrictions (background calculation!) we 
are currently forced to use TaylorF2-based waveforms

§ Overlap of TaylorF2 with non-spinning EOB inspiral-merger-
ringdown waveforms optimized using numerical simulations:

Most massive binary      
neutron stars

▶ For now, focus on BNS

                     

                     

Buonanno et al.,                                   
PRD 80, 084043 (2009)
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Differences between waveform approximants

 

§ How does background change if injected GR signals are TaylorT4 
rather than TaylorF2?

§ Odds ratio distribution for single sources:

                                      ✔
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Finite size effects

 

§ NS tidal deformability (depending on unknown equation of state) affects 
orbital motion and therefore gravitational waveform

§ Only important at frequencies > 400 Hz

§ Cut off recovery waveforms at that frequency

● Loss in SNR < 1%

§ Choose one of the “hardest” equations of state, check that this solves 
problem

                                        ✔       
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Instrumental calibration errors

 

§ Frequency dependent amplitude and phase calibration errors     

   Vitale et al., PRD 85, 064034 (2012) 

§ Compare GR background with/without calibration errors

         ✔  
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Precessing neutron star spins

 

§ How does background change with precessing neutron star spins versus just 
(anti-)aligned?

§ Compare background with SpinTaylorT4 versus TaylorF2 injections 
(magnitudes Gaussian with σ = 0.05), in both cases recovering with 
TaylorF2, (anti-)aligned spin

      ✔
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Testing GR with binary black holes?

§ Reliable waveforms not yet available, or hard to use:

● “Effective One-Body” approach and inspiral-merger-ringdown 
(IMR) extensions tuned to numerical relativity waveforms: 
Waveforms take a long time to generate

● “IMRPhenom waveforms” are frequency domain, 
phenomenological IMR waveforms with high faithfulness to 
numerical waveforms: No precessing spins

● “PhenSpin waveforms”: IMR waveforms with precessing spins, 
but tuned against only a small number of numerical waveforms

§ Could in principle plug (deformations of) any of these into 
TIGER for use as recovery waveforms

● Unknown effects could be relegated to GR background 

● But: background likely to be very wide if recovery with 
waveforms that our codes can handle
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Tidal effects during coalescence

 

§ Consider BNS or NSBH 
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Tidal effects during coalescence

 

§ Consider BNS or NSBH

  Tidal deformation 
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Tidal effects during coalescence

 

§ Consider BNS or NSBH

                    Tidal disruption 
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The equation of state of neutron stars
§ Tidal deformability determined by equation of state (EOS) 

§ NS internal structure not well understood
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● "Soft" EOS: prompt collapse to a black hole
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The equation of state of neutron stars
§ Tidal deformability determined by equation of state (EOS)

§ NS internal structure not well understood

§ Extremes:

● "Soft" EOS: prompt collapse to a black hole

● "Hard" EOS: unstable bar mode, eventually BH
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Inspiral
§ For now, focus on BNS

§ Part of the signal in detector band is mostly inspiral 

§ Inspiral phase: 

     Point particle contribution    Tidal contribution 

§ Tidal contributions at (v/c)10, (v/c)12 beyond leading order 

§ But: proportional to (R
ns

/m
ns

)5   ~ 105  → huge prefactor!

§ Tidal effects enter waveform through tidal deformability

                                        Tidal field of companion star
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Inspiral
§ For now, focus on BNS

§ Part of the signal in detector band is mostly inspiral 

§ Inspiral phase: 

     Point particle contribution    Tidal contribution 

§ Tidal contributions at (v/c)10, (v/c)12 beyond leading order 

§ But: proportional to (R
ns

/m
ns

)5   ~ 105  → huge prefactor!

§ Tidal effects enter waveform through tidal deformability

Induced quadrupole moment

     



LISA

 

Inspiral
§ For now, focus on BNS

§ Part of the signal in detector band is mostly inspiral 

§ Inspiral phase: 

     Point particle contribution    Tidal contribution 

§ Tidal contributions at (v/c)10, (v/c)12 beyond leading order 

§ But: proportional to (R
ns

/m
ns

)5   ~ 105  → huge prefactor!

§ Tidal effects enter waveform through tidal deformability

                       Tidal deformability function

– Depends on mass
– Depends on EOS
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Inspiral
§ Tidal effects are high order in (v/c)

   → Need to combine information from multiple sources 

§ Two ways of inferring λ(m) and hence EOS:

● Series expansion of  λ(m):

→ Coefficients λ
j
 the same for all sources

● Hypothesis ranking:

... for any pair of EOS        ,  
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Inspiral
§ Tidal effects are high order in (v/c)

   → Need to combine information from multiple sources 

§ Two ways of inferring λ(m) and hence EOS:

● Series expansion of  λ(m):

→ Coefficients λ
j
 the same for all sources

● Hypothesis ranking:

... for any pair of EOS       ,

For proof of principle, pick a hard, moderate, 
and soft EOS  
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Series expansion of λ(m)

In practice, only λ
0
 can be measured well  
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Hypothesis ranking

 

     

§ Use log odds ratio (smaller numbers)

§            < 0  means j preferred over k 

§            < -5 means decisive difference (1:150)
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Summary

 

     

§ Direct gravitational wave detection will allow us to test the 
genuinely strong-field dynamics of gravity

● Binary neutron star coalescence: data analysis pipeline in 
advanced stage

– Model-independent test

– Well-suited for low-SNR sources

– Robust against unknown instrumental and astrophysical effects

● Binary black holes: sufficiently accurate and “fast” waveform 
models not yet available

§ Behavior of matter in strong, dynamical gravitational fields

● Neutron star equation of state currently uncertain by factor ~10

● With O(10) BNS detections: can distinguish between soft, 
moderate, hard EOS (model selection, parameter estimation)

● Effect of neutron star spins? Merger? Can we do better with 
NSBH?

– Input from numerical relativity needed
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